
Franklin, S. 2001. Automating Human Information Agents. In Practical Applications of
Intelligent Agents, ed. Z. Chen, and L. C. Jain. Berlin: Springer-Verlag.

Automating Human Information
Agents

Stan Franklin1, 2

Institute for Intelligent Systems and
Department of Mathematical Sciences

The University of Memphis
stan.franklin@memphis.edu

www.msci.memphis.edu/~franklin

1 Human Information Agents

Human information agents include insurance agents, travel agents, voter registrars,
mail-order service clerks, telephone information operators, employment agents, AAA
route planners, customer service agents, bank loan officers, and many, many others.
Such human agents must typically possess a common set of skills. These would often
include most of the following:

• Communicating with clients in their natural language;
• Reading from and writing to databases of various sorts (insurance rates, airline

schedules, voter roles, company catalogs, etc.);
• Knowing, understanding and adhering to company or agency policies;
• Planning and decision making (coverage to suggest, routes and carriers to offer,

loan to authorize, etc);
• Negotiating with clients about the issues involved;
• Generating a tangible product (insurance policy, airline tickets, customer order,

etc.).

I suspect that millions of people, mostly in developed countries, earn their livings as
such human information agents. Each of these, in addition to salary and benefits, is
typically provided with office space and furniture, and with computing facilities. The
total yearly cost of each such agent in a developed country must conservatively be on
the order of $100,000. Thus the total yearly cost of human information agents around
the world must push a trillion dollars.

1Supported in part by ONR grant N00014-98-1-0332
2With essential contributions from the Conscious Software Research Group including
Art Graesser, Satish Ambati, Ashraf Anwar, Myles Bogner, Arpad Kelemen,
Ravikumar Kondadadi, Irina Makkaveeva, Lee McCauley, Aregahegn Negatu,
Hongjun Song, Alexei Stoliartchouk, Uma Ramamurthy, Zhaohua Zhang

And, what about the cost of producing such a human information agent? A child must
be produced and raised. Add to this the cost of twelve to fifteen years of formal
education. Then there’s on the job training. Each of these information agent jobs is
relatively knowledge intensive. There’s much to be learned, and that costs.
It would seem that human information agent jobs offer fertile ground for automating.
How about computer programs (intelligent software agents) that would completely
take over these human information agent jobs including communicating in natural
language, consulting databases, adhering to policies, planning and decision making,
negotiating with clients, and producing tangible products? How about taking the
human out of the loop completely? The economic benefit would be enormous. From
the societal side, people would be freed for more interesting, more challenging
occupations.

But, you object, would people be willing to deal with a software agent instead of
another person? Some would, some wouldn’t. As time passed more and more people
would. I now regularly use an automated bank teller, though at first I resisted. The
same is true for checking on the arrival time of a flight by phone with no person on
the other end. I even order a few items over the web (books and coffee). As in these
instances, with familiarity would come acceptance.

OK, you say, but there’s still the problem of creating such software information
agents. How are you going to do that? Natural language, constraint satisfaction,
planning and decision making, and negotiation aren’t easy for computers. And each
of these jobs is a knowledge intensive task. Can we build such software information
agents?

I hope so. With funding from the United States Navy, the “Conscious” Software
Research Group at the University of Memphis is in the process of designing and
implementing one such software information agent. This chapter will be devoted to a
description of the technology being developed. If successful, this same technology
should permit the development of software agents that can perform all the tasks of
the several kinds of human information agents.

That’s not to say that with the technology in hand the task will be easy. Each such
software information agent will require a considerable knowledge engineering effort
and, likely, a training and development period as a human would. Learning methods
to make such development possible will be built into the agents.

The technology to be described is based on a psychological theory of consciousness
and cognition. The idea is, if you want smart software agents, copy them after
humans.

2 Autonomous Agents

Artificial intelligence pursues the twin goals of understanding human intelligence and

of producing intelligent software and/or artifacts. Designing, implementing and

experimenting with autonomous agents furthers both these goals in a synergistic way.

In particular, designing and implementing within the constraints of a theory of

cognition can further the first goal by providing conceptual and computational models

of that theory. An autonomous agent (Franklin & Graesser 1997) is a system situated

in, and part of, an environment, which senses that environment, and acts on it, over

time, in pursuit of its own agenda. In biological agents, this agenda arises from

evolved in drives and their associated goals; in artificial agents from drives and goals

built in by its creator. Such drives which act as motive generators (Sloman 1987),

must be present, whether explicitly represented, or expressed causally. The agent also

acts in such a way as to possibly influence what it senses at a later time. In other

words, it is structurally coupled to its environment (Maturana 1975, Maturana et al.

1980).

Biological examples of autonomous agents include humans and most animals. (See

Figure 1.) Non-biological examples include some mobile robots, and various

computational agents, including artificial life agents, software agents and many

computer viruses. We’ll be concerned with autonomous software agents, designed for

specific tasks, and ‘living’ in real world computing systems such as operating

systems, databases, or networks.

Autonomous agents

Biological Agents Robotic Agents Computational Agents

Artificial Life AgentsSoftware Agents

VirusesEntertainment AgentsTask Specific Agents

Figure 1. A Taxonomy for Autonomous Agents

Such autonomous software agents, when equipped with cognitive (interpreted
broadly) features chosen from among multiple senses, perception, short and long term
memory, attention, planning, reasoning, problem solving, learning, emotions, moods,
attitudes, multiple drives, etc., are called cognitive agents (Franklin 1997a). ‘Though
ill defined, cognitive agents can play a synergistic role in the study of human
cognition, including consciousness.

3 Global Workspace Theory

The material in this section is from Baars’ two books (1988, 1997) and superficially
describes his global workspace theory of consciousness.

In his global workspace theory, Baars, along with many others (e.g. (Minsky 1985,
Ornstein 1986, Edelman 1987)) , postulates that human cognition is implemented by
a multitude of relatively small, special purpose processes, almost always unconscious.
(It's a multiagent system.) Communication between them is rare and over a narrow
bandwidth. Coalitions of such processes find their way into a global workspace (and
into consciousness). This

Figure 2. Global Workspace Theory

limited capacity workspace serves to broadcast the message of the coalition to all the
unconscious processors, in order to recruit other processors to join in handling the
current novel situation, or in solving the current problem. Thus consciousness in this
theory allows us to deal with novel or problematic situations that can’t be dealt with
efficiently, or at all, by habituated unconscious processes. In particular, it provides
access to appropriately useful resources, thereby solving the relevance problem.

This theory offers an explanation for consciousness being serial in nature rather than
parallel as is common in the rest of the nervous system. Messages broadcast in
parallel would tend to overwrite one another making understanding difficult. It
similarly explains the limited capacity of consciousness as opposed to the huge
capacity typical of long-term memory and other parts of the nervous system. Large
messages would be overwhelming to small, special-purpose processors.

 All this activity of processors takes place under the auspices of contexts (see Figure
2): goal contexts, perceptual contexts, conceptual contexts, and/or cultural contexts.
Baars uses goal hierarchies, dominant goal contexts, a dominant goal hierarchy,
dominant context hierarchies, and lower level context hierarchies. Each context is,
itself a coalition of processes. Though contexts are typically unconscious, they
strongly influence conscious processes. Baars postulates that learning results simply
from conscious attention, that is, that consciousness is sufficient for learning. There's
much more to the theory, including attention, action selection, emotion, voluntary

action, metacognition and a sense of self. I think of it as a high level theory of
cognition.

4 “Conscious” Software Agents

A “conscious” software agent is defined to be an autonomous software agent that
implements global workspace theory. (No claim of sentience is being made.) I believe
that conscious software agents have the potential to play a synergistic role in both
cognitive theory and intelligent software. Minds can be viewed as control structures
for autonomous agents (Franklin 1995). A theory of mind constrains the design of a
“conscious” agent that implements that theory. While a theory is typically abstract
and only broadly sketches an architecture, an implemented computational design
provides a fully articulated architecture and a complete set of mechanisms. This
architecture and set of mechanisms provides a richer, more concrete, and more
decisive theory. Moreover, every design decision taken during an implementation
furnishes a hypothesis about how human minds work. These hypotheses may
motivate experiments with humans and other forms of empirical tests. Conversely,
the results of such experiments motivate corresponding modifications of the
architecture and mechanisms of the cognitive agent. In this way, the concepts and
methodologies of cognitive science and of computer science will work synergistically
to enhance our understanding of mechanisms of mind (Franklin 1997a).

5 “Conscious” Mattie

“Conscious” Mattie (CMattie) is a “conscious” clerical software agent (Franklin
1997b, McCauley, T. L. & Franklin 1998, Zhang et al. 1998b, Bogner et al. 2000).
She composes and emails out weekly seminar announcements, having communicated
by email with seminar organizers and announcement recipients in natural language.
She maintains her mailing list, reminds organizers who are late with their
information, and warns of space and time conflicts. There is no human involvement
other than via these email messages. CMattie's cognitive modules include perception,
learning, action selection, associative memory, "consciousness," emotion and
metacognition. Her emotions influence her action selection.

Conceptually, CMattie is an autonomous software agent that ‘lives’ in a UNIX
system. CMattie is an extension of Virtutal Mattie (VMattie) (Franklin et al. 1996,
Zhang et al. 1998b, Song & Franklin 2000). VMattie, which is currently running in a
beta testing stage, implements an initial set of components of global workspace
theory. VMattie performs all of the functions of CMattie, as listed above, but does so
“unconsciously” and without the ability to learn and to flexibly handle novel
situations. CMattie adds the missing pieces of global workspace theory, including
computational versions of attention, associative and episodic memories, emotions,
learning and metacognition.

The computational mechanisms of CMattie incorporate several of the mechanisms of
mind discussed at length in Artificial Minds (Franklin 1995). Each of the mechanisms
mentioned required considerable modification and, often, extension in order that they
be suitable for use in CMattie. The high-level action selection uses an extended form
of Maes' behavior net (1989). The net is comprised of behaviors, drives and links
between them. Activation spreads in one direction from the drives, and in the other
from CMattie’s percepts. The currently active behavior is chosen from those whose
preconditions are met and whose activations are over threshold. Lower level actions
are taken by codelets in the manner of the Copycat architecture (Mitchell 1993,
Hofstadter & Mitchell 1994). Each codelet is a small piece of code, a little program,
that does one thing. Our implementation of Baars’ global workspace, discussed in
more detail below, relys heavily on the playing field in Jackson's pandemonium
theory (1987). All active codelets inhabit the playing field, and those in
“consciousness” occupy the global workspace. Kanerva's sparse distributed memory
(Kanerva 1988, Anwar et al. 1999, Anwar & Franklin submitted) provides a human-
like associative memory for the agent whereas episodic memory (case-based) follows
Kolodner’s model (1993). CMattie’s emotion mechanism uses pandemonium theory
(McCauley, T. L. & Franklin 1998, McCauley, L. et al. 1999). Her metacognition
module is based on a fuzzy version of Holland’s classifier system (1986, 1991,
1998a). Learning by CMattie is accomplished by a number of mechanisms. Behavior
nets can learn by adjusting the weights on links as in artificial neural networks (Maes
1993). The demons in pandemonium theory become (more) associated as they occur
together in the playing field of the arena (Jackson 1987). The associations that occur
automatically in sparse distribute memory constitute learning (Kanerva 1988).
CMattie also employs one-trial learning using case-based reasoning (Ramamurthy et
al. 1998, Bogner et al. 2000).

We next turn to a brief account of how the CM-architecture uses these mechanisms to
model global workspace theory. The CM-architecture can be conveniently
partitioned into more abstract, high-level constructs and lower level, less abstract
codelets. Higher-level constructs such as behaviors and some slipnet nodes overlie
collections of codelets that actually do their work. In CMattie, Baars’ “vast collection
of unconscious processes” are implemented as codelets much in the manner of the
Copycat architecture, or almost equivalently as Jackson's demons. Baars’ limited
capacity global workspace is a portion of Jackson's playing field, which holds the
active codelets. Working memory consists of several distinct workspaces, one for
perception, one for composing announcements, two for one-trial learning, and others.

Baars speaks of contexts as “…the great array of unconscious mental sources that
shape our conscious experiences and beliefs.” (1997, p. 115) He distinguishes several
types, including perceptual contexts, conceptual contexts and goal contexts. The
perceptual context provided by a large body of water might help me interpret a white,
rectangular cloth as a sail rather than as a bed sheet. The conceptual context of a
discussion of money might point me at interpreting “Let’s go down by the bank?” as
something other that an invitation for a walk, a picnic or a swim. Hunger might well
give rise to a goal context. Contexts in global workspace theory are coalitions of

codelets. In the CM-architecture high-level constructs are often identified with their
underlying collections of codelets and, thus, can be thought of as contexts. Perceptual
contexts include particular nodes from a slipnet type associative memory à la Copycat
(similar to a semantic net), and particular templates in workspaces. For example, a
message-type node is a perceptual context. A node type perceptual context becomes
active via spreading activation in the slipnet when the node reaches a threshold.
Several nodes can be active at once, producing composite perceptual contexts. These
mechanisms allow “conscious” experiences to trigger “unconscious” contexts that
help to interpret later “conscious” events. Conceptual contexts also reside in the
slipnet, as well as in associative memory. Goal contexts are implemented as
instantiated behaviors in a much more dynamic version of Maes’ behavior nets. They
become active by having preconditions met and by exceeding a time variable
threshold. Goal hierarchies are implemented as instantiated behaviors and their
associated drives. (My hunger drive might give rise to the goal of eating sushi. The
first behavior toward that goal might be walking to my car.) The dominant goal
context is determined by the currently active instantiated behavior. The dominant goal
hierarchy is one rooted at the drive associated with the currently active instantiated
behavior.

Recruitment of coalitions of processors is accomplished by attention codelets, as well
as by the associations among the occupants of the global workspace, via
pandemonium theory. Always on the alert, attention codelets jump into action when
novel or problematic situations occur. Attention is what goes into the global

Figure 3. Most of the “Conscious” Mattie Architecture

workspace from perception, and from internal monitoring. It also uses pandemonium
theory, but requires an extension of it. Both recruitment and attention are modulated
by the various context hierarchies. Learning occurs via several mechanisms: as in
pandemonium theory, as in sparse distributed memory, as in behavior nets, by
extensions of these, and by other mechanisms. High-level action selection is provided

by the instantiated behavior net. At a low level, CMattie follows the Copycat
architecture procedure of temperature controlled (here emotionally controlled),
parallel terraced scanning. Problem solving is accomplished via “conscious”
recruitment of coalitions of “unconscious” codelets.

Figure 3 gives a functional overview of most of the CMattie architecture. Several
important functions, for example conceptual and behavioral learning, are omitted
from the diagram, but not from our discussion. Detailed descriptions of the
architecture and mechanisms are given in a series of papers by members of the
“Conscious” Software Research group (Franklin et al. 1996, McCauley, T. L. &
Franklin 1998, Ramamurthy et al. 1998, Zhang et al. 1998a, 1998b, Franklin &
Graesser 1999, Bogner et al. 2000, Song & Franklin 2000, Anwar & Franklin
submitted).

6 IDA

IDA (Intelligent Distribution Agent) is a “conscious” software information agent
being developed for the US Navy (Franklin et al. 1998). At the end of each sailor's
tour of duty, he or she is assigned to a new billet. This assignment process is called
distribution. The Navy employs almost 300 people, called detailers, full time to effect
these new assignments. IDA's task is to facilitate this process, by playing the role of
detailer. She is to automate the detailer’s task. Designing IDA presents both
communication problems, and action selection problems involving constraint
satisfaction. She must communicate with sailors via email and in natural language,
understanding the content and producing life-like responses. Sometimes she will
initiate conversations. She must access a number of databases, again understanding
the content. She must see that the Navy's needs are satisfied, for example, the
required number of sonar technicians on a destroyer with the required types of
training. In doing so she must adhere to some ninety policies. She must hold down
moving costs. And, she must cater to the needs and desires of the sailor as well as is
possible. This includes negotiating with the sailor via an email correspondence in
natural language. Finally, she must write the orders and start them on the way to the
sailor.

The IDA architecture consists of both an abstract level (containing such entities as
behaviors, message type nodes, metacognitive actions, etc.), and a lower, more
specific level (implemented by small pieces of code). At the higher level the
architecture is quite modular with module names often borrowed from psychology
(see Figure 4). There are modules for Perception, Action Selection, Associative ,
Episodic Memory, Emotions, Metacognition, Learning, Constraint Satisfaction,
Language Generation, Deliberation, and “Consciousness.” As with CMattie above,
many of their mechanisms were inspired by ideas from the “new AI” (the copycat
architecture (Mitchell 1993, Hofstadter & Mitchell 1994, Sloman 1999), behavior
nets (Maes 1989), sparse distributed memory (Kanerva 1988), pandemonium theory

(Jackson 1987), and fuzzy classifier systems (Zadeh 1965, Holland 1986)). Others
come from more classical AI (case-based reasoning (Kolodner 1993)).

In the lower level of the IDA architecture the processors postulated by global
workspace theory are implemented, as in CMattie, by codelets, small pieces of code.
These are specialized for some simple task and often play the role of demon waiting
for appropriate condition under which to act. Most of these codelets subserve some
high level entity such as a behavior or a slipnet node or a metacognitive action. Some
codelets work on their own performing such tasks as watching for incoming email
and instantiating goal structures. An important type of the latter is the attention
codelets who serve to bring information to “consciousness.” Codelets do almost all
the work, making IDA is a multi-agent system.

6.1 Perception

IDA senses text, not imbued with meaning, but as primitive sensation as for example
the pattern of activity on the rods and cones of the retina. This text may come from
email messages, a chat room environment, or from a database record. Her perception
module (much like that of an

Figure 4. The IDA Architecture

earlier such agent, VMattie (Zhang et al. 1998b)), employs analysis of surface
features for natural language understanding (Allen 1995). It partially implements
perceptual symbol system theory (Barsalou 1999), which is used as a guide. Its
underlying mechanism constitutes a portion of the Copycat architecture (Hofstadter &
Mitchell 1994). The perceptual/conceptual knowledge base of IDA takes the form of
a semantic net with activation passing called the slipnet (see Figure 5). The name is

taken from the Copycat architecture. Nodes of the slipnet constitute the agent’s
perceptual symbols. Pieces of the slipnet containing nodes and links, together with
codelets whose task it is to copy the piece to working memory. The codelets
recognizing various concept, since they are able to simulate a concept’s common
forms, constitute Barsalou’s perceptual symbol simulators. The slipnet embodies the
perceptual contexts and some conceptual contexts from global workspace theory.
There's a horde of perceptual codelets that descend on an incoming message, looking
for words or phrases they recognize. When such are found, appropriate nodes in the
slipnet are activated, This activation passes around the net until it settles. An idea
type node (or several) is selected by its high activation, and the appropriate
template(s) filled by codelets with selected items from the message. The information
thus created from the incoming message is then written to the perception registers in
the workspace (to be described below), making it available to the rest of the system.

The results of this process, information created by the agent for its own use (Franklin
1995), are written to the workspace (short term memory, not to be confused with
Baars' global workspace). Almost all IDA's modules either write to the workspace,
read from it, or both. The focus, to be described below, is part of this workspace.

6.2 Associative Memory

IDA employs sparse distributed memory (SDM) as her major associative memory
(Kanerva 1988). SDM is a content addressable memory that, in many ways, is an
ideal computational mechanism for use as a long-term associative memory. Being

Figure 5. A Small Portion of IDA’s Slipnet

content addressable means that items in memory can be retrieved by using part of
their contents as a cue, rather than having to know the item’s address in memory.

The inner workings of SDM rely on large binary spaces, that is, spaces of vectors
containing only zeros and ones, called bits. These binary vectors, called words, serve
as both the addresses and the contents of the memory. The dimension of the space
determines the richness of each word. These spaces are typically far too large to
implement in any conceivable computer. Approximating the space uniformly with a
possible number of actually implemented, hard locations surmounts this difficulty.
The number of such hard locations determines the carrying capacity of the memory.
Features are represented by one or more bits. Groups of features are concatenated to
form a word. When writing a word to memory, a copy of the word is placed in all
close enough hard locations. When reading a word, a close enough cue would reach
all close enough hard locations and get some sort of aggregate or average out of them.
Reading is not always successful. Depending on the cue and the previously written
information, among other factors, convergence or divergence during a reading
operation may occur. If convergence occurs, the pooled word will be the closest
match (with abstraction) of the input reading cue. On the other hand, when
divergence occurs, there is no relation -in general- between the input cue and what is
retrieved from memory.

SDM is much like human long-term memory. A human often knows what he or she
does or doesn't know. If asked for a telephone number I've once known, I may search
for it. When asked for one I've never known, an immediate "I don't know" response
ensues. SDM makes such decisions based on the speed of initial convergence. The
reading of memory in SDM is an iterative process. The cue is used as an address. The
content at that address is read as a second address, and so on until convergence, that
is, until subsequent contents look alike. If it doesn’t quickly converge, an “I don't
know” is the response. The "on the tip of my tongue phenomenon" corresponds to the
cue having content just at the threshold of convergence. Yet another similarity is the
power of rehearsal during which an item would be written many times and, at each of
these to a thousand locations That’s the “distributed” pare of sparse distributed
memory. A well-rehearsed item can be retrieved with smaller cues. Another similarity
is forgetting, which would tend to increase over time as a result of other similar
writes to memory.

How does IDA use this associative memory? Reads and writes to and from
associative memory are accomplished through a gateway within the workspace called
the focus (see Figure 6). When any item is written to the workspace, another copy is
written to the read registers of the focus. The contents of these read registers of the
focus are then used as an address to query associative memory. The results of this
query, that is, whatever IDA associates with this incoming information, are written
into their own registers in the focus. This may include some emotion and some action
previously taken. Thus associations with any incoming information, either from the
outside world, or from some part of IDA herself, are immediately available. Writes to
associative memory are made latter and will be described below.

Figure 6. IDA’s Associative Memory and Workspace

6.3 “Consciousness”

The apparatus for producing “consciousness” consists of a coalition manager, a
spotlight controller, a broadcast manager, and a collection of attention codelets who
recognize novel or problematic situations (Bogner 1999, Bogner et al. 2000).
Attention codelets have the task of bringing information to “consciousness.” Each
attention codelet keeps a watchful eye out for some particular situation to occur that
might call for “conscious” intervention. Upon encountering such a situation, the
appropriate attention codelet will be associated with the small number of codelets that
carry the information describing the situation. This association should lead to the
collection of this small number of codelets, together with the attention codelet that
collected them, becoming a coalition. Codelets also have activations. The attention
codelet increases its activation in order that the coalition might compete for
“consciousness” if one is formed.

In IDA the coalition manager is responsible for forming and tracking coalitions of
codelets. Such coalitions are initiated on the basis of the mutual associations between
the member codelets. At any given time, one of these coalitions finds it way to
“consciousness,” chosen by the spotlight controller, who picks the coalition with the
highest average activation among its member codelets. Global workspace theory calls
for the contents of “consciousness” to be broadcast to each of the codelets. The
broadcast manager accomplishes this.

6.4 Action Selection

IDA depends on expansion of the idea of a behavior net (Maes 1989) for high-level
action selection in the service of built-in drives (see Figure 7). She has several distinct
drives operating in parallel. These drives vary in urgency as time passes and the

environment changes. Behaviors are typically mid-level actions, many depending on
several codelets for their execution. A behavior net is composed of behaviors and
their various links. A behavior looks very much like a production rule, having
preconditions as well as additions and deletions. A behavior is distinguished from a
production rule by the presence of an activation, a number intended to measure the
behavior’s relevance to both the current environment (external and internal) and its
ability to help satisfy the various drives it serves. Each behavior occupies a node in a

Figure 7. A Simple Goal Structure

digraph (directed graph). The three types of links of the digraph are
completely determined by the behaviors. If a behavior X will add a
proposition b, which is on behavior Y's precondition list, then put a successor
link from X to Y. There may be several such propositions resulting in several
links between the same nodes. Next, whenever you put in a successor going
one way, put a predecessor link going the other. Finally, suppose you have a
proposition m on behavior Y's delete list that is also a precondition for
behavior X. In such a case, draw a conflictor link from X to Y, which is to be
inhibitory rather than excitatory.

As in connectionist models, this digraph spreads activation. The activation
comes from activation stored in the behaviors themselves, from the external
environment, from drives, and from internal states. The environment awards
activation to a behavior for each of its true preconditions. The more relevant
it is to the current situation, the more activation it's going to receive from the
environment. This source of activation tends to make the system
opportunistic. Each drive awards activation to every behavior that, by being
active, will help to satisfy that drive. This source of activation tends to make
the system goal directed. Certain internal states of the agent can also send
activation to the behavior net. This activation, for example, might come from
a coalition of codelets responding to a “conscious” broadcast. Finally,

activation spreads from behavior to behavior along links. Along successor
links, one behavior strengthens those behaviors whose preconditions it can
help fulfill by sending them activation. Along predecessor links, one behavior
strengthens any other behavior whose add list fulfills one of its own
preconditions. A behavior sends inhibition along a conflictor link to any other
behavior that can delete one of its true preconditions, thereby weakening it.
Every conflictor link is inhibitory. Call a behavior executable if all of its
preconditions are satisfied. To be acted upon a behavior must be executable,
must have activation over threshold, and must have the highest such
activation. Behavior nets produce flexible, tunable action selection for these
agents.

IDA’s behavior net acts in consort with her “consciousness” mechanism to
select actions. Here’s how it works. Suppose some piece of information is
written to the workspace by perception or some other module. Vigilant
attention codelet watch both it and the resulting associations. One of these
attention codelets may decide that this information should be acted upon.
This codelet would then attempt to take the information to “consciousness,”
perhaps along with any discrepancies it may find with the help of
associations. The attention codelet and the needed information carrying
codelets become active. If the attempt is successful, the coalition manager
makes a coalition of them, the spotlight controller eventually selects that
coalition, and the contents of the coalition are broadcast to all the codelets. In
response to the broadcast, appropriate behavior priming codelets perform
three tasks: 1) if it’s not already there, an appropriate goal structure is
instantiated in the behavior net. 2) wherever possible the codelets bind
variables in the behaviors of that structure. 3) the codelets send activation to
the currently appropriate behavior of the structure. Eventually that behavior
is chosen to be acted upon. At this point, information about the current
emotion and the currently executing behavior are written to the focus by the
behavior codelets associated with the chosen behavior. The current contents
of the write registers in the focus are then written to associative memory. The
rest of the behavior codelet associated with the chosen behavior then perform
their tasks. An action has been selected and carried out by means of
collaboration between “consciousness” and the behavior net.

6.5 Constraint satisfaction

At the heart of IDA’s task of finding new jobs for sailors lies the issue of
constraint satisfaction. Not only must IDA look out for the needs of the sailor,
she must also see that the requirements for individual jobs are met, and
simultaneously adhere to the policies of the Navy. Sailors tend to stay in the
Navy when they are satisfied with their job assignment, and to leave at the
end of an enlistment when they aren’t. Thus, keeping the sailors happy is an
issue of central concern to the Navy. Each individual job presents its own
constraints in terms of job qualifications, location, sea or shore duty, time of
arrival, etc. Finally, the policies of the Navy must be adhered to. For example,
a sailor finishing shore duty should be next assigned to sea duty. Taking such

issues into consideration, IDA’s constraint satisfaction module is designed to
provide a numerical measure of the fitness of for a particular job for a
particular sailor. Here’s how it is to work.

Given a specified issue such as sailor preference, a particular Navy policy or
specific job requirement, referred to as j for short, we define a function xj that
provides a numerical measure of the fitness of this job for this sailor with
respect to this particular issue. For example, suppose the issue j is the one that
says a sailor may be assigned to a job requiring a certain paygrade, if his or
her paygrade is no more than one more or less. Here we might define xj as
follows: xj = 1 if the sailor has the specified paygrade, xj = 0.5 if the sailor’s
paygrade is one more or less than that specified, and xj = 0 otherwise. This
would provide the desired numerical measure of fitness with respect to this
particular policy.

Having chosen in consultation with human detailers a collection of issues to
be considered by IDA, we must create such a fitness function xj for each of
them. Computationally, the functions must be quite diverse. Most would take
their input from information from the sailor’s personnel record or from the
job requisition list that has already been written to the workspace. As in the
example above, the numerical values of the functions must lie between 0 and
1.

With these functions in hand, IDA can tell how suitable a particular job was
for a specified sailor with respect to any given issue. But, what about with
respect to all of them? How can we measure the overall suitability of this job
for this sailor? How can we combine the individual fitness measures
associated with the individual issues? What’s the common currency?

What we need is, for each issue j, a numerical measure aj of the relative
importance of that issue with respect to all the other issues. Such measures
can be determined in consultation with expert human detailers using
statistical methods. They may also be approximated from data concerning
actual assignments of sailors to jobs by human detailers. Some combination of
these two methods may contribute to a more accurate choice of the aj. Each aj

should also lie between 0 and 1, and their sum should be 1. Each aj will be
used to weight the result of the corresponding function xj that measures the
suitability of the given job for the sailor in question with respect to the issue j.
Thus the weighted sum of the xj, Σajxj, will give the required total fitness
measure with respect to all the issues. This is our common currency. IDA now
has a measure of the fitness of a particular billet for the sailor in question.

Figure 8. IDA’s Deliberation in Action

6.6 Deliberation in Action

IDA’s relatively complex domain requires deliberation in the sense of
creating possible scenarios, partial plans of actions, and choosing between
them. For example, suppose IDA is considering a sailor and several possible
jobs, all seemingly suitable. She must construct a scenario for each of these
possible billets in order to determine whether or not a given job can meet
joint temporal constraints such as the sailor’s projected rotation date (PRD)
and the take-up month (TUM) of the billet. And, a sailor to be assigned to a
certain ship had best arrive before the ship sails. If this can’t be accomplished,
some other assignment must be made. In each scenario the sailor leaves his or
her current position during a certain time interval, spends a specified length
of time on leave, possibly reports to a training facility on a certain date, and
arrives at the new billet with in a given time frame. There’s travel time to be
figured in. Such scenarios are valued on how well they fit these temporal
constraints as well as on moving and training costs.

Scenarios are composed of scenes. IDA’s scenes are organized around events.
Each scene may, in theory, require objects, actors, concepts, relations, and
schema represented by frames. In practice in this domain they are not all that
complicated involving mostly dates and time intervals. Scenarios are
constructed in the computational workspace described above, which
corresponds to working memory in humans. The scenes are strung together
to form scenarios. The work is done by deliberation codelets. Evaluation of
scenarios is also done by codelets.

Here we’ll describe the beginnings of the construction of such a scenario. The process
described is common to almost all of IDA’s action selection. Four type of codelets are
involved, all of whom we’ve met before. The attention codelets serve to actuate the
bringing of information from the workspace to consciousness. Information codelets
actually carry most of the information during this process. Behavior priming codelets
respond to “conscious” broadcasts instantiating goal structures in the behavior net (if
not already there), binding variables within individual behaviors, and sending
activation to relevant behaviors. Behavior codelets execute task needed to implement
the behavior they serve when that behavior is selected by the behavior net to be acted
upon.

On to scenario building. At this point in IDA’s search for a job for the given sailor, a
list of jobs coarsely selected from the current requisition list are already in the
workspace. One by one they’ve been acted upon by the constraint satisfaction module
resulting in an attached numerical fitness value. Some attention codelet notices that
the last fitness value has been written next to its job. This is its cue to begin the
scenario building process.

This attention codelet selects a job for the scenario (typically the one with the highest
fitness) and recruits information codelets to carry specific information about the job.
All these codelets are now active and, thus, available to the coalition manager.
Typically they will comprise a coalition. If (or when) this coalition has sufficient
activation, the spotlight will shine upon it. It’s contents are then broadcast to all the
other codelets. “Consciousness” has done its work.

Appropriate behavior priming codelets respond. Some extract information from the
broadcast. Others know which goal structure to instantiate, in this case a create-
scenario goal structure. The goal structure is instantiated, the behavior variables are
bound where possible, and activation is sent to the behavior that should begin the
scenario creation. Eventually, that behavior will be selected by the behavior net to be
acted upon. It’s codelets will then execute their tasks, writing the first scene of the
scenario to the workspace. In this case the first scene with consist of a month during
which the sailor is to detach from his current job.

Now the process starts again. A different attention codelet notices that the detach
month of a scenario has been written in the workspace. It’s its turn to recruit
information to help build the next scene. The action of the “consciousness” module,
the behavior priming codelets, the behavior net and the behavior codelets proceed as
before. (Note that the behavior priming codelets will not have to instantiate a new
goal structure this time.) All this results in a leave time period (typically thirty days)
being written to the workspace as the second scene in the scenario.

The same process continues over and over again writing a scene for travel time, for
proceed time (if needed and which I won’t explain) for the beginning date of a
training class (if needed), for the time interval of the class (if needed), and for the
report-no-later-than date. The next scene written computes the gap, which depends

on the relationship between the report date and the take up month. If the former is
within the later, the gap is zero, otherwise more. The computation is performed by a
behavior codelet.

At this point several attention codelets may vie for the next broadcast. The create-
scenario attention codelet will have chosen another job for the next scenario and
recruited information codelets. If the gap is non-zero, the adjust-the-gap attention
codelet will try to instigate the building of a new scenario for the same job with a
different detach date that may produce a smaller gap. Or, a proposer attention codelet
may like this job and want to propose that it be one of those offered to the sailor
(more of this in the next section).

Our contention, and that of global workspace theory, is that we humans deliberate via
just such a process. From a computer science point of view, this process is grossly
inefficient. How can we justify it in a software agent? In this agent we can’t, since
IDA’s deliberation is routine in that the same actions are performed over and over,
and are “well understood” by the agent. In a more challenging domain, an agent may
face novel or problematic situations in which the best course of action is not at all
apparent. In such a case our inefficient process may allow the agent to deliberate
about the probable results of novel courses of action, and to choose a promising one
without actually acting on the others. How is such a choice made? This brings us to
voluntary action.

6.7 Voluntary action

We humans most often select actions subconsciously, that is without conscious
thought about which action to take. Sometimes when I speak, I’m surprised at what
comes out. But we humans also make voluntary choices of action, often as a result of
deliberation. Baars argues that voluntary choice is the same a conscious choice (1997
, p. 131). We must carefully distinguish between being conscious of the results of and
action, and consciously deciding to take that action, that is, being conscious of the
decision. I am typically conscious of my speech (the results of actions) but not
typically conscious of the decision to speak. However, sometimes, as in a formal
meeting, I may consciously decide to speak and then do so. The decision itself
becomes conscious. It’s the latter case that constitutes voluntary action.

Long back, William James proposed the ideomotor theory of voluntary action (James
1890). James suggests that any idea (internal proposal) for an action that come to
mind (to consciousness) is acted upon unless it provokes some opposing idea or some
counter proposal. He speaks at length of the case of deciding to get out of a warm bed
into an unheated room in the dead of winter. “This case seems to me to contain in
miniature form the data for an entire psychology of volition.” Global workspace
theory adopts James’ ideomotor theory as is, and provides a functional architecture
for it (Baars 1997 , Chapter 6). Here we provide an underlying mechanism that
implements that theory of volition and its architecture in the software agent IDA.

Though voluntary action is often deliberative, it can also be reactive in the sense of
Sloman (1999), who allows for the possibility or the action selection mechanism
being quite complex. Suppose that, while sitting on the couch in my living room, I
decide I’d like a cup of coffee and thereafter head for the kitchen to get it. The
decision may well have been taken voluntarily, that is, consciously, without my
having deliberated about it by considering alternatives and choosing among them.
Voluntary actions may also be taken metacognitively (by Sloman’s meta-
management processes). For example, I might consciously decide to be more patient
in the future with my young son. That would be a voluntary metacognitive decision.
The IDA model includes a metacognition module that’s not discussed in this paper
(Zhang et al. 1998a).

But, what about action selection decisions in IDA? Are they voluntary or not? Both
kinds occur. When IDA reads as sailor’s projected rotation date from the personnel
database, she formulates and transmits a query to the database and accepts its
response. The decision to make the query, as well as its formulation and transmission,
is done unconsciously. The results of the query, the date itself, does come to
“consciousness.” This situation is analogous to that of almost all human actions. On
the other hand, IDA performs at least one voluntary action, that of choosing a job or
two or occasionally three to offer a sailor. How is this done?

In the situation in which this voluntary action occurs, at least one scenario has been
successfully constructed in the workspace as described in the previous section. The
players in this decision making process include several proposing attention codelets
and a timekeeper codelet. A proposing attention codelet’s task is to propose that a
certain job be offered to the sailor. This is accomplished by it bringing information
about itself and about the proposed job to “consciousness” so that the timekeeper
codelet can know of it. This proposing attention codelet (and it brethren) choose a job
to propose on the basis of its particular pattern of preferences. The preferences
include several different issues with differing weights assigned to each. The issues
typically include priority (stated on the job requisition list), gap, cost of the move,
fitness value, and others.

For example, our proposing attention codelet may place great weight on low moving
cost, some weight on fitness value, and little weight on the others. This codelet may
propose the second job on the scenario list because of its low cost and high fitness, in
spite of low priority and a sizable gap. What happens then? There are several
possibilities. If no other proposing attention codelet objects (by bringing itself to
“consciousness” with an objecting message) and no other such codelet proposes a
different job within a span of time kept by the timekeeper codelet, the timekeeper
codelet will mark the proposed job as being one to be offered. If an objection or a
new proposal is made in a timely fashion, it will not do so.

Two proposing attention codelets may well alternatively propose the same
two jobs several times. What keeps IDA from oscillating between them forever?
There are three possibilities. The second time a codelet proposes the same job it
carries less activation and so has less chance of being selected for the spotlight of

“consciousness.” Also, the timekeeper loses patience as the process continues,
thereby diminishing the time span required for a decision. Finally, the metacognitive
module watches the whole process and intervenes if things get too bad.

A job proposal may also alternate with an objection, rather than with another
proposal, with the same kinds of consequences. These occurrences may also be
interspersed with the creation of new scenarios. If a job is proposed but objected to,
and no other is proposed, the scenario building may be expected to continue yielding
the possibility of finding a job that can be agreed upon.

We hypothesize that this procedure mimics the way humans make such decisions. It
provides a mechanism for voluntary action.

6.8 Language generation

CMattie’s behaviors consist almost entirely of sending email messages to seminar
organizers, attendees and the system administrator. In every case these messages are
composed by codelets filling out templates, that is scripts with blanks allowing them
to be specialized to suit the current situation. This is even true when CMattie is in the
process of learning new concepts and/or behavior via interactions with organizers
(Ramamurthy et al. 1998). If, for example, she writes, “If a colloquium is different
from a seminar, how is it different?” she has filled in a template adding “seminar” and
“colloquium.” Of course, she has to be able to understand the reply.

IDA, on the other hand, must be able to respond to quite varied email messages from
sailors concerning their next assignment. Many ideas from these messages will be
about standard requests and can be answered with a script. It may be that all such can
be so answered. We’re currently cataloging such ideas, and are producing appropriate
scripts. But, what of the rare idea that isn’t found in our catalog? If it’s something
about which IDA has no knowledge she, like a human, will not be capable of any
intelligent response except, possibly, to try to learn. If IDA knows something of the
subject of the idea, this knowledge will likely be found in her slipnet. An improvised
response would then be created by a language generation module working from the
same principles as the deliberation module described above. Improvised linguistic
structures created in the workspace might be combined with scripts to produce an
appropriate response. All this would be controlled by a stream of behaviors in IDA’s
behavior net, and would be mediated by her “consciousness” mechanism.

In particular, IDA must compose a message offering the sailor a choice of one, two or
sometimes three jobs. In this situation the jobs have already been chosen and the
needed data concerning them are present in the workspace. The same back and forth
to “consciousness” process is used as described in the previous two sections. An
attention codelet, noting that the decisions on which jobs to offer have been made,
brings to “consciousness” the need for a message offering the jobs. Information
codelets, responding to the content of the “conscious” broadcast, instantiate into the
behavior net a goal structure to write an offering message. The codelets associated

with the first behavior to be executed from that structure will write a salutation for
that message appropriate to the sailor’s occupation and pay grade. Another attention
codelet will bring to “consciousness” the number of jobs to be offered and the need
for an introductory paragraph. The responding information codelets will send
activation to the appropriate behavior resulting in its codelets writing that paragraph
from a built-in script into the workspace. The same process will next bring into the
workspace a paragraph describing the first job to be offered. Note that different jobs
will require very different such paragraphs. The appropriate information codelets for
the particular kind of job in question will be recruited by the “conscious” broadcast,
eventually resulting in the appropriate paragraph being written to the workspace.
Some modification may be made by codelets. The same process will continue until
the message is composed. This is a much more complex process than that used by
CMattie. It’s designed this way to accommodate the more individual nature of each
message. It’s a scripted language generation with modifications.

7 Conclusions

Note that the skills needed by a human detailer, and hence by IDA, are much the
same as those outlined for human information agent above. If the technology being
developed for IDA can successfully automate the task of the detailer, there’s every
reason to believe that this same technology would serve to automate the tasks of very
many other human information agents.

There would, of course, be problems to overcome. For example, interacting with each
new database presents it own challenges. Since every human information agent’s job
is knowledge intensive, each new automation presents a substantial knowledge
engineering problem for the would be developer. The nature of this problem would
vary greatly from one human information agent task to another, so that there would
be little carryover in general. Knowledge engineering techniques developed over past
several decades for building expert systems can be expected to serve adequately to
help produce various “conscious” software information agents.

But even the process of automating a single type of human information agent, say a
travel agent, presents still other problems. Travel agents vary in the particular
knowledge required for their jobs. Some deal with domestic travel, some with
international. Some specialize in a particular group of destinations. Some specialize
in charter flights, others in dealing with consolidators, and still others in group travel.
Some work internally for the employees of a particular company, and must know the
travel policies of the company. Each of these differences requires different knowledge
on the part of the agent. This same sort of analysis can be made of almost any type of
human information agent. They almost always come in a number of varieties each
requiring specialized knowledge. In many cases dealing with such variety by standard
knowledge engineering techniques will prove too time consuming and prohibitively
expensive.
The developer may choose instead to provide a developmental period for such an
agent (Franklin 2000). During such a period the automating “conscious” software

agent would “observe” a human performing the desired task and learn from this
observation. Such learning would also require conversations with the human about
new concepts and behaviors. Technology for such a development period is now being
developed (Ramamurthy et al. 1998, Negatu & Franklin 1999).

Automating human information agent tasks promises to be possible, and even
practical, but not cheap. Like so many artificial intelligence projects, such an
endeavor will likely require a large capital outlay, which will be more than
compensated for by the huge savings over the ongoing costs of a human information
agent..

8 References

Allen, J. J. 1995. Natural Language Understanding. Redwood City CA:
Benjamin/Cummings; Benjamin; Cummings.

Anwar, A., and S. Franklin. submitted. Sparse Distributed Memory for "Conscious"
Software Agents. .

Anwar, A., D. Dasgupta, and S. Franklin; 1999. Using Genetic Algorithms for Sparse
Distributed Memory Initialization. International Conference Genetic and
Evolutionary Computation(GECCO). July.

Baars, B. J. 1988. A Cognitive Theory of Consciousness. Cambridge: Cambridge
University Press.

Baars, B. J. 1997. In the Theater of Consciousness. Oxford: Oxford University Press.
Barsalou, L. W. 1999. Perceptual symbol systems. Behavioral and Brain Sciences

22:577–609.
Bogner, M. 1999. Realizing "consciousness" in software agents. Ph.D. Dissertation.

University of Memphis.
Bogner, M., U. Ramamurthy, and S. Franklin. 2000. Consciousness" and Conceptual

Learning in a Socially Situated Agent. In Human Cognition and Social Agent
Technology, ed. K. Dautenhahn. Amsterdam: John Benjamins.

Edelman, G. M. 1987. Neural Darwinism. New York: Basic Books.
Franklin, S. 1995. Artificial Minds. Cambridge MA: MIT Press.
Franklin, S. 1997a. Autonomous Agents as Embodied AI. Cybernetics and Systems

28:499–520.
Franklin, S. 1997b. Global Workspace Agents. Journal of Consciousness Studies

4:322–334.
Franklin, S. 2000. Learning in "Conscious" Software Agents. In Workshop on

Development and Learning. Michigan State University; East Lansing, Michigan,
USA: NSF; DARPA; April 5-7, 2000.

Franklin, S., and A. C. Graesser. 1997. Is it an Agent, or just a Program?: A
Taxonomy for Autonomous Agents. In Intelligent Agents III. Berlin: Springer
Verlag.

Franklin, S., and A. Graesser. 1999. A Software Agent Model of Consciousness.
Consciousness and Cognition 8:285–305.

Franklin, S., A. Graesser, B. Olde, Song H., and A. Negatu. 1996. Virtual Mattie--an
Intelligent Clerical Agent. AAAI Symposium on Embodied Cognition and Action,
Cambridge MA. : November.

Franklin, S., A. Kelemen, and L. McCauley. 1998. IDA: A Cognitive Agent
Architecture. In IEEE Conf on Systems, Man and Cybernetics. : IEEE Press.

Hofstadter, D. R., and M. Mitchell. 1994. The Copycat Project: A model of mental
fluidity and analogy-making. In Advances in connectionist and neural
computation theory, Vol. 2: logical connections, ed. K. J. Holyoak, and
J. A. Barnden. Norwood N.J.: Ablex.

Holland, J. H. 1986. A Mathematical Framework for Studying Learning in Classifier
Systems. Physica 22 D:307–317. (Also in Evolution, Games and

Learning. Farmer, J. D., Lapedes, A., Packard, N. H., and Wendroff, B. (eds.).
NorthHolland (Amsterdam))

Jackson, J. V. 1987. Idea for a Mind. Siggart Newsletter, 181:23–26.
James, W. 1890. The Principles of Psychology. Cambridge, MA: Harvard University

Press.
Kanerva, P. 1988. Sparse Distributed Memory. Cambridge MA: The MIT Press.
Kolodner, J. 1993. Case-Based Reasoning. : Morgan Kaufman.
Maes, P. 1989. How to do the right thing. Connection Science 1:291–323.
Maes, P. 1993. Modeling Adaptive Autonomous Agents. Artificial Life 1:135–162.
Maturana, R. H., and F. J. Varela. 1980. Autopoiesis and Cognition: The Realization

of the Living, Dordrecht. Netherlands: Reidel.
Maturana, H. R. 1975. The Organization of the Living: A Theory of the Living

Organization. International Journal of Man-Machine Studies 7:313–332.
McCauley, L., S. Franklin, and M. Bogner; 1999. An Emotion-Based "Conscious"

Software Agent Architecture. International Workshop on Affect in Interaction;
EC I3; Siena (Italy); October 20-22.

McCauley, T. L., and S. Franklin. 1998. An Architecture for Emotion. In AAAI Fall
Symposium Emotional and Intelligent: The Tangled Knot of Cognition. Menlo
Park, CA: AAAI Press.

Minsky, M. 1985. The Society of Mind. New York: Simon and Schuster.
Mitchell, M. 1993. Analogy-Making as Perception. Cambridge MA: The MIT Press.
Negatu, A., and S. Franklin; 1999. Behavioral learning for adaptive software agents.

Intelligent Systems: ISCA 5th International Conference; International Society
for Computers and Their Applications - ISCA; Denver, Colorado; June.

Ornstein, R. 1986. Multimind. Boston: Houghton Mifflin.
Ramamurthy, U., S. Franklin, and A. Negatu. 1998. Learning Concepts in Software

Agents. In From animals to animats 5: Proceedings of The Fifth International
Conference on Simulation of Adaptive Behavior, ed. R. Pfeifer, B. Blumberg, J.-
A. Meyer , and S. W. Wilson. Cambridge,Mass: MIT Press.

Sloman, A. 1987. Motives Mechanisms Emotions. Cognition and Emotion
1:217–234.

Sloman, A. 1999. What Sort of Architecture is Required for a Human-like Agent? In
Foundations of Rational Agency, ed. M. Wooldridge, and A. Rao. : Portland
Oregon.

Song, H., and S. Franklin. 2000. A Behavior Instantiation Agent Architecture.
Connection Science:1–24.

Valenzuela-Rendon, M. 1991. The Fuzzy Classifier System: a classifier System for
Continuously Varying Variables. In: Proceedings of the Fourth International
Conference on Genetic Algorithms. San Mateo CA: Morgan Kaufmann.

Zadeh, L. A. 1965. Fuzzy sets. Inf. Control 8:338–353.
Zhang, Z., D. Dasgupta, and S. Franklin. 1998a. Metacognition in Software Agents

using Classifier Systems. In Proceedings of the Fifteenth National Conference
on Artificial Intelligence. Madison, Wisconsin: MIT Press.

Zhang, Z., S. Franklin, B. Olde, Y. Wan, and A. Graesser. 1998b. Natural Language
Sensing for Autonomous Agents. In Proceedings of IEEE International Joint
Symposia on Intellgence Systems 98. : .

