Automating Human Information Agents

Stan Franklin
,

Institute for Intelligent Systems and

Department of Mathematical Sciences

The University of Memphis

 MACROBUTTON HtmlResAnchor stan.franklin@memphis.edu

 MACROBUTTON HtmlResAnchor www.msci.memphis.edu/~franklin

1 Human Information Agents

Human information agents include insurance agents, travel agents, voter registrars, mail-order service clerks, telephone information operators, employment agents, AAA route planners, customer service agents, bank loan officers, and many, many others. Such human agents must typically possess a common set of skills. These would often include most of the following:

· Communicating with clients in their natural language;

· Reading from and writing to databases of various sorts (insurance rates, airline schedules, voter roles, company catalogs, etc.);

· Knowing, understanding and adhering to company or agency policies;

· Planning and decision making (coverage to suggest, routes and carriers to offer, loan to authorize, etc);

· Negotiating with clients about the issues involved;

· Generating a tangible product (insurance policy, airline tickets, customer order, etc.).

I suspect that millions of people, mostly in developed countries, earn their livings as such human information agents. Each of these, in addition to salary and benefits, is typically provided with office space and furniture, and with computing facilities. The total yearly cost of each such agent in a developed country must conservatively be on the order of $100,000. Thus the total yearly cost of human information agents around the world must push a trillion dollars.

And, what about the cost of producing such a human information agent? A child must be produced and raised. Add to this the cost of twelve to fifteen years of formal education. Then there’s on the job training. Each of these information agent jobs is relatively knowledge intensive. There’s much to be learned, and that costs.

It would seem that human information agent jobs offer fertile ground for automating. How about computer programs (intelligent software agents) that would completely take over these human information agent jobs including communicating in natural language, consulting databases, adhering to policies, planning and decision making, negotiating with clients, and producing tangible products? How about taking the human out of the loop completely? The economic benefit would be enormous. From the societal side, people would be freed for more interesting, more challenging occupations.

But, you object, would people be willing to deal with a software agent instead of another person? Some would, some wouldn’t. As time passed more and more people would. I now regularly use an automated bank teller, though at first I resisted. The same is true for checking on the arrival time of a flight by phone with no person on the other end. I even order a few items over the web (books and coffee). As in these instances, with familiarity would come acceptance.

OK, you say, but there’s still the problem of creating such software information agents. How are you going to do that? Natural language, constraint satisfaction, planning and decision making, and negotiation aren’t easy for computers. And each of these jobs is a knowledge intensive task. Can we build such software information agents?

I hope so. With funding from the United States Navy, the “Conscious” Software Research Group at the University of Memphis is in the process of designing and implementing one such software information agent. This chapter will be devoted to a description of the technology being developed. If successful, this same technology should permit the development of software agents that can perform all the tasks of several kinds of human information agents.

That’s not to say that with the technology in hand the task will be easy. Each such software information agent will require a considerable knowledge engineering effort and, likely, a training and development period as a human would. Learning methods to make such development possible will be built into the agents.

The technology to be described is based on a psychological theory of consciousness and cognition. The idea is, if you want smart software agents, copy them after humans.
2 Autonomous Agents

Artificial intelligence pursues the twin goals of understanding human intelligence and of producing intelligent software and/or artifacts. Designing, implementing and experimenting with autonomous agents furthers both these goals in a synergistic way. In particular, designing and implementing within the constraints of a theory of cognition can further the first goal by providing conceptual and computational models of that theory. An autonomous agent (Franklin & Graesser 1997) is a system situated in, and part of, an environment, which senses that environment, and acts on it, over time, in pursuit of its own agenda. In biological agents, this agenda arises from evolved in drives and their associated goals; in artificial agents from drives and goals built in by its creator. Such drives which act as motive generators (Sloman 1987), must be present, whether explicitly represented, or expressed causally. The agent also acts in such a way as to possibly influence what it senses at a later time. In other words, it is structurally coupled to its environment (Maturana 1975, Maturana et al. 1980).

Biological examples of autonomous agents include humans and most animals. (See Figure 1.) Non-biological examples include some mobile robots, and various computational agents, including artificial life agents, software agents and many computer viruses. We’ll be concerned with autonomous software agents, designed for specific tasks, and ‘living’ in real world computing systems such as operating systems, databases, or networks.

[image: image8..pict]
Figure 1. A Taxonomy for Autonomous Agents

Such autonomous software agents, when equipped with cognitive (interpreted broadly) features chosen from among multiple senses, perception, short and long term memory, attention, planning, reasoning, problem solving, learning, emotions, moods, attitudes, multiple drives, etc., are called cognitive agents (Franklin 1997a). ‘Though ill defined, cognitive agents can play a synergistic role in the study of human cognition, including consciousness.
3 Global Workspace Theory

The material in this section is from Baars’ two books (1988, 1997) and superficially describes his global workspace theory of consciousness.

In his global workspace theory, Baars, along with many others (e.g. (Minsky 1985, Ornstein 1986, Edelman 1987)) , postulates that human cognition is implemented by a multitude of relatively small, special purpose processes, almost always unconscious. (It's a multiagent system.) Communication between them is rare and over a narrow bandwidth. Coalitions of such processes find their way into a global workspace (and into consciousness). This limited capacity workspace serves to broadcast the message of the coalition to all the unconscious processors, in order to recruit other processors to join in handling the current novel situation, or in solving the current problem. Thus consciousness in this theory allows us to deal with novel or problematic situations that can’t be dealt with efficiently, or at all, by habituated unconscious processes. In particular, it provides access to appropriately useful resources, thereby solving the relevance problem.

[image: image1.wmf]
Figure 2. Global Workspace Theory

This theory offers an explanation for consciousness being serial in nature rather than parallel as is common in the rest of the nervous system. Messages broadcast in parallel would tend to overwrite one another making understanding difficult. It similarly explains the limited capacity of consciousness as opposed to the huge capacity typical of long-term memory and other parts of the nervous system. Large messages would be overwhelming to small, special-purpose processors.

 All this activity of processors takes place under the auspices of contexts (see Figure 2): goal contexts, perceptual contexts, conceptual contexts, and/or cultural contexts. Baars uses goal hierarchies, dominant goal contexts, a dominant goal hierarchy, dominant context hierarchies, and lower level context hierarchies. Each context is, itself a coalition of processes. Though contexts are typically unconscious, they strongly influence conscious processes. Baars postulates that learning results simply from conscious attention, that is, that consciousness is sufficient for learning. There's much more to the theory, including attention, action selection, emotion, voluntary action, metacognition and a sense of self. I think of it as a high level theory of cognition.

4 “Conscious” Software Agents

A “conscious” software agent is defined to be an autonomous software agent that implements global workspace theory. (No claim of sentience is being made.) I believe that conscious software agents have the potential to play a synergistic role in both cognitive theory and intelligent software. Minds can be viewed as control structures for autonomous agents (Franklin 1995). A theory of mind constrains the design of a “conscious” agent that implements that theory. While a theory is typically abstract and only broadly sketches an architecture, an implemented computational design provides a fully articulated architecture and a complete set of mechanisms. This architecture and set of mechanisms provides a richer, more concrete, and more decisive theory. Moreover, every design decision taken during an implementation furnishes a hypothesis about how human minds work. These hypotheses may motivate experiments with humans and other forms of empirical tests. Conversely, the results of such experiments motivate corresponding modifications of the architecture and mechanisms of the cognitive agent. In this way, the concepts and methodologies of cognitive science and of computer science will work synergistically to enhance our understanding of mechanisms of mind (Franklin 1997a).

5 “Conscious” Mattie

“Conscious” Mattie (CMattie) is a “conscious” clerical software agent (Franklin 1997b, McCauley, T. L. & Franklin 1998, Zhang et al. 1998b, Bogner et al. 2000). She composes and emails out weekly seminar announcements, having communicated by email with seminar organizers and announcement recipients in natural language. She maintains her mailing list, reminds organizers who are late with their information, and warns of space and time conflicts. There is no human involvement other than via these email messages. CMattie's cognitive modules include perception, learning, action selection, associative memory, "consciousness," emotion and metacognition. Her emotions influence her action selection.

Conceptually, CMattie is an autonomous software agent that ‘lives’ in a UNIX system. CMattie is an extension of Virtutal Mattie (VMattie) (Franklin et al. 1996, Zhang et al. 1998b, Song & Franklin 2000). VMattie, which is currently running in a beta testing stage, implements an initial set of components of global workspace theory. VMattie performs all of the functions of CMattie, as listed above, but does so “unconsciously” and without the ability to learn and to flexibly handle novel situations. CMattie adds the missing pieces of global workspace theory, including computational versions of attention, associative and episodic memories, emotions, learning and metacognition.

The computational mechanisms of CMattie incorporate several of the mechanisms of mind discussed at length in Artificial Minds (Franklin 1995). Each of the mechanisms mentioned required considerable modification and, often, extension in order that they be suitable for use in CMattie. The high-level action selection uses an extended form of Maes' behavior net (1989). The net is comprised of behaviors, drives and links between them. Activation spreads in one direction from the drives, and in the other from CMattie’s percepts. The currently active behavior is chosen from those whose preconditions are met and whose activations are over threshold. Lower level actions are taken by codelets in the manner of the Copycat architecture (Mitchell 1993, Hofstadter & Mitchell 1994). Each codelet is a small piece of code, a little program, that does one thing. Our implementation of Baars’ global workspace, discussed in more detail below, relys heavily on the playing field in Jackson's pandemonium theory (1987). All active codelets inhabit the playing field, and those in “consciousness” occupy the global workspace. Kanerva's sparse distributed memory (Kanerva 1988, Anwar et al. 1999, Anwar & Franklin submitted) provides a human-like associative memory for the agent whereas episodic memory (case-based) follows Kolodner’s model (1993). CMattie’s emotion mechanism uses pandemonium theory (McCauley, T. L. & Franklin 1998, McCauley, L. et al. 1999). Her metacognition module is based on a fuzzy version of Holland’s classifier system (1986, 1991, 1998a). Learning by CMattie is accomplished by a number of mechanisms. Behavior nets can learn by adjusting the weights on links as in artificial neural networks (Maes 1993). The demons in pandemonium theory become (more) associated as they occur together in the playing field of the arena (Jackson 1987). The associations that occur automatically in sparse distribute memory constitute learning (Kanerva 1988). CMattie also employs one-trial learning using case-based reasoning (Ramamurthy et al. 1998, Bogner et al. 2000).

We next turn to a brief account of how the CM-architecture uses these mechanisms to model global workspace theory. The CM-architecture can be conveniently partitioned into more abstract, high-level constructs and lower level, less abstract codelets. Higher-level constructs such as behaviors and some slipnet nodes overlie collections of codelets that actually do their work. In CMattie, Baars’ “vast collection of unconscious processes” are implemented as codelets much in the manner of the Copycat architecture, or almost equivalently as Jackson's demons. Baars’ limited capacity global workspace is a portion of Jackson's playing field, which holds the active codelets. Working memory consists of several distinct workspaces, one for perception, one for composing announcements, two for one-trial learning, and others.

Baars speaks of contexts as “…the great array of unconscious mental sources that shape our conscious experiences and beliefs.” (1997, p. 115) He distinguishes several types, including perceptual contexts, conceptual contexts and goal contexts. The perceptual context provided by a large body of water might help me interpret a white, rectangular cloth as a sail rather than as a bed sheet. The conceptual context of a discussion of money might point me at interpreting “Let’s go down by the bank?” as something other that an invitation for a walk, a picnic or a swim. Hunger might well give rise to a goal context. Contexts in global workspace theory are coalitions of codelets. In the CM-architecture high-level constructs are often identified with their underlying collections of codelets and, thus, can be thought of as contexts. Perceptual contexts include particular nodes from a slipnet type associative memory à la Copycat (similar to a semantic net), and particular templates in workspaces. For example, a message-type node is a perceptual context. A node type perceptual context becomes active via spreading activation in the slipnet when the node reaches a threshold. Several nodes can be active at once, producing composite perceptual contexts. These mechanisms allow “conscious” experiences to trigger “unconscious” contexts that help to interpret later “conscious” events. Conceptual contexts also reside in the slipnet, as well as in associative memory. Goal contexts are implemented as instantiated behaviors in a much more dynamic version of Maes’ behavior nets. They become active by having preconditions met and by exceeding a time variable threshold. Goal hierarchies are implemented as instantiated behaviors and their associated drives. (My hunger drive might give rise to the goal of eating sushi. The first behavior toward that goal might be walking to my car.) The dominant goal context is determined by the currently active instantiated behavior. The dominant goal hierarchy is one rooted at the drive associated with the currently active instantiated behavior.

Recruitment of coalitions of processors is accomplished by attention codelets, as well as by the associations among the occupants of the global workspace, via pandemonium theory. Always on the alert, attention codelets jump into action when novel or problematic situations occur. Attention is what goes into the global workspace from perception, and from internal monitoring. It also uses pandemonium theory, but requires an extension of it. Both recruitment and attention are modulated by the various context hierarchies. Learning occurs via several mechanisms: as in pandemonium theory, as in sparse distributed memory, as in behavior nets, by extensions of these, and by other mechanisms. High-level action selection is provided by the instantiated behavior net. At a low level, CMattie follows the Copycat architecture procedure of temperature controlled (here emotionally controlled), parallel terraced scanning. Problem solving is accomplished via “conscious” recruitment of coalitions of “unconscious” codelets.

Figure 3 gives a functional overview of most of the CMattie architecture. Several important functions, for example conceptual and behavioral learning, are omitted from the diagram, but not from our discussion. Detailed descriptions of the architecture and mechanisms are given in a series of papers by members of the “Conscious” Software Research group (Franklin et al. 1996, McCauley, T. L. & Franklin 1998, Ramamurthy et al. 1998, Zhang et al. 1998a, 1998b, Franklin & Graesser 1999, Bogner et al. 2000, Song & Franklin 2000, Anwar & Franklin submitted).

[image: image2..pict]
Figure 3. Most of the “Conscious” Mattie Architecture
6 IDA

IDA (Intelligent Distribution Agent) is a “conscious” software information agent being developed for the US Navy (Franklin et al. 1998). At the end of each sailor's tour of duty, he or she is assigned to a new billet. This assignment process is called distribution. The Navy employs almost 300 people, called detailers, full time to effect these new assignments. IDA's task is to facilitate this process, by playing the role of detailer. She is to automate the detailer’s task. Designing IDA presents both communication problems, and action selection problems involving constraint satisfaction. She must communicate with sailors via email and in natural language, understanding the content and producing life-like responses. Sometimes she will initiate conversations. She must access a number of databases, again understanding the content. She must see that the Navy's needs are satisfied, for example, the required number of sonar technicians on a destroyer with the required types of training. In doing so she must adhere to some ninety policies. She must hold down moving costs. And, she must cater to the needs and desires of the sailor as well as is possible. This includes negotiating with the sailor via an email correspondence in natural language. Finally, she must write the orders and start them on the way to the sailor.

The IDA architecture consists of both an abstract level (containing such entities as behaviors, message type nodes, metacognitive actions, etc.), and a lower, more specific level (implemented by small pieces of code). At the higher level the architecture is quite modular with module names often borrowed from psychology (see Figure 4). There are modules for Perception, Action Selection, Associative , Episodic Memory, Emotions, Metacognition, Learning, Constraint Satisfaction, Language Generation, Deliberation, and “Consciousness.” As with CMattie above, many of their mechanisms were inspired by ideas from the “new AI” (the copycat architecture (Mitchell 1993, Hofstadter & Mitchell 1994, Sloman 1999), behavior nets (Maes 1989), sparse distributed memory (Kanerva 1988), pandemonium theory (Jackson 1987), and fuzzy classifier systems (Zadeh 1965, Holland 1986)). Others come from more classical AI (case-based reasoning (Kolodner 1993)).

In the lower level of the IDA architecture the processors postulated by global workspace theory are implemented, as in CMattie, by codelets, small pieces of code. These are specialized for some simple task and often play the role of demon waiting for appropriate condition under which to act. Most of these codelets subserve some high level entity such as a behavior or a slipnet node or a metacognitive action. Some codelets work on their own performing such tasks as watching for incoming email and instantiating goal structures. An important type of the latter is the attention codelets who serve to bring information to “consciousness.” Codelets do almost all the work, making IDA is a multi-agent system.
6.1 Perception

IDA senses text, not imbued with meaning, but as primitive sensation as for example the pattern of activity on the rods and cones of the retina. This text may come from email messages, a chat room environment, or from a database record. Her perception module (much like that of an

[image: image3..pict]
Figure 4. The IDA Architecture

earlier such agent, VMattie (Zhang et al. 1998b)), employs analysis of surface features for natural language understanding (Allen 1995). It partially implements perceptual symbol system theory (Barsalou 1999), which is used as a guide. Its underlying mechanism constitutes a portion of the Copycat architecture (Hofstadter & Mitchell 1994). The perceptual/conceptual knowledge base of IDA takes the form of a semantic net with activation passing called the slipnet (see Figure 5). The name is taken from the Copycat architecture. Nodes of the slipnet constitute the agent’s perceptual symbols. Pieces of the slipnet containing nodes and links, together with codelets whose task it is to copy the piece to working memory. The codelets recognizing various concept, since they are able to simulate a concept’s common forms, constitute Barsalou’s perceptual symbol simulators. The slipnet embodies the perceptual contexts and some conceptual contexts from global workspace theory. There's a horde of perceptual codelets that descend on an incoming message, looking for words or phrases they recognize. When such are found, appropriate nodes in the slipnet are activated, This activation passes around the net until it settles. An idea type node (or several) is selected by its high activation, and the appropriate template(s) filled by codelets with selected items from the message. The information thus created from the incoming message is then written to the perception registers in the workspace (to be described below), making it available to the rest of the system.

The results of this process, information created by the agent for its own use (Franklin 1995), are written to the workspace (short term memory, not to be confused with Baars' global workspace). Almost all IDA's modules either write to the workspace, read from it, or both. The focus, to be described below, is part of this workspace.
6.2 Associative Memory
IDA employs sparse distributed memory (SDM) as her major associative memory (Kanerva 1988). SDM is a content addressable memory that, in many ways, is an ideal computational mechanism for use as a long-term associative memory. Being

[image: image4..pict]

Figure 5. A Small Portion of IDA’s Slipnet

content addressable means that items in memory can be retrieved by using part of their contents as a cue, rather than having to know the item’s address in memory.
The inner workings of SDM rely on large binary spaces, that is, spaces of vectors containing only zeros and ones, called bits. These binary vectors, called words, serve as both the addresses and the contents of the memory. The dimension of the space determines the richness of each word. These spaces are typically far too large to implement in any conceivable computer. Approximating the space uniformly with a possible number of actually implemented, hard locations surmounts this difficulty. The number of such hard locations determines the carrying capacity of the memory. Features are represented by one or more bits. Groups of features are concatenated to form a word. When writing a word to memory, a copy of the word is placed in all close enough hard locations. When reading a word, a close enough cue would reach all close enough hard locations and get some sort of aggregate or average out of them. Reading is not always successful. Depending on the cue and the previously written information, among other factors, convergence or divergence during a reading operation may occur. If convergence occurs, the pooled word will be the closest match (with abstraction) of the input reading cue. On the other hand, when divergence occurs, there is no relation -in general- between the input cue and what is retrieved from memory.

SDM is much like human long-term memory. A human often knows what he or she does or doesn't know. If asked for a telephone number I've once known, I may search for it. When asked for one I've never known, an immediate "I don't know" response ensues. SDM makes such decisions based on the speed of initial convergence. The reading of memory in SDM is an iterative process. The cue is used as an address. The content at that address is read as a second address, and so on until convergence, that is, until subsequent contents look alike. If it doesn’t quickly converge, an “I don't know” is the response. The "on the tip of my tongue phenomenon" corresponds to the cue having content just at the threshold of convergence. Yet another similarity is the power of rehearsal during which an item would be written many times and, at each of these to a thousand locations That’s the “distributed” pare of sparse distributed memory. A well-rehearsed item can be retrieved with smaller cues. Another similarity is forgetting, which would tend to increase over time as a result of other similar writes to memory.

How does IDA use this associative memory? Reads and writes to and from associative memory are accomplished through a gateway within the workspace called the focus (see Figure 6). When any item is written to the workspace, another copy is written to the read registers of the focus. The contents of these read registers of the focus are then used as an address to query associative memory. The results of this query, that is, whatever IDA associates with this incoming information, are written into their own registers in the focus. This may include some emotion and some action previously taken. Thus associations with any incoming information, either from the outside world, or from some part of IDA herself, are immediately available. Writes to associative memory are made latter and will be described below.

6.3 “Consciousness”

The apparatus for producing “consciousness” consists of a coalition manager, a spotlight controller, a broadcast manager, and a collection of attention codelets who recognize novel or problematic situations (Bogner 1999, Bogner et al. 2000). Attention codelets have the task of bringing information to “consciousness.” Each attention codelet keeps a watchful eye out for some particular situation to occur that might call for “conscious” intervention. Upon encountering such a situation, the appropriate attention codelet will be associated with the small number of codelets that carry the information describing the situation. This association should lead to the collection of this small number of codelets, together with the attention codelet that collected them, becoming a coalition. Codelets also have activations. The attention codelet increases its activation in order that the coalition might compete for “consciousness” if one is formed.

[image: image5..pict]
Figure 6. IDA’s Associative Memory and Workspace

In IDA the coalition manager is responsible for forming and tracking coalitions of codelets. Such coalitions are initiated on the basis of the mutual associations between the member codelets. At any given time, one of these coalitions finds it way to “consciousness,” chosen by the spotlight controller, who picks the coalition with the highest average activation among its member codelets. Global workspace theory calls for the contents of “consciousness” to be broadcast to each of the codelets. The broadcast manager accomplishes this.
6.4 Action Selection
IDA depends on expansion of the idea of a behavior net (Maes 1989) for high-level action selection in the service of built-in drives (see Figure 7). She has several distinct drives operating in parallel. These drives vary in urgency as time passes and the environment changes. Behaviors are typically mid-level actions, many depending on several codelets for their execution. A behavior net is composed of behaviors and their various links. A behavior looks very much like a production rule, having preconditions as well as additions and deletions. A behavior is distinguished from a production rule by the presence of an activation, a number intended to measure the behavior’s relevance to both the current environment (external and internal) and its ability to help satisfy the various drives it serves. Each behavior occupies a node in a

[image: image6..pict]
Figure 7. A Simple Goal Structure

digraph (directed graph). The three types of links of the digraph are completely determined by the behaviors. If a behavior X will add a proposition b, which is on behavior Y's precondition list, then put a successor link from X to Y. There may be several such propositions resulting in several links between the same nodes. Next, whenever you put in a successor going one way, put a predecessor link going the other. Finally, suppose you have a proposition m on behavior Y's delete list that is also a precondition for behavior X. In such a case, draw a conflictor link from X to Y, which is to be inhibitory rather than excitatory.

As in connectionist models, this digraph spreads activation. The activation comes from activation stored in the behaviors themselves, from the external environment, from drives, and from internal states. The environment awards activation to a behavior for each of its true preconditions. The more relevant it is to the current situation, the more activation it's going to receive from the environment. This source of activation tends to make the system opportunistic. Each drive awards activation to every behavior that, by being active, will help to satisfy that drive. This source of activation tends to make the system goal directed. Certain internal states of the agent can also send activation to the behavior net. This activation, for example, might come from a coalition of codelets responding to a “conscious” broadcast. Finally, activation spreads from behavior to behavior along links. Along successor links, one behavior strengthens those behaviors whose preconditions it can help fulfill by sending them activation. Along predecessor links, one behavior strengthens any other behavior whose add list fulfills one of its own preconditions. A behavior sends inhibition along a conflictor link to any other behavior that can delete one of its true preconditions, thereby weakening it. Every conflictor link is inhibitory. Call a behavior executable if all of its preconditions are satisfied. To be acted upon a behavior must be executable, must have activation over threshold, and must have the highest such activation. Behavior nets produce flexible, tunable action selection for these agents.

IDA’s behavior net acts in consort with her “consciousness” mechanism to select actions. Here’s how it works. Suppose some piece of information is written to the workspace by perception or some other module. Vigilant attention codelet watch both it and the resulting associations. One of these attention codelets may decide that this information should be acted upon. This codelet would then attempt to take the information to “consciousness,” perhaps along with any discrepancies it may find with the help of associations. The attention codelet and the needed information carrying codelets become active. If the attempt is successful, the coalition manager makes a coalition of them, the spotlight controller eventually selects that coalition, and the contents of the coalition are broadcast to all the codelets. In response to the broadcast, appropriate behavior priming codelets perform three tasks: 1) if it’s not already there, an appropriate goal structure is instantiated in the behavior net. 2) wherever possible the codelets bind variables in the behaviors of that structure. 3) the codelets send activation to the currently appropriate behavior of the structure. Eventually that behavior is chosen to be acted upon. At this point, information about the current emotion and the currently executing behavior are written to the focus by the behavior codelets associated with the chosen behavior. The current contents of the write registers in the focus are then written to associative memory. The rest of the behavior codelet associated with the chosen behavior then perform their tasks. An action has been selected and carried out by means of collaboration between “consciousness” and the behavior net.
6.5 Constraint satisfaction

At the heart of IDA’s task of finding new jobs for sailors lies the issue of constraint satisfaction. Not only must IDA look out for the needs of the sailor, she must also see that the requirements for individual jobs are met, and simultaneously adhere to the policies of the Navy. Sailors tend to stay in the Navy when they are satisfied with their job assignment, and to leave at the end of an enlistment when they aren’t. Thus, keeping the sailors happy is an issue of central concern to the Navy. Each individual job presents its own constraints in terms of job qualifications, location, sea or shore duty, time of arrival, etc. Finally, the policies of the Navy must be adhered to. For example, a sailor finishing shore duty should be next assigned to sea duty. Taking such issues into consideration, IDA’s constraint satisfaction module is designed to provide a numerical measure of the fitness of for a particular job for a particular sailor. Here’s how it is to work.

Given a specified issue such as sailor preference, a particular Navy policy or specific job requirement, referred to as j for short, we define a function xj that provides a numerical measure of the fitness of this job for this sailor with respect to this particular issue. For example, suppose the issue j is the one that says a sailor may be assigned to a job requiring a certain paygrade, if his or her paygrade is no more than one more or less. Here we might define xj as follows: xj = 1 if the sailor has the specified paygrade, xj = 0.5 if the sailor’s paygrade is one more or less than that specified, and xj = 0 otherwise. This would provide the desired numerical measure of fitness with respect to this particular policy.

Having chosen in consultation with human detailers a collection of issues to be considered by IDA, we must create such a fitness function xj for each of them. Computationally, the functions must be quite diverse. Most would take their input from information from the sailor’s personnel record or from the job requisition list that has already been written to the workspace. As in the example above, the numerical values of the functions must lie between 0 and 1.

With these functions in hand, IDA can tell how suitable a particular job was for a specified sailor with respect to any given issue. But, what about with respect to all of them? How can we measure the overall suitability of this job for this sailor? How can we combine the individual fitness measures associated with the individual issues? What’s the common currency?

What we need is, for each issue j, a numerical measure aj of the relative importance of that issue with respect to all the other issues. Such measures can be determined in consultation with expert human detailers using statistical methods. They may also be approximated from data concerning actual assignments of sailors to jobs by human detailers. Some combination of these two methods may contribute to a more accurate choice of the aj. Each aj should also lie between 0 and 1, and their sum should be 1. Each aj will be used to weight the result of the corresponding function xj that measures the suitability of the given job for the sailor in question with respect to the issue j. Thus the weighted sum of the xj, ajxj, will give the required total fitness measure with respect to all the issues. This is our common currency. IDA now has a measure of the fitness of a particular billet for the sailor in question.

6.6 Deliberation in Action

IDA’s relatively complex domain requires deliberation in the sense of creating possible scenarios, partial plans of actions, and choosing between them. For example, suppose IDA is considering a sailor and several possible jobs, all seemingly suitable. She must construct a scenario for each of these possible billets in order to determine whether or not a given job can meet joint temporal constraints such as the sailor’s projected rotation date (PRD) and the take-up month (TUM) of the billet. And, a sailor to be assigned to a certain ship had best arrive before the ship sails. If this can’t be accomplished, some other assignment must be made. In each scenario the sailor

[image: image7..pict]
Figure 8. IDA’s Deliberation in Action

leaves his or her current position during a certain time interval, spends a specified length of time on leave, possibly reports to a training facility on a certain date, and arrives at the new billet with in a given time frame. There’s travel time to be figured in. Such scenarios are valued on how well they fit these temporal constraints as well as on moving and training costs.
Scenarios are composed of scenes. IDA’s scenes are organized around events. Each scene may, in theory, require objects, actors, concepts, relations, and schema represented by frames. In practice in this domain they are not all that complicated involving mostly dates and time intervals. Scenarios are constructed in the computational workspace described above, which corresponds to working memory in humans. The scenes are strung together to form scenarios. The work is done by deliberation codelets. Evaluation of scenarios is also done by codelets.

Here we’ll describe the beginnings of the construction of such a scenario. The process described is common to almost all of IDA’s action selection. Four type of codelets are involved, all of whom we’ve met before. The attention codelets serve to actuate the bringing of information from the workspace to consciousness. Information codelets actually carry most of the information during this process. Behavior priming codelets respond to “conscious” broadcasts instantiating goal structures in the behavior net (if not already there), binding variables within individual behaviors, and sending activation to relevant behaviors. Behavior codelets execute task needed to implement the behavior they serve when that behavior is selected by the behavior net to be acted upon.

On to scenario building. At this point in IDA’s search for a job for the given sailor, a list of jobs coarsely selected from the current requisition list are already in the workspace. One by one they’ve been acted upon by the constraint satisfaction module resulting in an attached numerical fitness value. Some attention codelet notices that the last fitness value has been written next to its job. This is its cue to begin the scenario building process.

This attention codelet selects a job for the scenario (typically the one with the highest fitness) and recruits information codelets to carry specific information about the job. All these codelets are now active and, thus, available to the coalition manager. Typically they will comprise a coalition. If (or when) this coalition has sufficient activation, the spotlight will shine upon it. It’s contents are then broadcast to all the other codelets. “Consciousness” has done its work.

Appropriate behavior priming codelets respond. Some extract information from the broadcast. Others know which goal structure to instantiate, in this case a create-scenario goal structure. The goal structure is instantiated, the behavior variables are bound where possible, and activation is sent to the behavior that should begin the scenario creation. Eventually, that behavior will be selected by the behavior net to be acted upon. It’s codelets will then execute their tasks, writing the first scene of the scenario to the workspace. In this case the first scene with consist of a month during which the sailor is to detach from his current job.

Now the process starts again. A different attention codelet notices that the detach month of a scenario has been written in the workspace. It’s its turn to recruit information to help build the next scene. The action of the “consciousness” module, the behavior priming codelets, the behavior net and the behavior codelets proceed as before. (Note that the behavior priming codelets will not have to instantiate a new goal structure this time.) All this results in a leave time period (typically thirty days) being written to the workspace as the second scene in the scenario.

The same process continues over and over again writing a scene for travel time, for proceed time (if needed and which I won’t explain) for the beginning date of a training class (if needed), for the time interval of the class (if needed), and for the report-no-later-than date. The next scene written computes the gap, which depends on the relationship between the report date and the take up month. If the former is within the later, the gap is zero, otherwise more. The computation is performed by a behavior codelet.

At this point several attention codelets may vie for the next broadcast. The create-scenario attention codelet will have chosen another job for the next scenario and recruited information codelets. If the gap is non-zero, the adjust-the-gap attention codelet will try to instigate the building of a new scenario for the same job with a different detach date that may produce a smaller gap. Or, a proposer attention codelet may like this job and want to propose that it be one of those offered to the sailor (more of this in the next section).

Our contention, and that of global workspace theory, is that we humans deliberate via just such a process. From a computer science point of view, this process is grossly inefficient. How can we justify it in a software agent? In this agent we can’t, since IDA’s deliberation is routine in that the same actions are performed over and over, and are “well understood” by the agent. In a more challenging domain, an agent may face novel or problematic situations in which the best course of action is not at all apparent. In such a case our inefficient process may allow the agent to deliberate about the probable results of novel courses of action, and to choose a promising one without actually acting on the others. How is such a choice made? This brings us to voluntary action.
6.7 Voluntary action

We humans most often select actions subconsciously, that is without conscious thought about which action to take. Sometimes when I speak, I’m surprised at what comes out. But we humans also make voluntary choices of action, often as a result of deliberation. Baars argues that voluntary choice is the same a conscious choice (1997 , p. 131). We must carefully distinguish between being conscious of the results of and action, and consciously deciding to take that action, that is, being conscious of the decision. I am typically conscious of my speech (the results of actions) but not typically conscious of the decision to speak. However, sometimes, as in a formal meeting, I may consciously decide to speak and then do so. The decision itself becomes conscious. It’s the latter case that constitutes voluntary action.

Long back, William James proposed the ideomotor theory of voluntary action (James 1890). James suggests that any idea (internal proposal) for an action that come to mind (to consciousness) is acted upon unless it provokes some opposing idea or some counter proposal. He speaks at length of the case of deciding to get out of a warm bed into an unheated room in the dead of winter. “This case seems to me to contain in miniature form the data for an entire psychology of volition.” Global workspace theory adopts James’ ideomotor theory as is, and provides a functional architecture for it (Baars 1997 , Chapter 6). Here we provide an underlying mechanism that implements that theory of volition and its architecture in the software agent IDA.

Though voluntary action is often deliberative, it can also be reactive in the sense of Sloman (1999), who allows for the possibility or the action selection mechanism being quite complex. Suppose that, while sitting on the couch in my living room, I decide I’d like a cup of coffee and thereafter head for the kitchen to get it. The decision may well have been taken voluntarily, that is, consciously, without my having deliberated about it by considering alternatives and choosing among them. Voluntary actions may also be taken metacognitively (by Sloman’s meta-management processes). For example, I might consciously decide to be more patient in the future with my young son. That would be a voluntary metacognitive decision. The IDA model includes a metacognition module that’s not discussed in this paper (Zhang et al. 1998a).

But, what about action selection decisions in IDA? Are they voluntary or not? Both kinds occur. When IDA reads as sailor’s projected rotation date from the personnel database, she formulates and transmits a query to the database and accepts its response. The decision to make the query, as well as its formulation and transmission, is done unconsciously. The results of the query, the date itself, does come to “consciousness.” This situation is analogous to that of almost all human actions. On the other hand, IDA performs at least one voluntary action, that of choosing a job or two or occasionally three to offer a sailor. How is this done?

In the situation in which this voluntary action occurs, at least one scenario has been successfully constructed in the workspace as described in the previous section. The players in this decision making process include several proposing attention codelets and a timekeeper codelet. A proposing attention codelet’s task is to propose that a certain job be offered to the sailor. This is accomplished by it bringing information about itself and about the proposed job to “consciousness” so that the timekeeper codelet can know of it. This proposing attention codelet (and it brethren) choose a job to propose on the basis of its particular pattern of preferences. The preferences include several different issues with differing weights assigned to each. The issues typically include priority (stated on the job requisition list), gap, cost of the move, fitness value, and others.

For example, our proposing attention codelet may place great weight on low moving cost, some weight on fitness value, and little weight on the others. This codelet may propose the second job on the scenario list because of its low cost and high fitness, in spite of low priority and a sizable gap. What happens then? There are several possibilities. If no other proposing attention codelet objects (by bringing itself to “consciousness” with an objecting message) and no other such codelet proposes a different job within a span of time kept by the timekeeper codelet, the timekeeper codelet will mark the proposed job as being one to be offered. If an objection or a new proposal is made in a timely fashion, it will not do so.

Two proposing attention codelets may well alternatively propose the same two jobs several times. What keeps IDA from oscillating between them forever? There are three possibilities. The second time a codelet proposes the same job it carries less activation and so has less chance of being selected for the spotlight of “consciousness.” Also, the timekeeper loses patience as the process continues, thereby diminishing the time span required for a decision. Finally, the metacognitive module watches the whole process and intervenes if things get too bad.

A job proposal may also alternate with an objection, rather than with another proposal, with the same kinds of consequences. These occurrences may also be interspersed with the creation of new scenarios. If a job is proposed but objected to, and no other is proposed, the scenario building may be expected to continue yielding the possibility of finding a job that can be agreed upon.

We hypothesize that this procedure mimics the way humans make such decisions. It provides a mechanism for voluntary action.

6.8 Language generation

CMattie’s behaviors consist almost entirely of sending email messages to seminar organizers, attendees and the system administrator. In every case these messages are composed by codelets filling out templates, that is scripts with blanks allowing them to be specialized to suit the current situation. This is even true when CMattie is in the process of learning new concepts and/or behavior via interactions with organizers (Ramamurthy et al. 1998). If, for example, she writes, “If a colloquium is different from a seminar, how is it different?” she has filled in a template adding “seminar” and “colloquium.” Of course, she has to be able to understand the reply.

IDA, on the other hand, must be able to respond to quite varied email messages from sailors concerning their next assignment. Many ideas from these messages will be about standard requests and can be answered with a script. It may be that all such can be so answered. We’re currently cataloging such ideas, and are producing appropriate scripts. But, what of the rare idea that isn’t found in our catalog? If it’s something about which IDA has no knowledge she, like a human, will not be capable of any intelligent response except, possibly, to try to learn. If IDA knows something of the subject of the idea, this knowledge will likely be found in her slipnet. An improvised response would then be created by a language generation module working from the same principles as the deliberation module described above. Improvised linguistic structures created in the workspace might be combined with scripts to produce an appropriate response. All this would be controlled by a stream of behaviors in IDA’s behavior net, and would be mediated by her “consciousness” mechanism.

In particular, IDA must compose a message offering the sailor a choice of one, two or sometimes three jobs. In this situation the jobs have already been chosen and the needed data concerning them are present in the workspace. The same back and forth to “consciousness” process is used as described in the previous two sections. An attention codelet, noting that the decisions on which jobs to offer have been made, brings to “consciousness” the need for a message offering the jobs. Information codelets, responding to the content of the “conscious” broadcast, instantiate into the behavior net a goal structure to write an offering message. The codelets associated with the first behavior to be executed from that structure will write a salutation for that message appropriate to the sailor’s occupation and pay grade. Another attention codelet will bring to “consciousness” the number of jobs to be offered and the need for an introductory paragraph. The responding information codelets will send activation to the appropriate behavior resulting in its codelets writing that paragraph from a built-in script into the workspace. The same process will next bring into the workspace a paragraph describing the first job to be offered. Note that different jobs will require very different such paragraphs. The appropriate information codelets for the particular kind of job in question will be recruited by the “conscious” broadcast, eventually resulting in the appropriate paragraph being written to the workspace. Some modification may be made by codelets. The same process will continue until the message is composed. This is a much more complex process than that used by CMattie. It’s designed this way to accommodate the more individual nature of each message. It’s a scripted language generation with modifications.

Conclusions
Note that the skills needed by a human detailer, and hence by IDA, are much the same as those outlined for human information agent above. If the technology being developed for IDA can successfully automate the task of the detailer, there’s every reason to believe that this same technology would serve to automate the tasks of very many other human information agents.

There would, of course, be problems to overcome. For example, interacting with each new database presents it own challenges. Since every human information agent’s job is knowledge intensive, each new automation presents a substantial knowledge engineering problem for the would be developer. The nature of this problem would vary greatly from one human information agent task to another, so that there would be little carryover in general. Knowledge engineering techniques developed over past several decades for building expert systems can be expected to serve adequately to help produce various “conscious” software information agents.

But even the process of automating a single type of human information agent, say a travel agent, presents still other problems. Travel agents vary in the particular knowledge required for their jobs. Some deal with domestic travel, some with international. Some specialize in a particular group of destinations. Some specialize in charter flights, others in dealing with consolidators, and still others in group travel. Some work internally for the employees of a particular company, and must know the travel policies of the company. Each of these differences requires different knowledge on the part of the agent. This same sort of analysis can be made of almost any type of human information agent. They almost always come in a number of varieties each requiring specialized knowledge. In many cases dealing with such variety by standard knowledge engineering techniques will prove too time consuming and prohibitively expensive.

The developer may choose instead to provide a developmental period for such an agent (Franklin 2000). During such a period the automating “conscious” software agent would “observe” a human performing the desired task and learn from this observation. Such learning would also require conversations with the human about new concepts and behaviors. Technology for such a development period is now being developed (Ramamurthy et al. 1998, Negatu & Franklin 1999).

Automating human information agent tasks promises to be possible, and even practical, but not cheap. Like so many artificial intelligence projects, such an endeavor will likely require a large capital outlay, which will be more than compensated for by the huge savings over the ongoing costs of a human information agent..
8 References
Allen, J. J. 1995. Natural Language Understanding. Redwood City CA: Benjamin/Cummings; Benjamin; Cummings.

Anwar, A., and S. Franklin. submitted. Sparse Distributed Memory for "Conscious" Software Agents. .

Anwar, A., D. Dasgupta, and S. Franklin; 1999. Using Genetic Algorithms for Sparse Distributed Memory Initialization. International Conference Genetic and Evolutionary Computation(GECCO). July.

Baars, B. J. 1988. A Cognitive Theory of Consciousness. Cambridge: Cambridge University Press.

Baars, B. J. 1997. In the Theater of Consciousness. Oxford: Oxford University Press.

Barsalou, L. W. 1999. Perceptual symbol systems. Behavioral and Brain Sciences 22:577–609.

Bogner, M. 1999. Realizing "consciousness" in software agents. Ph.D. Dissertation. University of Memphis.

Bogner, M., U. Ramamurthy, and S. Franklin. 2000. Consciousness" and Conceptual Learning in a Socially Situated Agent. In Human Cognition and Social Agent Technology, ed. K. Dautenhahn. Amsterdam: John Benjamins.

Edelman, G. M. 1987. Neural Darwinism. New York: Basic Books.

Franklin, S. 1995. Artificial Minds. Cambridge MA: MIT Press.

Franklin, S. 1997a. Autonomous Agents as Embodied AI. Cybernetics and Systems 28:499–520.

Franklin, S. 1997b. Global Workspace Agents. Journal of Consciousness Studies 4:322–334.

Franklin, S. 2000. Learning in "Conscious" Software Agents. In Workshop on Development and Learning. Michigan State University; East Lansing, Michigan, USA: NSF; DARPA; April 5-7, 2000.

Franklin, S., and A. C. Graesser. 1997. Is it an Agent, or just a Program?: A Taxonomy for Autonomous Agents. In Intelligent Agents III. Berlin: Springer Verlag.

Franklin, S., and A. Graesser. 1999. A Software Agent Model of Consciousness. Consciousness and Cognition 8:285–305.

Franklin, S., A. Graesser, B. Olde, Song H., and A. Negatu. 1996. Virtual Mattie--an Intelligent Clerical Agent. AAAI Symposium on Embodied Cognition and Action, Cambridge MA. : November.

Franklin, S., A. Kelemen, and L. McCauley. 1998. IDA: A Cognitive Agent Architecture. In IEEE Conf on Systems, Man and Cybernetics. : IEEE Press.

Hofstadter, D. R., and M. Mitchell. 1994. The Copycat Project: A model of mental fluidity and analogy-making. In Advances in connectionist and neural computation theory, Vol. 2: logical connections, ed. K. J. Holyoak, and J. A. Barnden. Norwood N.J.: Ablex.

Holland, J. H. 1986. A Mathematical Framework for Studying Learning in Classifier Systems. Physica 22 D:307–317. (Also in Evolution, Games and

Learning. Farmer, J. D., Lapedes, A., Packard, N. H., and Wendroff, B. (eds.). NorthHolland (Amsterdam))

Jackson, J. V. 1987. Idea for a Mind. Siggart Newsletter, 181:23–26.

James, W. 1890. The Principles of Psychology. Cambridge, MA: Harvard University Press.

Kanerva, P. 1988. Sparse Distributed Memory. Cambridge MA: The MIT Press.

Kolodner, J. 1993. Case-Based Reasoning. : Morgan Kaufman.

Maes, P. 1989. How to do the right thing. Connection Science 1:291–323.

Maes, P. 1993. Modeling Adaptive Autonomous Agents. Artificial Life 1:135–162.

Maturana, R. H., and F. J. Varela. 1980. Autopoiesis and Cognition: The Realization of the Living, Dordrecht. Netherlands: Reidel.

Maturana, H. R. 1975. The Organization of the Living: A Theory of the Living Organization. International Journal of Man-Machine Studies 7:313–332.

McCauley, L., S. Franklin, and M. Bogner; 1999. An Emotion-Based "Conscious" Software Agent Architecture. International Workshop on Affect in Interaction; EC I3; Siena (Italy); October 20-22.

McCauley, T. L., and S. Franklin. 1998. An Architecture for Emotion. In AAAI Fall Symposium Emotional and Intelligent: The Tangled Knot of Cognition. Menlo Park, CA: AAAI Press.

Minsky, M. 1985. The Society of Mind. New York: Simon and Schuster.

Mitchell, M. 1993. Analogy-Making as Perception. Cambridge MA: The MIT Press.

Negatu, A., and S. Franklin; 1999. Behavioral learning for adaptive software agents. Intelligent Systems: ISCA 5th International Conference; International Society for Computers and Their Applications - ISCA; Denver, Colorado; June.

Ornstein, R. 1986. Multimind. Boston: Houghton Mifflin.

Ramamurthy, U., S. Franklin, and A. Negatu. 1998. Learning Concepts in Software Agents. In From animals to animats 5: Proceedings of The Fifth International Conference on Simulation of Adaptive Behavior, ed. R. Pfeifer, B. Blumberg, J.-A. Meyer , and S. W. Wilson. Cambridge,Mass: MIT Press.

Sloman, A. 1987. Motives Mechanisms Emotions. Cognition and Emotion 1:217–234.

Sloman, A. 1999. What Sort of Architecture is Required for a Human-like Agent? In Foundations of Rational Agency, ed. M. Wooldridge, and A. Rao. : Portland Oregon.

Song, H., and S. Franklin. 2000. A Behavior Instantiation Agent Architecture. Connection Science:1–24.

Valenzuela-Rendon, M. 1991. The Fuzzy Classifier System: a classifier System for Continuously Varying Variables. In: Proceedings of the Fourth International Conference on Genetic Algorithms. San Mateo CA: Morgan Kaufmann.

Zadeh, L. A. 1965. Fuzzy sets. Inf. Control 8:338–353.

Zhang, Z., D. Dasgupta, and S. Franklin. 1998a. Metacognition in Software Agents using Classifier Systems. In Proceedings of the Fifteenth National Conference on Artificial Intelligence. Madison, Wisconsin: MIT Press.

Zhang, Z., S. Franklin, B. Olde, Y. Wan, and A. Graesser. 1998b. Natural Language Sensing for Autonomous Agents. In Proceedings of IEEE International Joint Symposia on Intellgence Systems 98. : .

�Supported in part by ONR grant N00014-98-1-0332

�With essential contributions from the Conscious Software Research Group including Art Graesser, Satish Ambati, Ashraf Anwar, Myles Bogner, Arpad Kelemen, Ravikumar Kondadadi, Irina Makkaveeva, Lee McCauley, Aregahegn Negatu, Hongjun Song, Alexei Stoliartchouk, Uma Ramamurthy, Zhaohua Zhang

_1026301506.doc

Autonomous agents

Biological Agents

Robotic Agents

Computational Agents

Artificial Life Agents

Software Agents

Viruses

Entertainment Agents

Task Specific Agents

