
Learning In LIDA 

 

Sean Kugele and Stan Franklin 

Department of Computer Science and Institute for Intelligent Systems, 

University of Memphis, Memphis, TN 38152 USA 

skugele@memphis.edu, franklin.stan@gmail.com 

 

Abstract 

LIDA is a systems-level, biologically-inspired cognitive architecture. More than a decade of 

research on LIDA has seen much conceptual work on its learning mechanisms, and resulted in 

a set of conceptual commitments that constrain those mechanisms; perhaps the most essential 

of these constraints is the Conscious Learning Hypothesis from Global Workspace Theory, 

which asserts that all significant learning requires consciousness. Despite these successes, 

many conceptual challenges remain, and bridging the divide between LIDA’s conceptual model 

and its implementations has been challenging.  

 

The contributions of this paper are threefold: We present a detailed survey of learning in LIDA, 

during which we clarify, elaborate on, and synthesize together ideas from numerous papers, 

using updated terminology that reflects the continuing evolution of LIDA. We explore 

foundational issues in learning, such as, “What must be innate or built-in?” versus “What can be 

learned?”, the nature of LIDA’s representations, and the relationship between the LIDA 

conceptual model and its computational realizations. Finally, we provide a roadmap for future 

work. We believe that this paper will direct and catalyze our research endeavors, and provide a 

thorough introduction to the conceptual foundations of LIDA’s learning mechanisms that will be 

useful to anyone that would like a deeper understanding of LIDA or for those that plan to 

implement LIDA-based agents. 

1 Introduction 

The Learning Intelligent Decision1 Agent (LIDA) is a systems-level, biologically-inspired 

cognitive architecture for creating and modeling minds (see Section 2.1). More than a decade of 

research on LIDA has resulted in the creation of a wide range of learning mechanisms including 

attentional, declarative, motivational, procedural, perceptual, spatial, and sensorimotor. These 

learning mechanisms can differ considerably in their processes and implementations; however, 

                                                
1 Until recently, LIDA stood for Learning Intelligent Distribution Agent due to its historical origins in the 
Intelligent Distribution Agent (IDA) project. IDA was a software agent that emulated the role of a Navy 
detailer, assigning new billets to naval personnel at their end of their tours; this assignment process is 
called distribution. 



all of them must conform to a set of core principles that we refer to as LIDA’s conceptual 

commitments (Franklin et al., 2013).   

 

LIDA differentiates itself from many other biologically inspired cognitive architectures in several 

ways: First, LIDA implements, and fleshes out, many important aspects of Global Workspace 

Theory (GWT) (Baars, 1988), a cognitive theory of functional consciousness2. GWT is also the 

source of one of LIDA’s most essential conceptual commitments: The Conscious Learning 

Hypothesis, which states that no significant learning occurs in the absence of consciousness 

(see Section 3.1). While the scientific study of consciousness has become more acceptable in 

recent years, research in machine consciousness and the attempted construction of conscious 

artifacts (Franklin, 2003) has been largely neglected. Second, LIDA emphasizes the integral role 

of feelings in supporting many cognitive processes. Contrary to the view of feelings as 

maladaptive responses to an environment, we adopt the position that feelings are necessary for 

rapid situational appraisal, efficient action selection, directed attention, and the modulation of 

learning. The role of feelings as modulators of learning has become particularly important to our 

research program, which we have elevated to one of our conceptual commitments (see Section 

3.2). Finally, LIDA embraces a multitude of distinct long-term memory modules rather than 

viewing long-term memory as a monolithic and uniform storage media. This multiplicity of 

memory modules reflects a previously undocumented conceptual commitment in LIDA that 

different types of knowledge structures (e.g., perceptual, autobiographical, spatial, procedural, 

etc.) require different representations and are supported by different processes (including 

learning mechanisms); therefore, they should be modeled as belonging to distinct long-term 

memory modules. This approach to long-term memory lends a great deal of flexibility to the 

LIDA architecture at the expense of increased complexity. 

 

Despite our great progress and the maturity of the LIDA conceptual model, LIDA’s learning 

mechanisms remain underspecified and largely unimplemented. A primary goal of this paper is 

to survey this frontier of learning in LIDA, and to identify directions and opportunities for future 

exploration. During this journey, we will convey the idiosyncrasies of each learning mechanism, 

and elaborate on the LIDA conceptual commitments relevant to learning. We will also explore 

foundational issues that influence learning such as “What must be innate or built-in?” versus 

“What can be learned?”, the nature of LIDA’s representations (i.e., data structures), and the 

relationship between the LIDA conceptual model and its computational realizations (i.e., 

implementations). Our hope is that this paper will direct and catalyze our research endeavors, 

and introduce the conceptual foundations of LIDA’s learning mechanisms to anyone seeking a 

deeper understanding of learning in LIDA or that plans to implement LIDA-based agents. 

 

The remainder of this paper is structured as follows: Section 2 provides background on LIDA 

including our definitions of minds and autonomous agents, and the LIDA conceptual model. 

Section 3 examines each of LIDA’s conceptual commitments that are relevant to learning. 

Section 4 explores general issues relevant to learning in LIDA. Section 5 examines each of 

                                                
2 See Franklin (2003) for a detailed explanation of functional consciousness. Functional consciousness is 
also referred to in the literature as access consciousness. 



LIDA’s learning mechanisms in detail. Section 6 concludes the paper with a retrospective and 

roadmap for future work. 

2 Background 

LIDA is both a conceptual and computational model of minds. LIDA draws inspiration from many 

theoretical and experimental results in psychology and neuroscience about brains; however, 

LIDA does not model brains, which are but one possible incarnation of minds. In this section, we 

will provide a brief description of LIDA’s conceptual model and related concepts, which will be 

necessary to understand the remainder of the paper. (Section 4.3 discusses the relationship 

between LIDA’s conceptual and computational models.)  

 

For additional information on LIDA and its components see Franklin et al. (2016). 

2.1 Minds and Autonomous Agents 

LIDA is a cognitive architecture supporting the creation and modeling of minds. In this context, 

we define minds as control structures (Newell, 1973) for autonomous agents, where 

 

an autonomous agent is a system situated within and a part of an environment that 

senses that environment and acts on it, over time, in pursuit of its own agenda, and so as 

to effect what it senses in the future. (Franklin & Graesser, 1997) 

 

There are many examples of autonomous agents including human and most non-human 

animals (i.e., biological systems) and some software agents. A fundamental function of a mind 

is to answer the continuingly recurring question, “What do I do next?” 

 



 
Figure 1 – Diagram of the LIDA conceptual model. The conscious broadcast initiates learning in all long-term memory 

modules. Figure reproduced from Franklin et al. (2016). 

2.2 The LIDA Conceptual Model 

LIDA agents are autonomous agents (see Section 2.1) that implement the LIDA conceptual 

model, which is the subject of this section. The LIDA conceptual model views cognition as 

emerging from a continual series of potentially overlapping cognitive cycles (see Section 2.2.1). 

Each cognitive cycle relies on a set of underlying functional components, which includes short-

term memory (STM) modules (see Section 2.2.2), long-term memory (LTM) modules (see 

Section 2.2.3), and special-purpose processors called codelets (see Section 2.2.4). The 

conscious broadcast is the basis for functional consciousness in LIDA, and it is a necessary and 

sufficient condition for all learning in LIDA (see Section 3.1). The conscious broadcast is 

generated by one of LIDA’s STM modules called the Global Workspace (see Section 2.2.2), and 

is received by all LIDA modules. 

 

Figure 1 summarizes LIDA’s modules and their interactions. Note that not every LIDA module 

(or learning mechanism) must be implemented in a LIDA agent for it to be considered a LIDA 

agent. Depending on the nature of the agent one is trying to model (e.g., insect vs. rodent vs. 

human cognition), or the research question one is trying to explore (e.g., replicating 

hippocampal lesion studies), it may be beneficial to focus on a subset of LIDA modules. 



2.2.1 The LIDA Cognitive Cycle 

Autonomous agents must continually sense, perceive, and act on their environments. This is 

conceptualized in LIDA as occurring by a series of cognitive cycles, each of which is divided into 

three phases: perception and understanding, attention, and action and learning (see Figure 2). 

Complex cognitive processes such as planning, deliberation, and problem solving may require 

multiple cognitive cycles.   

 

 
Figure 2 - The Cognitive Cycle Phase Diagram. LIDA views cognition as emerging from a continual series of 
overlapping cognitive cycles, each of which is divided into three phases: perception and understanding, attention, and 
action and learning. 

2.2.2 Short-Term Memory (STM) Modules 

Sensory Memory 

Sensory Memory encodes incoming sensory stimuli from the environment into rapidly decaying, 

modality-specific representations. This sensory content is typically an attenuated version of the 

original sensory stimuli due to selective feature extraction by feature detectors. 

Workspace (Preconscious) 

The Workspace (preconscious) contains two submodules – the Current Situational Model 

(CSM) and the Conscious Contents Queue (CCQ) – that support situational understanding and 

preconscious thought (see Figures 1 and 6). 

 

The CSM is a short-term, high-capacity memory module that integrates sensory content from 

Sensory Memory with memories from LTM and “preconscious” representations created by 

structure building codelets (see Section 2.2.4). The cognitive content in the CSM can also cue 

many of LIDA’s LTM modules, allowing the retrieval and integration of additional long-term 

memories into the CSM. 

 

The CCQ is a short-term, low-capacity memory module that contains the contents of a limited 

number of recent conscious broadcasts. Each new conscious broadcast is added to the “front” 



of the CCQ, and previously added content gradually shifts towards the “back” of the CCQ. 

Despite its name, the CCQ is not a typical queue since structure building codelets have direct 

access to any position in the queue. (Queues typically do not support random access to their 

elements.) The CCQ primarily supports the recognition of time-dependent relationships (e.g., 

causality) and the perception of time (Snaider et al., 2012). 

Global Workspace 

The Global Workspace supports the filtering and broadcast of the most salient content in the 

CSM by means of a winner-take-all competition among coalitions. Coalitions contain content 

advocated for by one or more attention codelets (see Section 2.2.4), and represent a temporary 

alliance between attention codelets for the purpose of jointly endorsing content. Coalitions have 

a single parameter, activation, that is a function of many factors (see Franklin et al. (2016) for 

details) including the content’s activation and the attention codelets’ base-level activation. The 

coalition with the highest activation wins the competition, and that coalition’s content is 

broadcast to all LIDA modules. We refer to this event as the global (or conscious) broadcast. 

Action Selection 

Action Selection selects a behavior from a set of candidate behaviors (i.e., instantiated schemes 

(see Procedural Memory in Section 2.2.3)), and sends it to several modules including the 

Sensory Motor System (see Figure 5) for execution. Some of the factors that may influence a 

candidate behavior’s likelihood of selection include:  

 

(1) The relevance of the behavior to the current situation; i.e., its current activation. 

(2) The reliability of the behavior in increasing the likelihood of its result; i.e., its base-level 

activation. 

(3) The desirability of the behavior’s result; i.e., its total incentive salience. 

(4) The preconditions that must be satisfied before the behavior’s action is executable. 

(5) The consequences of the result should the behavior’s action be executed. 

 

LIDA supports four modes of Action Selection: volitional (i.e., deliberative), consciously-

mediated, automatized, and via alarms. 

Motor Plan Execution 

Motor Plan Execution supervises the execution of a motor plan, which results in the selection of 

a series of motor commands to be executed by a LIDA agent’s actuators. Motor plan execution 

occurs outside of a LIDA agent’s conscious awareness, though the agent may become aware of 

its low-level actions indirectly by monitoring incoming sensory content. 

 

The design of the Motor Plan Execution module was heavily influenced by the Subsumption 

Architecture (Brooks, 1986). Following the instantiation of a motor plan from a motor plan 

template (MPT) in Sensory Motor Memory (see Section 2.2.3), Motor Plan Execution operates 

in a purely reactive fashion (similar to the Subsumption Architecture) using a process referred to 

as online control (see Figure 3). During online control, one or more motor commands from the 



executing motor plan are “triggered” based on incoming sensory content from Sensory Memory 

over the dorsal stream (see Figure 1). The motor plan’s choice function chooses one of these 

motor commands to execute and sends the command value of the selected motor command to 

the designated actuator. 

 

 
Figure 3 - Motor Plan Execution’s Online Control process. Sensory stimuli from the environment is used by Online 
Control to “trigger” and “choose” appropriate motor commands and update motor command values that are sent to 
the agent’s actuators for execution.  

2.2.3 Long-Term Memory (LTM) Modules 

LIDA’s long-term memory modules support a diverse set of representations (i.e., data 

structures) and processes. Many LTM modules can be cued by content in the CSM, allowing the 

formation of “preconscious” representations: memories and percepts of which an agent can 

become consciously aware. Other LTM modules, such as Procedural Memory and Sensory 

Motor Memory, are not cueable, so an agent can never become consciously aware of those 

representations. (See Franklin & Baars (2010) for additional information regarding varieties of 

unconscious processes.) 

Perceptual Associative Memory (PAM) 

Perceptual Associative Memory contains representations, referred to conceptually as nodes and 

links3, that support LIDA’s ability to quickly (i.e., non-deliberatively) recognize objects, events, 

entities, concepts, etc., and relationships between them (for example, “X is above Y” or “X is 

larger than Y”). All PAM nodes have a base-level activation that quantifies the relative, empirical 

frequency of their corresponding objects, events, entities, concepts, etc., occurring in the 

agent’s environment. PAM nodes can be activated (i.e., have their current activations increased) 

                                                
3 Links are typically directed in LIDA, indicating an asymmetric relationship between a source node and a 
sink node. Activation propagates across links from source to sink. 



either by feature detectors or by the propagation of activation from other “linked” nodes. PAM 

nodes that have a total activation (i.e., current + base-level activation) above an activation 

threshold will be integrated into the CSM as a percept.  

Declarative Memory 

Declarative Memory contains autobiographical and semantic memories. Autobiographical 

memories are referred to as episodes. Semantic memories, which correspond to facts and 

rules, are a form of degenerate episode in which the autobiographical contexts (e.g., place, 

time, feelings) have been interfered with, as well as decayed, leaving only detached factual 

content. 

Transient Episodic Memory (TEM) 

Transient Episodic Memory contains recent episodes for a short duration of time (typically on 

the order of hours to a day or so). Episodes are added to TEM from the conscious broadcast. 

Episodes that have not decayed away will be transferred to Declarative Memory during offline 

consolidation.  

 

TEM serves two purposes: It supports the modeling of a Declarative Memory consolidation 

process (Section 3.4), and it reduces interference between recent and more remote (i.e., 

consolidated) episodes that are highly similar. 

 

 
Figure 4 - A conceptual depiction of Spatial Memory, including an expanded view of a cognitive map. Place nodes are 
PAM nodes that represent locations in an agent’s environment. PAM object nodes (in this case, table and door) are 
associated with (“linked to”) place nodes to represent their location within a cognitive map. A special PAM “self” node 
can be associated with a place node to indicate an agent’s location. A “route plan” is depicted showing how cognitive 



maps support route determination via a series of place nodes. Figure reproduced (with modification) from Madl et al. 
(2018). 

Spatial Memory 

Spatial Memory contains cognitive maps, which are allocentric, topographic representations 

depicting the location of objects within an agent’s environment. They rely on a special class of 

PAM nodes called place nodes4, which represent specific locations in the environment. 

Cognitive maps associate (i.e., “link”) place nodes with object nodes to encode the relative 

locations of those objects within the environment (see Figure 4). A cognitive map can encode an 

agent’s own location by associating a “self” PAM node with a place node. Cognitive maps are 

typically hierarchically organized: a single geographic region may be represented by many 

cognitive maps (concurrently) with different scales and resolutions. Cognitive maps support 

agent localization and route planning, among other things. 

Attention Codelet Memory (Attentional Memory) 

Attention Codelet Memory supports the attention codelet lifecycle: creation, parameter 

maintenance, and termination. 

Structure Building Codelet Memory 

Structure Building Codelet Memory supports the structure building codelet lifecycle: creation, 

parameter maintenance, and termination. 

Procedural Memory 

Procedural Memory contains representations called schemes5, which encode correlations 

between contexts (i.e., states), actions, and their results. A base-level activation is associated 

with every scheme that quantifies its reliability; that is, how likely its action is to obtain its result 

when taken from its context. 

 

When Procedural Memory receives a conscious broadcast, it activates schemes based on their 

relevance to the contents of that broadcast. Procedural Memory determines a scheme’s 

relevance by comparing the context and result of each scheme to the received conscious 

content, and updates the scheme’s current activation accordingly. The greater the similarity 

between a scheme’s context and result and the contents of the conscious broadcast the greater 

the increase in its current activation. Schemes with current activations above a configurable 

threshold will be instantiated as candidate behaviors.  

 

Instantiation can be viewed as the process of creating a specific instance (behavior) from an 

abstract template (scheme). During instantiation, unbound variables in a scheme’s context, 

                                                
4 Place nodes are inspired from “hippocampal place cells” that occur in animal brains, which are believed 
to encode an animal’s belief about its current spatial location. 
5 Inspired by Drescher (1991). Drescher referred to these tripartite data structures as schemas. 



action6, and result are specified in accordance with the contents of the current conscious 

broadcast. If a scheme does not specify a context (which will generally be the case for an 

agent’s initial “action only” schemes), then Procedural Memory will supply a new context to that 

candidate behavior based on the contents of the conscious broadcast that initiated the 

behavior’s instantiation.  

Sensory Motor Memory (SMM) 

Sensory Motor Memory contains motor plan templates (MPTs) that specify abstract motor plans. 

SMM selects a single MPT, based on the selected behavior from Action Selection, and 

instantiates the selected MPT into a concrete motor plan. Once instantiated, the motor plan is 

sent to Motor Plan Execution. The instantiation of MPTs into motor plans is analogous to the 

instantiation of schemes into candidate behaviors (see Procedural Memory) though the data 

structures are very different. SMM and Motor Plan Execution have closely aligned concerns; 

therefore, we frequently refer to them collectively as the Sensory Motor System (SMS) (see 

Figure 5).  

 

 
Figure 5 - The Sensory Motor System, illustrating the Motor Plan Template (MPT) Selection and Motor Plan 
Specification processes. The Sensory Motor System receives a selected behavior from Action Selection and outputs 
a series of motor commands that are directly executable by an agent's actuators. 

2.2.4 Codelets 

Codelets are special purpose processors that perform various (internal) operations based on the 

presence of content of interest in the Workspace (preconscious). There are two types: attention 

codelets and structure building codelets. Each type of codelet belongs to a supporting LTM 

module that manages their lifecycles and implements their selectionist and instructionalist 

learning mechanisms (see Figure 6). 

Attention Codelets 

Attention codelets monitor the CSM looking for salient content of interest (based on their 

individual concerns). If content is found that matches an attention codelet’s concerns, it sends 

this selected content to a coalition forming process. The coalition forming process creates a new 

                                                
6 Actions may have unbound variables that qualify and modulate how an action is executed; for example, 
“walk rapidly” and “walk slowly” could be implemented in a single scheme with an action of the form “walk 
<how fast>”, where “<how fast>” modulates the walking speed. 



coalition that includes this content, and sends it to the Global Workspace to compete for the 

conscious broadcast.  

 

Attention codelets vary in the kinds of content they consider salient. Specific attention codelets 

advocate for a narrow range of content; for example, specific types of objects or events. By 

contrast, the default attention codelet advocates for a wide range of content: its selection criteria 

are based solely on the content’s total activation and total incentive salience. Expectation 

codelets are attention codelets created in response to selected behaviors (see Action Selection 

in Section 2.2.2) that advocate for content in the CSM corresponding to the expected results (or 

non-results) of that selected behavior. For example, if an agent is executing a selected behavior 

for “flipping a light switch” that includes an expected result of “light on” then an expectation 

codelet may temporarily bias the agent’s attention towards content in the CSM representing the 

state of the light bulb (e.g., “light on” or “light off”). 

Structure Building Codelets (SBCs) 

Structure Building Codelets monitor the CSM and CCQ looking for content of interest (based on 

their individual concerns). If content is found that matches a structure building codelet’s 

concerns, it creates and/or modifies representations in the CSM.   

 

Structure building codelets support an agent’s ability to interpret its current situation by 

generating or manipulating “preconscious” content: for example, by creating 

relational/associative links (e.g., categorical or causality relationships) or entirely new 

representational structures, such as mental simulations (i.e., preconscious mental images). 

 

 
Figure 6 - Codelets and their relationship to the (preconscious) Workspace and Global Workspace. Structure building 
codelets select content from the CCQ and CSM, and add new content to the CSM. Attention codelets select content 
from the CSM and add their selected content to coalitions in the Global Workspace (via a coalition forming process). 



3 Learning - Conceptual Commitments 

Franklin et al. (2013) proposed a set of conceptual commitments that made explicit LIDA’s 

commitment to various theoretical principles. These commitments constrain all of LIDA’s 

conceptual processes and their implementations. In the remainder of this section, we will 

examine the conceptual commitments that are pertinent to learning. 

3.1 Conscious Learning Hypothesis 

LIDA adheres to the Conscious Learning Hypothesis of GWT, which states that all significant 

learning requires consciousness. LIDA and GWT further contend that learning occurs as a direct 

result of the conscious broadcast; therefore, consciousness is both a necessary and sufficient 

condition for significant learning. This causal relationship between conscious broadcasts and 

learning does not preclude the possibility of a substantial delay between the onset of a 

conscious broadcast and subsequent learning based on that conscious content; for example, as 

would occur during offline consolidation in support of declarative learning. It’s also important to 

clarify that the module-specific learning mechanisms are themselves unconscious: an agent is 

never aware of the internal processes responsible for learning, only the resulting side-effects 

(e.g., access to new memories and more reliable motor skills).  

3.2 Feelings as Motivators and Modulators of Learning 

Feelings can influence a LIDA agent’s cognitive processes in at least three ways. They can 

increase the overall salience of preconscious cognitive content, making it more likely to come to 

consciousness. They can bias an agent’s action selection towards behaviors that lead to 

desirable outcomes, and they can modulate learning and the retention of long-term memories.  

 

LIDA implements feelings via PAM nodes with affective valence, which we call feeling nodes. 

Affective valence quantifies an agent’s immediate hedonic response to events7 (e.g., eating ice 

cream), indicating liking (positive affective valence) or disliking (negative affective valence). For 

example, a hunger feeling node would have negative affective valence, whereas a satiety 

feeling node would have positive affective valence. The magnitude of the affective valence is 

conveyed by the total activation of a feeling node, and the direction (like or dislike) is conveyed 

by its valence sign (either + or −). Feeling nodes, like all PAM nodes, can be activated either by 

feature detectors in Sensory Memory (e.g., the presence of sugars in foods) or by cueing from 

the CSM (e.g., recognizing that you have a straight flush in poker).  

 

We distinguish two types of feeling nodes: drive feeling nodes and interpretative feeling nodes. 

Drive feeling nodes reflect an agent’s essential bodily needs (e.g., food, water, oxygen) and are 

typically activated by homeostatic receptors (specialized internal sensors that capture aspects 

                                                
7 In this paper, we will typically refer to events as the “targets” of LIDA’s motivational constructs; for 
example, the things that are liked or wanted. While we contend that events are the most common 
representational type associated with an agent’s motivations, we don’t exclude the possibility that objects, 
concepts, etc. could have associated feelings, and attractive or repulsive force. 



of an agent’s bodily state). Hunger and satiety are examples of drive feelings. Interpretative 

feeling nodes, by contrast, provide affective appraisals of environmental stimuli that can serve 

as heuristics for operating in an environment. The positive and negative feelings typically 

associated with eating sweet and bitter foods are examples of interpretative feelings. 

Interpretative feelings may indirectly support an agent’s drives; for example, liking to eat sweet 

foods may bias the agent towards eating ripe fruit, resulting in increased satiety and decreased 

hunger. Interpretative feelings are only adaptive, however, if the interpretations they provide 

remain beneficial within the agent’s environment. If the environment changes, those feelings 

could become maladaptive; for example, if sweetness were frequently correlated with poisonous 

substances or unhealthy foods. Drive feelings, on the other hand, will remain adaptive in any 

external environment so long as the agent’s bodily needs remain constant. 

 

Kringelbach and Berridge (2009) argued that liking and disliking should be distinguished from 

wanting and dreading, and that they are implemented in brains using distinct neural pathways – 

the former indicates an immediate hedonic response to an event while the latter is an attractive 

or repulsive force associated with an event. Wanting and dreading are quantified in LIDA by an 

event’s incentive salience. Incentive salience is further divided into a base-level incentive 

salience and current incentive salience. Base-level incentive salience is a context-invariant 

attraction or repulsion to an event, which is learned from repeated exposure to that event. 

Current incentive salience is a context-sensitive attraction or repulsion associated with an event 

that is modulated by the agent’s current situation. 

 

Events are complex structures that are central to LIDA’s implementation of feelings and 

motivations. Each event contains nodes for the actor(s), action(s), object(s), etc. that comprise 

that event. Bi-directional “activation” links associate each node with its parent event node. 

These links allow top-down and bottom-up flow of activation, and represent the thematic roles 

(Fillmore, 1968) of each of the nodes within the event’s node structure. Figure 7 illustrates event 

node structures and LIDA’s motivational constructs in detail. 

 

In general, learning (of all varieties) is facilitated by additional incentive salience (or activation); 

however, this only holds up to a point. Too much arousal may impair both learning and cognitive 

performance. This notion is captured in the Yerkes-Dodson law (Yerkes and Dodson, 1908), 

which postulates an “inverted U” relationship between arousal and learning. 

 

 



 
Figure 7 – Illustration of LIDA’s motivational constructs. Feeling nodes are PAM nodes with either positive or negative 
affective valence (e.g., sweetness, hunger, and satiety). Feeling nodes can be activated by incoming sensory content 
(for example, from external sensors or homeostatic sensors) or cued from content in the CSM (not depicted). A 
feeling node’s activation combines with the node’s positive or negative valence sign to give the magnitude and 
“direction” (i.e., like or dislike) of a stimulus response. Current activation is passed from feeling nodes to event nodes 
over “activation links”. Current incentive salience is passed from drive nodes to event nodes over “incentive salience” 
links. Unlike “activation” links, “incentive salience” links have associated weights that modulate the degree and 
direction of the increase in current incentive salience. Event node structures contain a set of associated nodes that 
are connected to the event node by links representing “thematic roles”, such as the “actor” and “action” characterizing 
an event. In this example, the LIDA agent is the actor in the “eating ice cream” event; therefore, the “self” node has 
been associated with the event using a link indicating the actor thematic role. 

3.3 Profligate Learning, Comprehensive Decay, and Forgetting 

All LIDA long-term memory modules support learning, typically with every cognitive cycle. This 

eager and opportunistic learning strategy would rapidly result in a proliferation of 

representations if it were not counter-balanced by an equally relentless and comprehensive 

decay strategy: all parameters decay, and irrelevant and ineffectual representations are pruned 

(i.e., forgotten). We refer to this Darwinian-style of “generate and test” learning as profligate 

learning since most representations are created and then discarded with seemingly reckless 

abandon. Decay and forgetting processes are required for all LIDA modules, and they are a 

necessary companion to LIDA’s learning processes. 

3.4 Transient Episodic Memory and Consolidation 

The long-term retention of episodic and semantic memories requires consolidation. This 
assertion, while not universally accepted, is well supported by a substantial body of evidence 
(Born & Wagner, 2006; McGaugh, 2000; Nadel, Hupbach, Gomez, & Newman-Smith, 2012; 
Stickgold & Walker, 2005). 
 
LIDA’s transient episodic memory module supports the temporary retention of episodic 
memories between offline consolidation events. Consolidation is hypothesized to occur during 
sleep in humans; therefore, we typical consider TEM retention periods in the range of a few 
hours to a day. Ramamurthy and Franklin (2011) proposed ideas on how a consolidation 



process could be implemented using Sparse Distributed Memory; however, the specifics of the 
consolidation mechanism, including the triggers that might initiate consolidation in a software 
agent, are still an open area of research. 

4 General Concerns for Learning 

4.1 A Tabula Rasa? 

Nature versus Nurture has been a topic of perennial debate among philosophers and 

psychologists for centuries. While we don’t have any intention of resolving that debate here, a 

paper on learning would be remiss without addressing “What must be innate or built-in?” and 

“What can be learned?” by a LIDA agent.  

 

All LIDA agents must be endowed with the following: 

 

(1) Intrinsic Motivations 

 

Evolution provides biological agents with a set of intrinsic motivations that tend to 

increase their probability of survival and reproduction. Similarly, all LIDA agents begin 

life with built-in feelings including homeostatic drives (i.e., drive feeling nodes) and 

interpretive affective responses (i.e., interpretative feeling nodes) that can serve as 

heuristics for operating in an environment (see Section 3.2). All additional motivations, 

such as wants and dreads, are ultimately derived from this built-in set of intrinsic 

motivations (see Section 5.3). 

 

(2) Primitive schemes and motor plans 

 

All LIDA agents require innate or built-in procedural knowledge that minimally includes a 

set of primitive (action only) schemes. These initial, primitive schemes, and their 

corresponding motor plans, support basic action selection and execution (e.g., “move 

eyes left” or “reach right arm forward”), and form the basis for an agent’s early 

environmental exploration. 

 

(3) Default attentional processes 

 

All LIDA agents require a minimal, built-in attentional mechanism that can discriminate 

and filter incoming sensory stimuli, and subserve the process of bringing cognitive 

content to consciousness. This could be implemented, for example, using a single 

default attention codelet and/or a set of specific concern attention codelets that respond 

to salient stimuli from the agent’s sensors (e.g., bright lights, loud sounds, etc.). 

 

(4) Primitive feature detectors 

 



There is a growing body of experimental evidence that humans (Turati et al., 2006; 

Simion et al., 2008) and other animals (Wood, 2013) are born with a set of innate 

primitive feature detectors that gradually become more sophisticated and attuned to the 

physical world through experience. In LIDA, these primitive feature detectors correspond 

to nodes in PAM that are activated directly from modality-specific representations in 

Sensory Memory and the Current Situational Model (as opposed to receiving activation 

from other PAM nodes). An example of a primitive feature detector would be a node that 

is receptive to (i.e., activated by) colors in the red spectrum of light. 

 

It is technically possible for an autonomous agent to learn all of its feature detectors 

directly from experience, for example by applying a convolutional neural network 

(Krizhevsky et al., 2012); therefore, we do not rule out the possibility that a LIDA agent 

could also learn all of its primitive feature detectors directly from online, conscious 

experience. That being said, current machine learning approaches typically require a 

massive amount of data (i.e., experiences) to learn useful features, so we suspect that 

many designers of LIDA agents will choose to supply their agents with a set of built-in 

primitive feature detectors since a fully automated approach may be infeasible in 

practice. 

 

(5) Learning mechanisms 

 

All LIDA agents require a set of innate or built-in, module-specific learning mechanisms. 

The parameters of these learning mechanisms, such as learning rates, may change over 

time, but the basic processes must be provided by a designer, evolutionary mechanism, 

etc. 

 

Given this modest endowment of initial competencies, a LIDA agent can learn essentially 

everything else. This includes (but is not limited to) the recognition of new objects, events, and 

concepts, new autobiographical memories, new facts, new schemes and motor plans, new 

allocentric and egocentric cognitive maps, new attentional and creative processes, and new 

affective associations. Whether a LIDA agent should be designed to learn these things is 

another matter: learning necessitates exploration, which involves costs and risks – great or 

small. The nature of an agent’s environment (dynamic versus static; hostile versus hospitable) 

and the feasibility of engineering built-in knowledge and competencies will need to be 

considered on an agent by agent basis.  

4.2 The Nature of LIDA’s Representations 

LIDA is committed to the principles of embodied (situated) cognition, which we interpret as a 

structural coupling between autonomous agents and their environments (Franklin et al., 2013). 

We have consistently been proponents of grounded representations throughout LIDA’s 

development (Ramamurthy et al., 2006; McCall et al., 2010a; Franklin et al. 2014; Agrawal et 

al., 2018), and have advocated for the use of modal (perceptual) symbols (Barsalou, 1999). 

Apart from its commitment to symbol grounding, LIDA is representation agnostic.  



 

Traditionally, we have conceptualized (and implemented) LIDA’s “cognitive content” (i.e., 

knowledge representations) as directed graphs called node structures. Node structures contain 

one or more nodes and zero or more links. Nodes refer to objects, entities, events, concepts, 

etc., and links indicate relationships between the nodes’ referents (e.g., “X is a Y”, “X has a Y”, 

“X caused Y”). 

 

Node structures are conceptually appealing because they are easily visualized and new 

associations are trivial to create; however, they suffer from many computational limitations 

(Snaider & Franklin, 2014b). These limitations have inspired exploration into more scalable 

representational options, such as, Modular Composite Representation (MCR) vectors (Snaider 

& Franklin, 2014a; 2014b) and sparse distributed representations from Hierarchical Temporal 

Memory (HTM) regions (Agrawal et al., 2018). For the remainder of this paper, we will generally 

assume node structures, as they are conceptually simpler to describe. Any deviations from this 

convention will be called out in the text. 

4.3 The LIDA Conceptual Model and Its Implementations 

In Sections 2 and 3, we described the LIDA conceptual model and its commitments. The 

conceptual model defines LIDA’s high-level components and their interactions, and the 

conceptual commitments provide a theoretical framework within which these components must 

operate. LIDA’s computational instantiations (software implementations) are constrained to 

abide by both the conceptual model and its commitments; however, within those confines, there 

are many details that are necessarily unspecified (or underspecified). Intrepid creators of 

artificial minds are empowered to explore within this uncharted territory and choose appropriate 

algorithms and module implementations that facilitate their efforts.  

 

We say that some details are necessarily unspecified for at least two reasons. First, an agent 

may be situated in any of an enormous variety of environments, each with its own character and 

relative complexity. This environmental sensitivity will likely flavor all module implementations, 

and can be interpreted as a direct consequence of embodiment principles: all aspects of 

cognition are shaped by the agent’s situated relationship with its environment. This can be 

illustrated by considering Sensory Memory: modality-specific representations and feature 

detectors that work well for a text-based environment (for example, a “web crawling LIDA 

agent”) would be abysmal for processing visual images from a camera sensor. This is equally 

true of LIDA’s learning mechanisms. Second, we must acknowledge that our knowledge of 

minds is imperfect. Biological minds provide our only known examples – the proof of concept – 

that autonomous agents with “general intelligence” are constructible; however, our knowledge of 

how they accomplish this feat is woefully incomplete. The LIDA conceptual model and its 

commitments are a testament to what we believe we know about minds based on all available 

evidence; however, the computational implementations of those conceptual constructs are 

subject to change without invalidating the LIDA conceptual model. Therefore, we must stress 

that any computational mechanism of a module should be considered an implementation not the 



implementation of a module, and it is entirely consistent (and eminently useful) to admit many 

implementations, so long as they are consistent with LIDA’s conceptual foundations. 

5 Learning Mechanisms 

Every LIDA long-term memory (LTM) module supports both instructionalist and selectionist 

learning (Edelman, 1987). Instructionalist learning results in new representations in LTM 

modules. Selectionist learning results in adjustments to parameters associated with preexisting 

LTM representations. Each LTM module may support different data structures (i.e., 

representations) with different functional purposes and associated parameters; therefore, there 

are many varieties of instructionalist and selectionist learning in LIDA. Table 1 presents a partial 

list of types of learning supported in LIDA including their associated LTM modules and their 

instructionalist and selectionist flavors.  

 

The remainder of this section will be devoted to elaborating on each learning type and their 

associated learning mechanisms. For the purposes of this paper, we do not consider the 

storage or updating of representations in short-term memory (STM) modules as significant 

learning; however, STM modules play a critical role in supporting all LTM learning mechanisms. 

 

Learning Type Associated LTM module(s) Instructionalist Learning Selectionist Learning 

Attentional Attention Codelet Memory 
(Attentional Memory) 

New Attention Codelets Update Attention 
Codelet Base-Level 
Activation 

Declarative Declarative Memory New (i.e., consolidated) 
Autobiographical 
Memories (episodes) 

Update Base-Level 
Activation of Episodes 
in Declarative Memory 
(autobiographical and 
semantic memories) 

Motivational Perceptual Associative 
Memory (PAM) 

New Incentive Salience 
Links 

Update Base-Level 
Incentive Salience of 
PAM Nodes 

Perceptual Perceptual Associative 
Memory (PAM) 

New object, event, entity, 
concept, etc., node 
structures (PAM) 
 

Update Base-Level 
Activation of PAM 
Nodes 
 

Procedural Procedural Memory New Schemes Update Scheme Base-
Level Activation 

Sensorimotor Sensory Motor Memory New Motor Plan 
Templates (MPTs) 

Update MPT Rewards 
and Errors databases. 
 
Update Rewards 
Learning Rate 



Spatial Spatial Memory New Cognitive Maps Update Base-Level 
Activations of Cognitive 
Maps 

Table 1 - Instructionalist and selectionist learning by type with associated modules. 

5.1 Attentional Learning 

Attentional learning involves learning how to identify the most salient portions of the CSM and 

ensure that the likelihood of that content becoming conscious is proportional to the current 

saliency of the content.  

 

Instructionalist learning occurs in at least two scenarios. In the first scenario, the Attention 

Codelet Memory module creates a new specific attention codelet whenever content advocated 

for by the default attention codelet (see Section 2.2.4) becomes part of a winning coalition. The 

“concern” of this new specific attention codelet will be to advocate for content that is similar to 

the winning conscious content, and its base-level activation will be a function of the base-level 

activation of the default attention codelet and the activation of the coalition containing the 

content. In the second scenario, the Attentional Memory module creates an expectation codelet 

(D’Mello et al., 2006a) whenever a selected behavior is received from the Action Selection 

module. The “concern” of this new expectation codelet will be to advocate for content based on 

the expected result of the selected behavior; for example, surprising, or unpredicted, outcomes 

that present opportunities to learn something new. Its base-level activation will be a function of 

the base-level activation and base-level incentive salience of this expected result. 

 

Selectionist learning occurs when any attention codelet successfully advocates for cognitive 

content that becomes conscious (i.e., is part of a winning coalition). The Attention Codelet 

Memory module will increase the base-level activation of any attention codelet that was 

responsible for suggesting content in the winning coalition. The base-level activation of attention 

codelets is a factor that influences (positively biases) the activation of coalitions in the Global 

Workspace. 

 

Due to LIDA’s adherence to the conscious learning hypothesis, all learning mechanisms are 

heavily dependent on the efficacy of attentional learning; no significant learning occurs unless 

the agent is conscious of that content. 

 

For more information on attentional learning, including computational experiments, see Faghihi 

et al. (2012). 

5.2 Declarative Learning 

Declarative learning involves the creation and reinforcement of autobiographical memories 

(episodes) and semantic memories (facts and rules). It requires the involvement of Transient 

Episodic Memory (TEM) as a temporary store of recent episodes, and an offline consolidation 



process that is responsible for the creation and reinforcement of episodes within Declarative 

Memory.  

 

New episodes are added to Transient Episodic Memory (TEM) from content in the conscious 

broadcast. If content from the conscious broadcast already exists in TEM, then its base-level 

activation will be reinforced. Content that is not reinforced in TEM will decay and eventually be 

pruned from TEM when it crosses below a minimum base-level activation threshold. Any 

episodes remaining in TEM when an offline consolidation event occurs will be “consolidated” 

into Declarative Memory. During consolidation, any content from these episodes that did not 

exist in Declarative Memory will be added (instructionalist learning). Content that did exist will 

have its base-level activation reinforced (selectionist learning).  

 

Note that portions of an episode can be reinforced. For example, a LIDA agent may hear that 

“Paris is the capital of France” in dozens of different episodes, each occurring in different 

places, at different times, and involving different people. The only content being reinforced is at 

the intersection of these episodes: “Paris is the capital of France”. All autobiographical context 

(place, time, feelings) from the individual episodes is interfered with and decays away, 

eventually leaving a context-agnostic, informational nugget; that is, a semantic memory. 

5.3 Motivational Learning 

Recall from Section 4.1 that a LIDA agent starts life with a set of built-in, intrinsic motivations in 

the form of feeling nodes (PAM nodes with affective valence). These feeling nodes specify an 

agent’s drives and hedonic interpretations of its environment. LIDA agents do not learn new 

feeling nodes; however, from this built-in set of feeling nodes, LIDA agents can learn a rich set 

of wants and dreads (see Section 3.2) that direct an agent’s attention, influence action selection, 

and modulate all forms of learning. Wanting and dreading is quantified in LIDA by a node’s total 

incentive salience, which is a function of its base-level incentive salience and its current 

incentive salience. Motivational learning involves updating base-level incentive saliences, and 

creating incentive salience links that serve as conduits for current incentive salience. 

 

Updating Base-Level Incentive Salience 

 

Base-level incentive salience is updated by PAM when a conscious broadcast contains event 

nodes with associated feeling nodes. For example, suppose that our agent is eating vanilla ice 

cream. The agent’s “tongue” (i.e., gustatory sensor) receives incoming sensory stimuli 

corresponding to the ice cream. These sensory stimuli may result in the activation of a “sweet” 

feeling node in PAM, which PAM instantiates into the CSM. Structure building codelets (SBCs) 

monitoring the CSM may create an event node structure for this “eating ice cream” event, and 

an “activation” link between the instantiated “sweet” feeling node and the “eating ice cream” 

event node. If this event node structure (which is now augmented with an activated “sweet” 

feeling node) comes to consciousness, PAM will receive it and update the base-level incentive 

salience associated with the “eating ice cream” event node. In this case, only one feeling node 



is associated with the event; however, in general, base-level incentive salience updates will be a 

function of the affective valences of all feeling nodes associated with an event. 

 

Creating Incentive Salience Links 

 

Current incentive salience, which quantifies the context-sensitive attraction or repulsion 

associated with an event in a given situation, is transmitted from drive feeling nodes to event 

nodes over incentive salience links (McCall et al., 2019, p.17). Recall from Section 3.2 that each 

feeling node has an affective valence, 𝑣 = 𝑎𝑡  sgn(𝑣), where 𝑎𝑡 is the total activation of the 

feeling node at time 𝑡 and sgn(𝑣) denotes its valence sign (i.e., the “direction” of like or dislike). 

Also recall that each incentive salience link has an associated weight 𝑤. The current incentive 

salience contributed by a feeling node to a linked event (over an incentive salience link) is 

defined as  

 

current incentive salience ≡ 𝑣𝑤 =  𝑎𝑡  sgn(𝑣)𝑤 

 

where  

sgn(𝑣) =  {
−1 if 𝑣 < 0,
   0 if 𝑣 = 0,
   1 if 𝑣 > 0.

 

 

SBCs create incentive salience links based on changes in a feeling node’s activation between 

conscious broadcasts. Recall that conscious broadcasts are stored temporarily in the CCQ (see 

Section 2.2.2), and are accessible to SBCs. If an SBC (that is interested in such things) notices 

an increase in the activation of a feeling node between conscious broadcasts, then it will create 

an incentive salience link with a positive weight; otherwise, if the activation decreases between 

broadcasts, the link will have a negative weight. In general, for any incentive salience link, the 

weight 𝑤 will be given by 

 

𝑤 = sgn(𝑣)𝑓(Δ𝑎), 

 

where Δ𝑎 = 𝑎𝑡+1 − 𝑎𝑡 is the change in activation between conscious broadcasts at time 𝑡 and 

𝑡 + 1, and 𝑓: ℝ → [0,1] is a function that scales Δ𝑎 (for example, a sigmoid function). Intuitively, 

the weights will be positive for events that lead to beneficial changes in an agent’s homeostatic 

state, and negative if they lead to detrimental changes. 

 

For more information on motivational learning and LIDA’s motivational system, including 

computational experiments, see McCall et al. (2019). 

5.4 Perceptual Learning 

The primary goal of perceptual learning is to learn grounded, potentially multi-modal and 

hierarchically-organized, representations in PAM (see Section 2.2.3). These representations 

support an agent’s ability to recognize objects, events, entities, and concepts, as well as, the 



relationships between them. Additional conscious experiences with previously learned PAM 

representations result in an increase in the base-level activations of those representations. This 

serves the dual purposes of persisting those representations in PAM (i.e., reducing their 

likelihood of being pruned) and providing an empirical measure of their relative frequencies of 

occurrence.  

 

LIDA’s perceptual learning mechanisms were heavily inspired by Perceptual Symbol Systems 

(Barsalou, 1999). Perceptual symbols, which capture a subset of an agent’s sensory and 

perceptual state while sensing objects and events, are formed in LIDA’s perceptual scene: a 

multi-modal data structure within the CSM. Modality-specific representations from Sensory 

Memory’s sensory scene are integrated into the perceptual scene along with any percepts from 

PAM that may have been sufficiently activated by the incoming sensory content. “Virtual” 

content created by structure building codelets (e.g., preconscious mental simulations) may also 

be present in the perceptual scene. During the perceptual symbol formation process, structure 

building codelets create new nodes (referred to in McCall et al. (2010b) as “blank nodes”) that 

serve as anchoring points around which representations comprising the new perceptual 

symbols will organize. Incoming sensory content for a given object or event, as well as, percepts 

and cued long-term memories (e.g., episodes) may be linked to these new (“blank”) nodes. (See 

Figure 8.) 

 

 
Figure 8 – The sensory and perceptual scenes and the creation of new perceptual symbols. Nodes are depicted as 
circular shapes. The sensory content associated with each node (via links) is depicted using square shapes. Image of 
the Sensory Scene (Visual) adapted from McCall et al. (2010b). 
 

To illustrate this process, suppose our agent is enjoying a cup of coffee in her favorite coffee 

shop. Her visual sensors capture a pixel map of her coffee mug, as well as, other elements from 

the coffee shop environment, which Sensory Memory receives and integrates into its modality-

specific sensory scenes. A “segmented layer” in her sensory scene (visual) is updated based on 

predicted object boundaries in the pixel map. In this case, one of the pixel regions in the 



segmented layer corresponds to the agent’s coffee mug. Other (non-visual) sensory modalities 

may also exist with their own sensory scenes, for example, an auditory modality that transduces 

waveforms corresponding to speech sounds and ambient noise in the coffee shop. This visual 

and auditory sensory content, which was temporarily stored in Sensory Memory, is integrated 

into the CSM. Additionally, this content may activate percepts (e.g., feeling nodes with positive 

affective valence) from PAM or cue episodes of prior experiences in the same coffee shop from 

Declarative Memory. Structure building codelets create one or more new perceptual symbols in 

the perceptual scene by first creating new (“blank”) nodes and then associating the incoming 

sensory content (e.g., coffee mug pixel region and ambient speech sounds) with those nodes. 

Relevant percepts, such as feeling nodes or recognized words, as well as, other cued long-term 

memories may also be linked to these developing perceptual symbols. If one or more attention 

codelets advocate for these new perceptual symbols, they may be included in a subsequent 

conscious broadcast, and learned into PAM. (Figure 8 depicts the sensory and perceptual 

scenes, and the intra-module interactions supporting the creation of the perceptual symbols 

described in this coffee shop example.) 

 

Perceptual learning encompasses far more than a simple recording mechanism for saving static 

snapshots of sensory and perceptual states. Generalization (e.g., categorization) processes 

continually operate on perceptual symbols, consolidating isolated experiences into 

representations that support viewpoint invariant recognition of distinct objects. These object 

representations are further generalized into more abstract representations that can encapsulate 

the essence of entire classes of objects, classes of classes, and so on. In this way, hierarchies 

of representations (of indefinite depth) can be learned. Structure building codelets will be 

integral to both the formation of new categories and the assignment of category membership; 

however, the specifics remain an open research question. 

 

Let’s illustrate this by returning to our agent at the coffee shop. As our agent sits in her favorite 

coffee shop, drinking a cup of premium dark roast coffee, she glances at her coffee mug from 

many different angles. She quickly learns to recognize that many of these distinct experiences 

correspond to the same object: a rounded, ceramic, coffee mug. On her next visit to the same 

coffee shop, she may get a very different coffee mug – an octagonal, glass, coffee mug – filled 

with a delicious caramel macchiato. Again, she has numerous, distinct, multi-modal 

experiences, and, she quickly learns to recognize that many of these correspond to the same 

octagonal mug. By this time, our agent has also learned to generalize her experiences into the 

abstract concept of a “cup of coffee” that transcends not only the cup, but the type of coffee. 

Figure 9 illustrates this process of generalization. 
 



 
Figure 9 – A high-level illustration of the generalization processes from perceptual symbols, to viewpoint invariant 
object representations and more abstract concepts. 
 

For more information on perceptual learning in general see D’Mello et al. (2006b). For more 

information on the sensory and perceptual scenes see McCall et al. (2010b).  

5.5 Procedural Learning 

The goal of procedural learning is to learn a comprehensive set of relevant and reliable 

schemes that enable the instantiation of useful, situation-specific, candidate behaviors (see 

Section 2.2.3). In this section, we will describe how Procedural Memory’s instructionalist and 

selectionist learning mechanisms support this goal. Recall from Section 2.2.3 that the relevance 

and reliability of schemes are quantified by the current and base-level activations of the 

schemes, respectively. 

 

LIDA agents typically begin life with a set of primitive (action-only) schemes. Upon receiving a 

conscious broadcast, Procedural Memory may instantiate one or more these primitive schemes 

as candidate behaviors and send them to Action Selection. The relevance (i.e., current 

activation) of primitive schemes will be minimal since they lack contexts and results; however, in 

the absence schemes with greater relevance, primitive schemes can, and eventually will, be 

instantiated as candidate behaviors. If Action Selection subsequently chooses one of these 

candidate behaviors for execution, and the result of the executed action comes to 

consciousness, then new, non-primitive schemes (containing a context, action, and result) will 

be learned via Procedural Memory’s instructionalist learning mechanisms. Through an agent’s 

continued exploration of its environment, a multitude of schemes may be learned, each relevant 

to different situations and pursuits. 

 



Relevant schemes are not necessarily reliable schemes. To illustrate this, consider an agent 

that executes a “reaching” action from many different locations in a room. From some of these 

locations, our agent may discover that the gripper on the end of its arm-like effector touches an 

object after executing the “reaching” action, and in other cases it doesn’t. Perhaps, in one of 

these cases, another agent is passing by (unbeknownst to our agent) as our agent begins its 

“reaching” action, and it collides with our agent’s arm-like effector. Assuming our agent learns 

schemes for each of these different contexts and results, how is our agent to differentiate 

between the efficacy of these “reaching” schemes for realizing some result (e.g., touching an 

object)? The scheme that encoded the coincidental collision with another agent may be highly 

relevant in the future if the agent wishes to touch an object; however, since this scheme reflects 

a low probability event, it will be unreliable (i.e., unlikely to obtain the desired result).  

 

In general, unreliability may be the result of many different factors including, but not limited to, 

inherently nondeterministic and partially observable environments (Russell & Norvig, 2016), 

frequent failures during action execution, or deficiencies in the specification of an agent’s 

schemes. Procedural Memory’s selectionist learning mechanisms are responsible for updating 

the schemes’ base-level activations to reflect the empirical reliability of the scheme: Procedural 

Memory will increase the base-level activation of any scheme when the execution of its action 

produces the expected result. Over time, reliable schemes will feature greater base-level 

activations, and unreliable schemes will decay, and may eventually be pruned from Procedural 

Memory. Box 1 illustrates the processes common to both instructionalist and selectionist 

procedural learning. 

 

Box 1. Illustration of Procedural Learning 

Initiation of the Procedural Learning Process (See Figure 10.) 

 

1. Conscious Broadcast. Procedural Memory receives a conscious broadcast, which it 

uses to activate relevant schemes. 

2. Instantiation of Candidate Behaviors. Procedural Memory instantiates candidate 

behaviors from its most activated (i.e., most relevant) schemes. These candidate 

behaviors are then received by Action Selection.  

3. Behavior Selected. Action Selection chooses a single behavior from among these newly 

instantiated candidate behaviors and perhaps other candidate behaviors that remain in 

the Action Selection module from prior cycles. The selection criteria are based, in part, on 

the behaviors’ base-level activations, which quantify their reliability. This selected 

behavior is received by Attention Codelet Memory, Procedural Memory, and Sensory 

Motor Memory. 

4(a). New Expectation Codelet. Attention Codelet Memory may spawn a new expectation 

codelet. This expectation codelet biases the agent’s attentional processes based on the 

currently executing behavior; for example, if an unexpected result occurs (as determined 

by the executing behavior’s expected results), then that result may have a greater 

likelihood of coming to consciousness. 

4(b). Update Recently Selected Behaviors. Procedural Memory adds the selected behavior 



to a set of recently selected behaviors maintained in Procedural Memory. Once added 

the recently selected behaviors rapidly decay from Procedural Memory. 

 

 

Figure 10 illustrates the initiation of the procedural learning process 

 

Selectionist and Instructionalist Procedural Learning (See Figure 11.) 

 

5. Incoming Sensory Stimuli. Incoming sensory stimuli from the environment8 is 

transduced into modality-specific sensory content in Sensory Memory. This sensory 

content will correspond to a state of the environment that occurred after commencement 

of action execution for the selected behavior. 

6. CSM Integration. The Workspace (preconscious) integrates the new sensory content 

from Sensory Memory into multi-modal representations in the perceptual scene (see 

McCall et al., 2010b). 

7. Attention. If learning is to occur, one or more attention codelets must advocate for 

content in the CSM. Expectation codelets (e.g., the codelet created in Step 4(a)) help 

direct the agent’s attention towards aspects of the perceptual scene that correspond to 

the expected results (or non-results) specified by previously selected behaviors. Any 

content selected by attention codelets will become part of a coalition and compete in the 

Global Workspace. 

8. Conscious Broadcast. The Global Workspace selects a winning coalition and globally 

broadcasts its contents to all LIDA modules, including Procedural Memory. 

9. Procedural Learning. Procedural Memory receives the conscious broadcast from Step 8 

                                                
8 This assumes that the selected behavior contained an external action. The learning mechanisms for 
internal actions are identical with the exception that the expected result will be based on content that was 
created by structure building codelets; for example, an action corresponding to the mental rotation of an 

object by 90 would have an expected result that is internally generated. See Franklin et al. (2016) for 

more information on internal and external actions. 



and initiates its selectionist and instructionalist learning mechanisms. 

  

Selectionist learning occurs when the contents of the conscious broadcast from Step 8 

match the expected results of one or more recently selected behaviors. In this case, 

the base-level activations of the corresponding schemes are increased.  

 

Instructionalist learning occurs when there is no match between the conscious 

broadcast and a recently selected behavior. In this case, one or more schemes are 

created from the contexts and actions of the recently selected behaviors. The 

expected result for these schemes will be based on the conscious broadcast from Step 

8. 

 
Figure 11 illustrates the continuing process of selectionist and instructionalist procedural learning 

that was initiated by Action Selection (from Figure 10) 

 

 

Procedural learning is heavily dependent on perceptual learning. An agent’s schemes will 

become more relevant and reliable as it learns to recognize new details from its environment 

that more precisely discriminate what matters in a given situation. Drescher (1991) introduced 

synthetic items to his Schema Mechanism as a means of capturing “aspects of the world that 

the existing repertoire of representations fails to express” (Dresher, 1991, p. 11). LIDA’s 

perceptual learning mechanisms (see Section 5.4) perform a similar function, allowing the 

creation of new representations that can be encoded in the context and results of schemes. For 

example, an agent may initially learn a general scheme for opening doors based on an action 

that involves turning a door knob clockwise and pulling the door handle towards the agent. This 

scheme may work well for hinged doors, but it will fail when the agent is confronted with sliding 

doors. Once the agent can perceptually discriminate between hinged doors and sliding doors, 

different schemes can be created for contexts with hinged doors and contexts with sliding doors 

featuring different actions. Figure 12 illustrates this relationship between schemes and the 

perceptual structures on which they depend. 
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Figure 12 – Illustration of scheme dependency on perceptual representations. Initially a generic scheme for opening 
doors is learned. Once the agent learns to differentiate perceptually between different door sub-types, more relevant 
and reliable schemes can be learned for each sub-type. In this way, Perceptual Memory hierarchies naturally 
translate into Procedural Memory hierarchies. 

Procedural learning is also heavily dependent on attentional learning and what the agent was 

attending to in a given situation. A scheme’s context and result are based on the contents of 

multiple conscious broadcasts, each of which contain what was deemed most salient at those 

moments; however, there is no guarantee that the most salient representations at a given 

moment will prove useful for creating relevant and reliable schemes. To illustrate this point, we 

return to our earlier example of an agent with a fondness for “reaching”. Suppose the agent 

executes its “reaching” action and succeeds in touching an object, but, in the moment its gripper 

touches the object, it is distracted by a flashing light detected by its camera sensor. In this case, 

the result encoded in the scheme may relate to the flashing light and not the fact that its gripper 

touched the object. These incidental distractions should be reduced over time as the agent’s 

attentional mechanisms become attuned to its environment, leading to more relevant and 

reliable schemes. 

 

For more information on procedural learning see D’Mello et al. (2006a). 

5.6 Sensorimotor Learning 

The primary goal of sensorimotor learning is the optimization of Motor Plan Execution through 

the creation and update of motor plan templates (MPTs) in Sensory Motor Memory. Wolpert et 

al. (2011) stated that “optimizing motor performance is achieved through three classes of 

control” (p.740) – predictive or feedforward control, reactive control, and biomechanical control – 

and that “all three of these control processes are adaptable and can contribute to motor 

learning” (p.740). They also defined three associated forms of sensorimotor learning: error-

based learning, reinforcement learning, and use-dependent learning. A significant observation 

from their work is that errors and rewards drive most sensorimotor learning. Dong and Franklin 

(2015a; 2015b) established the foundations of sensorimotor learning in LIDA by adding errors 



and rewards to the Sensory Motor System (SMS): each MPT was augmented with its own 

errors and rewards databases (see Figure 5).  

 

A modified Kalman filter (Kalman, 1960) was added to the Sensory Motor System in Dong et al. 

(2015) to implement a predictive control process – one of the three classes of control suggested 

by Wolpert et al. (2011). This predictive control process was used as an internal model for 

simulating motor command execution in the absence of the external sensory content that 

usually accompanies online control. Wolpert et al. (1995) argued that such a mechanism exists 

in humans based on their experimental findings, and Dong et al. (2015) replicated these 

experimental findings in a computational experiment using a LIDA agent. 

 

Reinforcement learning, in the form of Q-Learning (Watkins, 1989), was implemented in the 

SMS in Dong and Franklin (2015b). The Q-Learning algorithm was used to update motor 

command-value functions9 (one per MPT) from immediate rewards calculated in the SMS during 

the process of online control (see Figure 3). Note that while the rewards were calculated in the 

SMS, the calculation was based on the contents of a conscious broadcast; therefore, this 

conforms to the Conscious Learning Hypothesis. Once determined, these immediate rewards 

were stored in the MPT’s reward database (corresponding to the executing motor plan) and 

utilized by Q-Learning to update the MPT’s motor command-value function. Since these motor 

command-value functions estimate the “goodness” (more precisely, the expected cumulative 

discounted reward) of executing a motor command from a given state, the performance of motor 

plan choice functions (see Figure 3) can be optimized by selecting the best-known motor 

command, as reckoned by the motor-command value function for a given state. In practice, the 

choice function also permits a small percentage of “non-greedy” motor command selections to 

allow continued exploration10. See Dong and Franklin (2015b) for more details. 

 

The learning rates for both the Kalman filter and Q-Learning algorithms were also learned (i.e., 

adjusted) based on the idea of “memory of errors” (Herzfeld et al., 2014). This experience-

based adjustment of the parameters associated with a learning mechanism (in this case the 

learning rate) constitutes a form of “meta-learning” (i.e., learning about learning), which is 

arguably the first of its kind in LIDA.  

 

For more information on sensorimotor learning and the SMS, including computational 

experiments, see Dong and Franklin (2015a; 2015b) and Dong et al. (2015). 

5.7 Spatial Learning 

Spatial learning involves the creation and maintenance of cognitive maps (see Spatial Memory 

in Section 2.2.3). Cognitive maps encode spatial information about an agent’s environment, and 

its orientation within that environment, enabling localization and route planning.  

 

                                                
9 Compare “action-value functions” (Sutton & Barto, 2018). 
10 This approach is referred to as epsilon-greedy in the RL literature (Sutton & Barto, 2018). 



Madl et al. (2016) defined the processes involved in the construction and learning of cognitive 

maps. The constructive responsibilities are divided among five structure building codelets 

(SBCs)11. A “Map Structure SBC” creates new cognitive maps in the CSM as a regular, grid-like 

node structure comprised of locally connected place nodes (see Figure 3). A “Boundary SBC” 

removes links from previously constructed cognitive maps when boundaries are recognized that 

prevent traversal between any two locations associated with place nodes. A “Object-Place SBC” 

creates links from recognized objects to place nodes in the cognitive maps. A “Localization 

SBC” creates or updates links between the “self” PAM node and place nodes in the cognitive 

map based on the agent’s belief about its current position in the environment. Finally, a “Map 

Correction SBC” updates existing cognitive maps (adding/removing links) whenever a location is 

revisited and updates are needed to reflect the changed environment. Spatial Memory learns 

new (or reinforces existing) cognitive maps whenever parts of a cognitive map are received by 

Spatial Memory from the conscious broadcast.   

 

For more information on spatial learning and Spatial Memory in LIDA, including computational 

experiments, see Madl et al. (2016; 2018). 

5.8 Language and Protolanguage Learning 

Language learning can be divided into language comprehension and language production. 

These can be further sub-divided by communication media: oral, written, gestural, etc. To date, 

very little attention has been focused on language learning in LIDA. This can be explained, in 

part, by the fact that language learning builds on most (if not all) of the other learning 

mechanisms that have been described in this paper. CMattie and IDA (Franklin, 2000) – agent 

precursors of LIDA – communicated with humans using natural language over email; however, 

CMattie and IDA’s language comprehension and production abilities were hand-engineered 

rather than learned.   

 

Ait Khayi and Franklin (2018) represented our first attempt at modeling language learning (more 

specifically, “protolanguage” learning) in LIDA. The paper presents a conceptual explanation 

and computational simulation of how an infant vervet monkey could learn associations between 

distinct “alarm calls” and the meanings of those calls. The alarms studied were “vocalizations” 

by an adult vervet monkey (the infant’s mother) in the presence of various classes of predators 

(eagles, leopards, and snakes). Three kinds of meaning – referential (i.e., the class of predator), 

affective (i.e., the mother’s emotional response), and behavioral (i.e., the mother’s escape 

action) – were learned by the infant by observing its mother’s behaviors following each alarm 

call. The learning modeled in this paper is perceptual in nature, based on event structures 

created by custom structure building codelets. Language production was not covered in this 

paper.  

 

For additional information on their implementation and results, see Ait Khayi and Franklin 

(2018). 

                                                
11 The implementation details and low-level mechanisms underlying these SBCs have been excluded 
from this paper. Interested parties should review Madl et al. (2016). 



6 Future Work 

Our goals for this paper were (1) to convey a deeper understanding (and appreciation) of LIDA 

and its many learning mechanisms, and (2) to provide a roadmap for future work. In service of 

the first goal, we have elaborated on the LIDA conceptual model (in Section 2) and many of its 

learning mechanisms (in Section 5). We have explored LIDA’s conceptual commitments that are 

pertinent to learning (in Section 3), as well as general concerns related to learning in LIDA (in 

Section 4). In this final section, we will fulfill the paper’s second goal by outlining specific areas 

where opportunities may exist for additional work.  

 

Table 2 identifies topics in learning that need additional exploration; however, it is by no means 

a complete list. We briefly explain each topic in the text that follows.  

 

Topics for Future Work Associated Learning Type(s) 

Action Expectations in Non-Deterministic Environments 
• attentional (expectation codelets) 

• procedural (enhanced schemes) 

Affordances 
• perceptual (recognizing affordances) 

• SBCs (affordance categorization) 

Alarms 
• motivational (“panic” feelings) 

• perceptual (alarm conditions) 

Automatization • procedural (behavior streams) 

Behavior Streams • procedural 

Built-In Feelings with Learned Receptive Fields? • motivational 

Consolidation and the Emergence of Semantic Knowledge • declarative 

New Motor Plan Templates (MPTs) • sensorimotor 

Observational Learning and Imitation 

• declarative 

• procedural 

• sensorimotor 

Scheme Generalization 

• perceptual (recognizing categories) 

• procedural (“parameterized” schemes) 

• SBCs (categorization) 

Simulators, Generative Models, and Mental Imagery 
• perceptual (generative models) 

• SBCs (generative processes) 

Table 2 – Topics for future work in learning. In the right column we have speculated on the types of learning that may 
be involved. 

6.1 Action Expectations in Non-Deterministic Environments 

Recall from Section 2.2.4 that expectation codelets influence a LIDA agent’s attention following 

action selection, which, among other things, is critical for efficient procedural learning (see 

Section 5.5). Ideally, expectation codelets will bias an agent’s attention towards cognitive 

content (in the CSM) that is both relevant and informative. Relevant, in this context, means 

aspects of the environment that were likely influenced by the execution of the selected action. 

Informative refers to surprising, or unpredicted, outcomes that present opportunities for the 



agent to learn something new. Unfortunately, the evaluation of these criteria is much more 

difficult in non-deterministic environments. 

 

Non-deterministic environments contain sources of inherent, or apparent12, randomness, and 

agents faced with such environments will likely observe different outcomes after executing the 

same action from what appears to be the same context. LIDA agents may learn schemes for 

each of these outcomes, resulting in sets of schemes with the same context and action, but 

different expected results (and possibly base-level activations). Since expectation codelets only 

have access to a single expected result, they are unaware of the full breadth of possible 

outcomes for an action in a given situation. This leads to a myopic determination of relevance 

and informativeness based solely on one possible outcome and its likelihood. 

 

To address this issue, the LIDA conceptual model may need to be enhanced. One solution 

would be to update the scheme data structure so that a scheme’s expected result reflects all 

known outcomes and their associated likelihoods. In other words, all schemes with the same 

context and action are collapsed into a single scheme with a composite expected result. The 

resulting “outcome likelihood distribution” could be used by expectation codelets to make more 

informed decisions about which content deserves attention. Note that novel (unprecedented) 

outcomes could be identified by their absence from this likelihood distribution. 

6.2 Affordances 

Gibson (1979) defined affordances as a complementary relationship between an agent and its 

environment, characterized by what the objects, or situations, in that environment “offer”, 

“provide”, or “furnish” that agent. Affordances are not merely physical properties possessed by 

objects within the environment (e.g., rigidness, flatness, etc.), but emerge with respect to both 

the capabilities of an agent and its current goals. For a person, a stone could be a weapon or a 

paperweight depending on the situation at hand. For a lizard, that same stone may afford 

shelter from a storm or a hiding place from a predator. While humans and many non-human 

animals appear capable of effortlessly perceiving affordances (see Jamone et al., 2016), it 

remains an important open research question how affordances could be learned in a LIDA 

agent. 

6.3 Alarms 

Recall from Procedural Memory in Section 2.2.3 that schemes are typically activated based on 

the contents of a conscious broadcast. In exceptional circumstances, for example those that 

require an extremely rapid response, schemes can be activated directly from a percept, 

                                                
12 Non-determinism may be the result of inherent randomness (e.g., a slot machine) or apparent 

randomness due to partial observability (see Russell & Norvig, 2016). For LIDA agents, the 

conscious broadcast will contribute to the partial observability of many environments, as it is a 

source of partial information by design. 

 



bypassing consciousness. For example, when driving a vehicle, we are occasionally faced with 

other drivers that “slam on their brakes” or “cut us off”, forcing us to rapidly react to avoid an 

accident. In such cases, the conscious realization of the danger that lead to our rapid reactions 

may come during, or after, the execution of those actions. We call these unconsciously selected 

and executed actions alarms, following Sloman (1998; 2001). 

 

Mechanisms for learning alarms in LIDA are currently unknown. Minimally, both perceptual and 

motivational learning will be needed13: perceptual learning to (preconsciously) recognize 

imminently dangerous events that require rapid and immediate action; motivational learning to 

associate interpretative feeling nodes (e.g., “panic” feelings) with these dangerous events (e.g., 

the sudden appearance of an obstacle when driving), and to learn strong incentive saliences 

that facilitate the rapid recruitment of schemes and influence Action Selection. Alarms may also 

depend on procedural and sensorimotor learning, as both alarm schemes and MPTs must exist 

that allow the selection and execution of alarms. 

6.4 Behavior Streams (Action Plans) 

Behavior streams are associated with LIDA’s implementation of action plans. Ramamurthy et al. 

(2001) stated that a behavior stream is a “partially ordered plan which guides execution of 

behaviors (plan operators) so as to effect the required transition from the initial state to the goal 

state” (p. 7). Behavior streams are similar in kind to Drescher’s composite actions. Drescher 

(1991) stated that “a composite action is defined with respect to some goal state; it is the action 

of bringing about that state…. The means are given by chains of schemas that lead to the goal 

state from various other states” (p. 59). To the best of our knowledge, there have been no 

attempts to explain how behavior streams could be learned in IDA or LIDA; therefore, they 

represent a significant opportunity for much needed future work. We expect that most of the 

necessary enhancements will be in Procedural Memory. 

6.5 Automatization 

In Section 6.4 we mentioned that sequences of instantiated schemes (i.e., behaviors) can be 

integrated into action plans that we call behavior streams. With increased proficiency and 

predictability, these behavior streams can become automatized, such that each subsequent 

behavior in a behavior stream can be selected without conscious intervention. This 

automatization supports the conservation of an agent’s limited attentional resources and 

facilitates the parallel execution of behavior streams. 

 

Negatu (2006) fleshed-out significant portions of the automatization process for IDA, LIDA’s 

precursor. Unfortunately, many of the architectural components that existed in IDA do not have 

clear analogs in LIDA. Additional work is needed to translate IDA’s implementation of 

                                                
13 Franklin et al. (2016) stated “Learning alarms, that is, learning to bypass attention, is a form of 
attentional learning” (p. 32). While it’s true that alarms bypasses consciousness, we now question 
whether this involves attentional learning. It may be possible to model this behavior simply by allowing the 
unconscious instantiation of schemes from content in PAM (or the CSM). 



automatization to LIDA, and to fill in any conceptual gaps where irreconcilable differences are 

discovered. We currently believe that LIDA’s Action Selection module will need to support new 

triggers that will initiate the continued selection of behaviors in a currently active automatized 

behavior stream14. Procedural learning will be needed to model the “over-learning” of behavior 

streams that will trigger this mode of action selection.  

6.6 Consolidation and the Emergence of Semantic Knowledge 

Recall from Section 5.2 that declarative learning relies on an offline consolidation process that is 

responsible for transforming non-decayed away episodes in TEM into autobiographical 

memories and semantic knowledge in Declarative Memory. Modified versions of Sparse 

Distributed Memory (SDM) (Kanerva, 1988) have been used as the basis for most of LIDA’s 

TEM and Declarative Memory implementations, and, by extension, LIDA’s consolidation 

process. Ramamurthy and Franklin (2011) noted that SDM is attractive for modeling many 

aspects of human memory systems, such as interference and forms of “fringe” consciousness 

(Mangan, 1993) like “knowing that one does not know something” and the tip-of-the-tongue 

phenomena.  

 

While SDM has received a great deal of attention, additional work is needed to integrate SDM-

based TEM and Declarative Memory with other LIDA modules. MCR vectors (Snaider & 

Franklin, 2012; 2014a; Agrawal et al., 2018) are one promising direction that may reduce (or 

eliminate) the need to map SDM representations to, and from, other cognitive content; however, 

the exploration of MCR vectors and the implementation of Vector LIDA (Snaider & Franklin, 

2014b) are not yet complete.  

 

Another declarative learning topic needing more exploration is the emergence of semantic 

memories (over time) from episodes. While we have explored “forgetting” (D’Mello et al., 2006c) 

using SDM, we have not studied the emergence of semantic memories in depth. Work is 

needed to verify that interference and decay are sufficient to explain the genesis of semantic 

knowledge.  

 

Finally, triggers for the offline consolidation process have not been explored. In animals, 

consolidation, though still poorly understood, appears to coincide with portions of the sleep 

cycle. It is not clear what life events should trigger consolidation in LIDA-based software agents, 

and at what frequency of occurrence. 

6.7 Built-In Feelings with Learned Receptive Fields? 

In Section 5.3, we contended that a LIDA agent’s feeling nodes must be built-in (never learned). 

In many cases, it’s clear how evolutionary processes could have endowed biological agents with 

innate feelings and their corresponding receptive fields (i.e., sources of activation); for example, 

                                                
14 By “continued selection” we mean the selection of behaviors in a behavior stream based on the earlier 
selection of their immediate predecessors in a stream. By “active” we mean instantiated behavior streams 
that have not yet decayed from Action Selection. 



feelings of hunger and satiety could have genetically predetermined sources of activation 

originating from “sensors” monitoring an agent’s digestive system. Similarly, it would not be 

difficult to engineer a LIDA-based agent with built-in “hunger” and “satiety” feeling nodes that 

are activated based on the energy remaining in the agent’s battery. It’s much more difficult to 

explain how a feeling like shame is innate because it appears to be activated by learned events; 

for example, violations of cultural norms may result in feelings of shame. This leads to the 

following chicken-and-egg problem: How can innate or built-in feelings receive activation and be 

associated with events, if they rely solely on those events to receive activation? It’s likely that 

most cultural norms are learned rather than innate (since they differ across cultures), so how is 

shame activated initially? It’s clear how the receptive field of shame could expand to include 

learned cultural norms; however, there must be something not learned that initially activates the 

feeling, providing the basis for later generalization. At present, we do not have a satisfactory 

answer for this question, but it merits careful study, as it is a gap in our current understanding of 

how motivational learning works in LIDA. 

6.8 Simulators, Generative Models, and Mental Imagery 

Barsalou (1999) stated that “the primary goal of human learning is to establish simulators”, 

which he defined as “the knowledge and accompanying processes that allow an individual to 

represent… an entity or event” (p. 587). Simulators are generative processes that can construct 

limitless simulations of the concepts they represent. When simulations come to consciousness 

they are referred to as mental images.  

 

This generative aspect of perceptual learning should be accounted for in LIDA, as there is 

substantial evidence that humans (and likely other animals) routinely make use of conscious 

(and possibly preconscious) mental simulations in support of cognitive processes such as 

language comprehension (Zwaan et al., 2002; Bergen et al., 2007), prediction (Moulton & 

Kosslyn, 2009), problem solving (Shaver et al., 1974; Qin & Simon, 1992; Clement, 1994), and 

mental rehearsal (Driskell et al., 1994; Keller, 2012). While we have just begun to explore 

LIDA’s counterparts to Barsalou’s simulators and the phenomena of mental imagery, we 

currently believe that the perceptual symbol generalization processes described in Section 5.4 

may need to learn generative models for each object, entity, concept, etc., (in PAM) that can be 

utilized by SBCs to generate quasi-sensory instantiations of those objects, entities, concepts, 

etc. 

6.9 Scheme Generalization 

Recall from Section 2.2.3 that schemes are data structures in Procedural Memory that specify a 

context, action, and expected result. Also recall that any of these components may be 

parameterized with variables that serve as placeholders allowing numerous instantiations of a 

scheme. For example, an agent may have a scheme (uninstantiated) for picking up “any cup”, 

where “any cup” is represented by a {CUP} variable. Furthermore, the {CUP} could be picked up 

with either the agent’s left or right {HAND}. When these variables are bound by Procedural 

Memory during instantiation, {CUP} may be replaced by a particular “Coffee Cup” and {HAND} 



by the agent’s “Right Hand”. Both uninstantiated and instantiated version of this scheme are 

illustrated in Figure 13.  

 

 
Figure 13 – Scheme Instantiation. The uninstantiated scheme (top) has unbound variables for {CUP} and 
{HAND}. The instantiated scheme (bottom) replaces each unbound variable with a specific value; in this case, 
{CUP} is replaced by “Coffee Cup” and {HAND} is replaced by “Right Hand”. 

How these scheme variables are learned during procedural learning is currently unknown; 

however, one approach (that may or may not be viable) would be to let categories serve as the 

unbound variables. For example, if an agent learns an SBC that associates a “cup” category 

with all manner of cups, and another SBC that associates a “hand” category with cognitive 

content representing the agent’s left and right hands, then schemes containing these categories 

could be learned from the conscious broadcast. Schemes that contain category nodes in 

contexts, actions, and/or results could later be instantiated by binding content in the conscious 

broadcast, belonging to those categories, to the content in the schemes corresponding to those 

categories. 

6.10 Observational Learning and Imitation 

Wolpert et al. (2011) stated 

 

An important source of information in the development of motor skills is the observation 

of others [emphasis added]…, many studies have provided evidence that watching 

another person perform an action engages sensorimotor representations of the 

observed action…. It is well established that people can learn high-level information 

about what movements to make, and in what sequence, by observing actions. (p. 744) 



 

Closely related to this idea of “observational learning” is learning through imitation. Meltzoff and 

Moore (1994) found that six-week-old human infants imitated tongue protrusions and mouth 

opening behaviors demonstrated by adults. Hanna and Meltzoff (1993) found that human 

toddlers (aged 14-18 months) imitated their peers’ interactions with various objects and toys. 

There is also a growing body of evidence that imitation is common in a wide range of non-

human animals; for example, rodents (Heyes & Dawson, 1990), chimpanzees (Myowa, 1996), 

birds (Akins & Zentall, 1998), and cephalopods (Fiorito & Scotto, 1992). Based on this, and 

other research, it appears that many animals are capable of imitation from a very early age, and 

they have built-in motivations to do so. In the machine learning community, there has also been 

a great deal of interest in the idea of learning by demonstration, especially for robotics (Argall et 

al., 2009), and reinforcement learning algorithms have recently been proposed (e.g., Hester et 

al., 2018) that use demonstrations to greatly accelerate learning and improve performance. 

 

We have yet to flesh-out how observational learning and imitation could be realized in LIDA; 

however, there are several avenues of exploration. (1) Declarative memories could be learned 

through observation that provide agents with semantic knowledge about cultural norms and 

other forms of behavioral “scripts” (see Gioia & Poole, 1984). (2) The discovery of “mirror 

neurons” in primates, which are excited both when performing an action and observing the 

same action performed by others, suggests the possibility of a “simulation-based approach” 

(see Gallese & Goldman, 1998) to procedural and sensorimotor learning. This could be 

augmented with a “theory of mind” (see Friedlander and Franklin, 2008) supporting the 

inference of purpose and intentions from the actions of observed agents. 

6.11 Learning New Motor Plan Templates (MPTs) 

Dong and Franklin (2015b) described a LIDA agent that learned to push boxes in a simulated 

3D environment. The agent came equipped with a box pushing MPT composed of subtasks for 

finding, pushing, and unwedging. Furthermore, each subtask was designed to receive rewards 

based on various events, such as the fulfillment of built-in “sub-goals”15. For example, the 

finding subtask was designed to associate a reward of +3 with a forward movement motor 

command if the agent perceived it was “near a box” during forward motion; otherwise, the motor 

command received a −1 reward.  

 

We have yet to explore how such an MPT could be learned by a LIDA agent, and there are 

several significant challenges that need to be addressed. First, we must identify the processes 

and events responsible for initiating the creation of a new MPT. Next, we need a learning 

mechanism capable of decomposing a high-level goal into supporting subtasks and wiring these 

up appropriately in the new MPT. This learning mechanism must also be able to identify 

relevant MPT reward conditions (e.g., corresponding to the fulfillment of sub-goals) that can 

serve as the basis for optimizing motor performance. Finally, and perhaps most importantly, the 

interactions between the Sensory Motor System, Procedural Memory, various modes of Action 

                                                
15 As described in Section 5.6, MPTs use the contents of the conscious broadcast to determine whether a 
reward condition has occurred; hence, this is consistent with the Conscious Learning Hypothesis. 



Selection (e.g., deliberative and consciously-mediated), and workspace dynamics (e.g., goal 

contexts and motivations) need to be explored. 
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