
Second Annual Conference on Advances in Cognitive Systems Poster Collection (2013) 149-166

© 2013 Cognitive Systems Foundation. All rights reserved.

Cortical Learning Algorithms with Predictive Coding
for a Systems-Level Cognitive Architecture

Ryan J. McCall RMCCALL@MEMPHIS.EDU
Stan Franklin FRANKLIN@MEMPHIS.EDU
Fedex Institute of Technology 301, The University of Memphis, Memphis, TN 38152 USA

Abstract
Human-level intelligent agents must autonomously navigate complex, dynamic, uncertain
environments with bounded time and memory. This requires that they continually update a
hierarchical, dynamic, probabilistic (uncertain) internal model of their current situation, via
approximate Bayesian inference, incorporating both the sensory data and a generative model of its
causes. Such modeling requires suitable representation at multiple levels of abstraction from the
subsymbolic, sensory level to the most abstract conceptual representation. To guide our approach,
we identify principles for perceptual representation, perceptual inference, and the associated
learning processes. Based on these principles, a predictive coding extension to the HTM Cortical
Learning Algorithms (CLA), termed PC-CLA, is proposed as a foundational building block for the
systems-level LIDA cognitive architecture. PC-CLA fleshes out LIDA’s internal representations,
memory, learning and attentional processes; and takes an initial step towards the comprehensive
use of distributed and probabilistic (uncertain) representation throughout the architecture.

1. Introduction
In this work we describe how modern treatments of perception might be integrated with a broad
systems-level cognitive architecture, LIDA. This work is presented in the context of the LIDA
model; however, it does not depend on the commitments of this model (Franklin, Strain, McCall,
& Baars, 2013). As such, much should be widely applicable to other cognitive architectures. We
view solutions to the problem of perception or internal representation as central to building
intelligent machines, since accurate modeling of the world underlies many of the faculties needed
for generally intelligent agents, including action selection, motivations or goal-directedness,
higher-level cognition, etc.
 The outline of the paper is as follows: We first review several inspirational models of
perception and data analysis. Some, as models of cortical computation, have biological
inspiration to their credit. Others feature equally compelling information-theoretical and
mathematical justifications. We next identify key principles, across these various approaches, to
guide the research and development of networks capable of modeling complex, “real-world”
sensory data. While such an approach might have more narrow applications to pattern recognition
problems, we focus here on PC-CLA’s potential application as a building block for the
implementation of the current representations, memory, and learning and attentional processes of
a systems-level cognitive architecture. Goertzel (2012) also discusses integrating symbolic and
subsymbolic processing in a cognitive architecture and favors a tight integration between separate
algorithms for the two. In contrast, we view PC-CLA as a single algorithm for integrating both
the symbolic and the subsymbolic. After identifying these principles, we then focus on the
umbrella-like free-energy principle and its application to model inference for complicated
hierarchical dynamic models in an approach termed Generalized Filtering (GF). GF provides the
theoretical guide for the proposed PC-CLA. Next, we give a brief description of the LIDA model

R. J. MCCALL AND S. FRANKLIN

 150

of cognition and discuss some of the theoretical issues surrounding the integration of PC-CLA
with LIDA. Finally, we describe the initial implementation of PC-CLA, report on some initial
tests, and discuss directions for future work.

2. Models of Perceptual Analysis and Learning
Several existing theories of perception and pattern recognition provide inspiration and motivation
for the PC-CLA model. Hierarchical Temporal Memory (Hawkins & Blakeslee, 2004; Hawkins,
Ahmad, & Dubinsky, 2011) postulates that the neocortex builds a model of the world using a
spatiotemporal hierarchy of basic computational units, each performing the same learning and
inference algorithm, which entails storing co-occurrence patterns and then sequences of such
patterns. Rao & Ballard’s (1999) “predictive coding” models the visual cortex as a hierarchical
network with units at each hierarchical level continually predicting the responses the units in he
next lower level via top-down, feedback connections. Through feed-forward connections the
lower level units send back the errors between the top-down predictions and the actual activity.
These error signals are then used to correct the higher-level representation of the cause of the
input signal, ideally improving future top-down predictions. Generalized Filtering (Friston et al.,
2010) is an online recursive Bayesian estimation scheme1 for nonlinear state-space models in
continuous time. It provides a method for estimating the posterior (or conditional) probability
density functions on the hidden states (current representations) and unknown parameters (e.g.,
connections implementing memory) generating the observed input data (e.g., audio signals or
human kinematics). Finally, we mention, but will not focus on, some closely related theories
including HMAX (Riesenhuber & Poggio, 1999), Leabra (O’Reilly & Munakata, 2000), DeSTIN
(Arel, Rose, & Coop, 2009) and rRNN (Bitzer & Kiebel, 2012).
 Taken together, these theories call for the use of hierarchy, non-linear dynamics, approximate
Bayesian inference, and biological inspiration from the primate neocortex to confront the problem
of data analysis or data modeling, a problem we view as central to the development of intelligent
agents. Based on these ideas, we next identify guiding principles for the PC-CLA model.

3. Perceptual Principles for Systems-Level Cognitive Architectures
Here we identify key principles for perceptual representation, processing, and learning in
cognitive systems. We focus on ideas supported by evidence from neurobiology and neuroscience
as well as information theory and mathematics. What evidence is there that common perceptual
principles might exist? Mountcastle (1978) first proposed that a common function is performed
throughout the entire neocortex. In support of this are experiments that successfully rerouted
sensory stimuli to foreign cortical areas in mammals suggesting neocortical adaptability across
modalities (e.g., Métin & Frost, 1989). Bedney et al. (2011) found congenitally blind humans
perform language processing in their visual cortices during verbal tasks, and concluded that so-
called “visual” cortical areas could take on language processing. Finally, several researchers have
suggested that the neo-cortex may be implementing a large number of similar, hierarchically
arranged “cortical circuits” (e.g., Douglas & Martin, 2004; Felleman & van Essen, 1991; Phillips
& Singer, 1997).

3.1 Autonomy and Agency
Autonomous agents require online learning without stoppage or interruption. However, this still
allows for a human-like developmental period, in which the agent learns autonomously from its
environment. In addition, agents must be able to learn autonomously without the aid of labeled

1 Recursive Bayesian estimation is an approach for estimating an unknown probability density function recursively
over time using incoming measurements and a mathematical process model.

CORTICAL LEARNING ALGORITHMS WITH PREDICTIVE CODING
FOR A SYSTEMS-LEVEL COGNITIVE ARCHITECTURE

 151

data, i.e., to perform unsupervised learning.

3.2 Hierarchical decomposition

Hierarchical decomposition allows a computational task to “be reduced to a small number of
activities at the next lower level so the computational cost of finding the correct way to arrange
those activities [...] is small” (Russell & Norvig, 2010). In the context of internal representations,
a multitude of representations can be constructed from different combinations of the same
representations in the next lower level. This achieves substantial pattern reuse and such
decomposition can be repeated recursively. Hierarchical decomposition via nonlinear operations
is a major foundation of the “deep learning” movement (Bengio, 2009).

3.3 Sparse Distributed Representation

With distributed representations, a number of units represent each pattern, and each unit can
participate in the representation of many patterns. Each unit in a distributed representation can be
thought of as representing a single “microfeature” (Hinton, McClelland, & Rumelhart, 1986),
with the information being encoded by particular combinations of such features, and not by a
single bit or feature. With distributed representation, the explicitness in representation is lost;
however, it is more efficient than the localist one. Additionally, similar elements have similar
representations, because they may share multiple features.
 The idea of sparse representation can be traced to the infomax principle (Linsker, 1990),
which suggests the brain maximizes the mutual Shannon information between sensations and
representations. Similarly, the sparse coding hypothesis (Olshausen & Field, 1996) suggests that
sensory patterns are represented by the strong activation of a relatively small set of neurons.
Kanerva (1998) demonstrated that high-dimensional sparse representations are highly unique and
noise robust.

3.4 Prediction

Modern views of perception see the human brain as a constructive or predictive organ actively
generating predictions of its sensory inputs using a generative model2. Bar (2009) describes a
“proactive” brain continuously generating predictions anticipating the relevant future. HTM
theory (Hawkins, Ahmad, & Dubinsky, 2011) suggests that temporal predictions are useful
because they help produce temporally invariant representations and can help with the recognition
of noisy temporal patterns. Here we distinguish top-down prediction, a prediction coming from a
given hierarchical level and predicting the pattern of the next lower level, from temporal
prediction, one coming from a given level and predicting future patterns of the same level.

3.5 Approximate Bayesian Inference

A close correspondence has been shown between human decision making and judgments made by
Bayesian decision theory, which defines optimal behavior in uncertain environments with noisy
signals (Kording & Wolpert, 2004). Lee & Mumford (2003) suggested the visual cortex performs
hierarchical Bayesian inference where “top-down contextual priors and bottom-up observations
[...] implement concurrent probabilistic inference.” Knill & Pouget (2004) popularized the
“Bayesian coding hypothesis” suggesting that the brain represents information probabilistically,
by coding and computing with probability density functions or approximations to them.

2 A generative model is a model for probabilistically generating observable data from some distribution, typically given
some hidden parameters.

R. J. MCCALL AND S. FRANKLIN

 152

3.6 The Free-Energy Principle

The free-energy principle (Friston, 2010) is a theory of brain function that accounts for action,
perception and learning. The principle unifies a number of existing theories including predictive
coding, the Bayesian coding hypothesis, the infomax principle, associative plasticity, optimal
control, and value learning. The principle suggests that the brain changes to minimize its
(variational) free energy, an upper bound on the surprisal3 in sampling sensory data, given an
approximate probabilistic model of the data. If an agent minimizes free energy, it implicitly
minimizes surprisal since free energy is an upper bound. Unlike surprisal, free energy can be
evaluated because it is a function of the agent’s sensory states and its approximate internal
probabilistic model of the causes of the sensory data.

4. Applying the Free-Energy Principle

Here we overview the application of the free-energy principle to a hierarchical dynamic
generative model showcasing an approach termed Generalized Filtering (Friston et al., 2010).
Attractively, Generalized Filtering makes biologically plausible assumptions (Feldman & Friston,
2010) and conforms to the free-energy principle. It operates online and unsupervised, inferring
model states (current representations), parameters (memory), and hyperparameters
(uncertainties). The approach can also be viewed a form of hierarchical Bayesian inference.
Embodying our identified principles, we adopt Generalized Filtering as a theoretical guide for
PC-CLA.
 Generalized Filtering is a method for the approximate Bayesian inversion (estimation) of a
statistical model with a quite sophisticated and general form. Specifically, Generalized Filtering
considers a hierarchical, dynamic, generative model comprised of hidden state variables, the
dynamics of which can be influenced by an appropriate non-linear function (equation of motion).
Furthermore, at each level, these hidden state variables may be subject to (random) stochastic
fluctuations representing the variables’ statistical uncertainty. We will discuss uncertainty in terms
of precision, the multiplicative inverse of the variance4. High statistical precision implies a
probability distribution that is highly concentrated about its mean suggesting that the mean is
known with a high degree of precision in the ordinary sense. In terms of statistical model
inference, precision is a hyperparameter to be estimated from the data. We will refer to such
hyperparameters that parameterize estimations of precision as precisions. Precisions in
Generalized Filtering’s form of generative model may themselves undergo state-dependent
changes in amplitude and can have arbitrary autocorrelation5 functions influencing their time
evolution. An important aspect of this model is its hierarchical form, which induces top-down
priors (predictions) into lower levels. Figure 1 illustrates these features for one hierarchical level.
 The next key feature of Generalized Filtering is the representation of internal states and
hidden parameters in a generalized coordinate system. That is, one where the coordinates describe
the configuration of the system relative to some reference configuration under the constraint that
the set of coordinates uniquely defines the configuration of the system relative to the reference
configuration. For example, the position of the end of a pendulum can be defined in terms of a
coordinate that represents the angle of the pendulum’s arm from its stationary position, which is
the reference configuration. This simplifies calculations about the arm’s dynamics. Generalized
Filtering uses generalized coordinates of motion where the coordinates include the values of the
model variables, and the infinite set of the higher order derivatives of each variable’s equations of
motion. In this system a point can be viewed as encoding a variable’s current trajectory since

3 Surprisal is a measure of the information content associated with the outcome of a random variable.
4 For a multivariate distribution, the precision takes the form of a precision matrix, which is the matrix inverse of the
covariance matrix, if such an inverse exists.
5 Autocorrelation is the correlation between a signal and itself at some offset in time as a function of the offset.

CORTICAL LEARNING ALGORITHMS WITH PREDICTIVE CODING
FOR A SYSTEMS-LEVEL COGNITIVE ARCHITECTURE

 153

Figure 1. A single hierarchical level in Generalized Filtering. The dashed lines bound one level with the
lower level to the left and the higher level to the right. The level’s state variables are depicted by the blue
boxes. Two non-linear functions and their parameters (green) govern both top-down and dynamical priors
(or predictions). Two corresponding sets of precisions (purple) affect the hidden states and vice versa. The
dynamics of precisions are governed by some autocorrelation function.

future variable values can be extrapolated using the higher order terms. Concretely, if x represents
a set of state variables, then such a coordinate system is parameterized by . With
generalized coordinates of motion, instead of simply estimating the conditional density of hidden
states (and parameters), one optimizes the conditional density on their generalized motion to an
arbitrarily high order. In practice, this can be truncated to a relatively low order.
 The third main feature of Generalized Filtering is a fixed-form, Gaussian, approximation to
the internal probabilistic representations of the causes of sensory data. While the Gaussian
distribution has several advantages, a critical one is that, when free energy is minimized, the
conditional covariance of hidden states becomes an analytic function of the conditional mean.
This implies that only the mean need be optimized since the covariance can be derived from it. It
also simplifies the mathematics of model optimization to a single ordinary differential equation
describing the motion of the conditional mean of states (Friston et al., 2010).
 Given the above form of a generative model, the treatment of variables in generalized
coordinates of motion, and Gaussian assumptions on the form of probabilistic representation of
the causes of data, Generalized Filtering prescribes a set of ordinary differential equations,
governing recognition dynamics, that update the conditional density on the model states (e.g.
hidden state variables), parameters (e.g., weighted links), and hyperparameters (e.g., precision
parameters). Next, we discuss these equations conceptually.

4.1 State Optimization via Prediction Error Minimization

The update equation for the model’s hidden state suggests that instances of two kinds of
computational units send and receive messages at each hierarchical level (Figure 2). State units
(blue) encode the mean vector of the multivariate Gaussian distribution over unknown states
generating sensory data, while error units (red) encode prediction error. The activity of each error
unit is a function of state units (or the input), while state unit activity is a function of error units.
State units provide top-down and temporal predictions to same-level and lower-level error units.
Hierarchical inference requires only the prediction error from the lower level, which drives the
conditional expectations toward a better prediction, so as to minimize the prediction error in the
level below. This recurrent message passing between hierarchical levels and its processing
optimizes free energy by minimizing prediction error, and constitutes perceptual inference. It is
also known as (hierarchical) predictive coding (Rao & Ballard, 1999). Note that prediction errors
can be based on top-down predictions (rTD in Figure 2) or on temporal predictions (not shown).
Temporal prediction error would be based on a temporal prediction and the actual future state.

R. J. MCCALL AND S. FRANKLIN

 154

Figure 2. Hierarchical Predictive Coding. Each hierarchical level (dashed box) receives top-down
predictions, rTD, of the level’s current representation, r, of the input signal, y. Feed-forward pathways carry
errors (e.g., r–rTD) between the predictions and the actual activity. Errors (rTD–r) are used to correct the
current representation, r, and, hopefully, future top-down predictions, yTD. g represents a set of feedforward
connection weights and g-1 a set of feedback connection weights. Redrawn from Rao & Ballard (1999).

4.2 Parameter Optimization via Associative Plasticity
Parameter optimization6 may also reduce a model’s free energy. Parameters modulate the effects
of the nonlinear functions shown in Figure 1. In a computational network, a parameter would be
some connection between units, and its value would be the weight of a connection. GF supplies
parameter update equations similar to models of associative plasticity based on correlated pre-
and post-synaptic activity. The update has two forms: The structural parameter update is
illustrated in Figure 3a, and considers a currently active hidden variable at a given level (e.g.,
Level 2) as the connection’s source, and a currently active bottom-up prediction error variable as
the sink. Such an update changes future top-down predictions, to hopefully better minimize future
bottom-up prediction error. Figure 3b illustrates a dynamical update. Initially, there was a state
variable, p, active at time t from bottom-up prediction error. This update takes a state variable, q,
at the same level whose activity preceded q’s at time t – 1, and updates a dynamical connection
from q to p. At a future time t + n – 1, the re-activation of q produces a temporal prediction of p
(shaded), to hopefully minimize future prediction error. In either case, the parameter value is
updated as a function of 1) the product of the qth pre-synaptic input and post-synaptic response of
the pth error-unit, 2) the product of the parameter value and its function’s associated precision, and
3) a value-dependent decay, e.g., sigmoidal decay (Friston & Feldman, 2010, p. 8).

Figure 3. Structural and dynamical parameter updates. Both updates are performed in response to bottom-
up prediction errors (red). a) A structural update modifies (or adds) a structural connection (parameter),
from a higher to a lower level, which changes future top-down predictions, to minimize future bottom-up
prediction error. b) A dynamical update modifies (or adds) a dynamic connection between hidden state
variables in the same level changing future temporal predictions to also minimize future prediction error.

6 In Bayesian statistics, parameters are continually estimated and updated; they are not assumed fixed.

CORTICAL LEARNING ALGORITHMS WITH PREDICTIVE CODING
FOR A SYSTEMS-LEVEL COGNITIVE ARCHITECTURE

 155

4.3 Hyperparameter Optimization via Gain Control

GF also provides an update equation for the model’s hyperparameters that estimate the precision
of the mean encoded by a level’s hidden states. Such precisions weight the magnitude of their
associated prediction errors and are estimate from the state via prediction error (Figure 4).
Precision parameters change as a function of 1) the precision-weighted sum of squared prediction
error term, and 2) a decay in proportion to the current precision value. Such precision parameters
are thought to correspond to gain control, the control of synaptic gain or post-synaptic
responsiveness. Synchrony and neurotransmitters have been suggested as the neurobiological
implementation of gain control (Friston & Feldman, 2010, p. 8).

Figure 4. A single precision hyperparameter in a hierarchical predictive coding network. It is updated based
on the sum of squared bottom-up prediction (red) and a value-dependent decay (purple arrow). It modulates
the magnitude of the same prediction error signal from which it is estimated. Precisions can similarly exist
for temporal prediction errors at each hierarchical level.

 We have just described Generalized Filtering, an application of the free-energy principle to
complicated, hierarchical dynamic uncertain statistical models yielding update equations for
model states, parameters, and hyperparameters. We adopt GF as a theoretical guide for PC-CLA.
Next, we review the LIDA cognitive architecture leading up to PC-CLA, which is proposed as a
foundational building block for LIDA and provides detailed data structures and algorithms for
LIDA’s current representations, memory, and attention and learning processes.

5. The LIDA Model and its Cognitive Cycle

The LIDA model is a comprehensive, conceptual and computational model that covers a large
portion of human cognition while implementing and fleshing out Baars’ Global Workspace
Theory (1988). Early versions of the model have seen successful real-world applications
(Franklin, Keleman, & McCauley, 1998), while, more recently, the model has replicated some
experimental findings (Faghihi, McCall, & Franklin, 2012; Madl, Baars, & Franklin, 2011; Madl
& Franklin, 2012). The model and its ensuing architecture are grounded in the LIDA cognitive
cycle. The cycle is based on the fact that every autonomous agent (Franklin & Graesser, 1997), be
it human, animal, or artificial, must frequently sample (sense) its environment and select an
appropriate response (action). A cognitive cycle can be thought of as a cognitive “moment.”
Higher-level cognitive processes are composed of many of these cognitive cycles.
 LIDA hypothesizes a rich inner structure for its cognitive cycles (Franklin, Baars,
Ramamurthy, & Ventura, 2005). The cycle (see Figure 5) begins with sensory stimuli from
external and internal sources in the agent’s environment. Low-level feature detectors in Sensory
Memory begin the process of making sense of the incoming stimuli. These low-level features are
passed on to Perceptual Associative Memory where higher-level features, such as objects,
feelings, events, categories, relations etc. are recognized. These entities that have been recognized
preconsciously make up the percept that passes asynchronously to the Workspace, where a model
of the agent’s current situation is updated. This percept serves as a cue to two forms of episodic

R. J. MCCALL AND S. FRANKLIN

 156

memory, transient and declarative. Responses to the cue, called local associations, consist of
remembered events from these two memory systems that were associated with the various
elements of the cue. Besides the current percept, the Workspace contains recent percepts and
portions of the structures assembled from them that haven’t yet decayed away.
 A new model of the agent’s current situation is assembled from the percepts, the local
associations, and the undecayed parts of the previous model. This assembling process will
typically require structure-building codelets. These are small, special purpose processors, each of
which has some particular type of structure it is designed to build. To fulfill their task these
codelets may draw upon Perceptual Associative Memory, to enable the recognition of relations
and situations. They may also draw on the Conscious Contents Queue, which stores the conscious
contents of the past few seconds. The newly assembled model forms the agent’s understanding of
its current situation within its world. It has made sense of the incoming stimuli.

Figure 5. The LIDA Architecture and its Cognitive Cycle.

 For an agent operating within a complex, dynamically changing environment, this Current
Situational Model (CSM) may well be much too much for the agent to consider all at once in
deciding what to do next. It needs to selectively attend to a portion of the model, the most salient
portion. Portions of the CSM compete for attention. These competing portions take the form of
coalitions of structures from the CSM. Such coalitions are formed by attention codelets, whose
function is to try to bring certain structures to consciousness. When one of the coalitions wins the
competition, the agent has effectively decided on what to attend.
 One purpose of this processing is to help the agent decide what to do next. To this end, a
representation of the contents of the winning coalition is broadcast globally. LIDA’s multiple
modes of learning all occur continually, simultaneously, and online using the contents of
consciousness of each broadcast (Franklin & Patterson, 2006). Consciousness in LIDA refers to
functional consciousness; no assumption is made with regard to phenomenal consciousness.
While conscious contents are available globally, a primary recipient is Procedural Memory, which

CORTICAL LEARNING ALGORITHMS WITH PREDICTIVE CODING
FOR A SYSTEMS-LEVEL COGNITIVE ARCHITECTURE

 157

stores schemes, which are templates of possible actions including their contexts and possible
results. It also stores an activation value that attempts to measure, for each such template, the
likelihood that an action taken within its context produces the expected result. Templates whose
contexts intersect sufficiently with the contents of the conscious broadcast instantiate copies of
themselves with their variables specified to the current situation. Instantiated templates remaining
from previous cycles may also continue to be available. These instantiations are passed to the
action selection mechanism, which chooses a single action from one of them. The chosen
behavior then goes to Sensory-Motor Memory, where an appropriate algorithm, called a motor
plan, executes it. The relevant actuators affect the environment, and the cycle is complete.

6. Cortical Learning Algorithms with Predictive Coding for LIDA

Generalized Filtering provides a general-purpose, biologically plausible, Bayes-approximate
mathematical prescription for an advanced filtering network. We are interested in a computational
model and see promise in the computational HTM Cortical Learning Algorithms (Hawkins,
Ahmad, & Dubinsky, 2011), which integrate sparse distributed representation, clustering based on
temporal coincidence, the representation of high-order temporal dynamics, and online learning in
a single algorithm. However, not all of the features suggested by GF are implemented by the
Cortical Learning Algorithms (CLA) including 1) hierarchical prediction coding, the optimization
of states and structural (top-down) parameters based on prediction error minimization, and 2)
precision hyperparameters. While we have discussed precision parameters (hyperparameters)
theoretically we will not approach this aspect computationally in this work. Instead our aim is to
extend the CLA by incorporating hierarchical predictive coding, an approach we term the
Predictive Coding CLA (PC-CLA). This is a first step towards a long-term goal to develop a
network with the capacity to process a broad range of sensory signals, estimating complex models
of the form approached by Generalized Filtering from sensory data. While GF does not restrict
the types of state variables used, PC-CLA, following CLA, uses binary variables.
 Again, while PC-CLA is a data analysis algorithm, we also propose it here as a potential
building block for cognitive systems. As with the CLA, the algorithm is recursive, and can be
repeated in a large tree-structured hierarchy, possibly following Fuster’s (2006) outline of two
intertwined perceptual and executive memory hierarchies. We conjecture that, out of such a
network, we will be able implement the larger, more global, more cognitive features typically
addressed by LIDA and similar cognitive systems. Additionally, an agent built using a PC-CLA
network would have the capacity to deal with high-dimensional “real-world” sensory data in a
grounded manner (Barsalou, 1999). Currently, neither the CLA nor any other high-dimensional
pattern recognition algorithm has been implemented within LIDA for its perception.
 A number of aspects of PC-CLA correspond to previously conceived entities in LIDA: the
notion of hidden state variables and their values corresponds to the current representations in the
Current Situational Model of LIDA’s Workspace. The long-term synapse-like connections of PC-
CLA could potentially implement one or more of LIDA’s memories including Perceptual
Associative Memory, Procedural Memory, Declarative Memory, etc. PC-CLA’s learning
procedures are akin to LIDA’s structure-building codelets, which build new nodes, links, and
other representations in the Workspace. With this view, PC-CLA then suggests some general
structure-building codelets for proposing and reinforcing links. Structural links connecting hidden
units in neighboring hierarchical levels serve to implement memory for co-occurrence patterns,
and are used in producing top-down predictions. Similarly, dynamical links connecting hidden
units in the same hierarchical level are the foundations for temporal predictions.
 If PC-CLA were to incorporate precision parameters, then their update could be performed by
attention codelets concerned with the activity of prediction-error units and performing the
aforementioned update operation to estimate precision. Previously in LIDA, attention codelets did
not have such general concerns. Recall that Generalized Filtering suggested that precisions be

R. J. MCCALL AND S. FRANKLIN

 158

used to weight prediction errors. Feldman and Friston (2010) suggest that attention can be seen as
the “selective sampling of sensory data that have high precision in relation to the model’s
predictions.” In LIDA terms, this suggests that precision modulates the salience of current
representations. It also suggests that top-down predictions also contribute to salience as they can
create an attentional “bottleneck” by biasing particular representations, preventing others from
being expressed. LIDA has defined attention as the process of bringing content to consciousness
based on salience. PC-CLA then suggests that current salience involves: 1) prediction error that
updates current representations, 2) precision that weights prediction error, and 3) both top-down
and temporal predictions. Each is influential, in the short term, in determining which pattern,
representing the cause(s) of the sensory input, is expressed.

7. Computational Implementation

Building from the HTM Cortical Learning Algorithms (CLA) described by Hawkins, Ahmad, &
Dubinsky (2011), and incorporating the ideas of hierarchical predictive coding, we developed an
initial implementation of the PC-CLA. The algorithm, like CLA, is defined recursively allowing
for hierarchical arrangement whereby instances of the algorithm appear at each level, each
sending and receiving Boolean vectors. At the first level, the original input is processed, while
higher levels process the output of their immediately lower level. For best performance, input
patterns should be, on average, as uniformly distributed throughout the input dimensions as
possible. This constraint arises because the CLA is limited in its ability to produce more
distributed representations than it receives, and insufficiently distributed representations do not
enjoy the advantages of sparse high-dimensional spaces. “Natural” auditory and visual stimuli fit
this distribution requirement quite easily, while, for human-generated data, a preprocessing step is
often required to produce distributed inputs. While proposed for LIDA, due to PC-CLA’s
complexity, we first focus here on it as a stand-alone algorithm, not integrated with LIDA.
 PC-CLA adds the following to the CLA model: 1) Multiple hierarchical levels, 2) predictive
coding message passing involving the feed-forward passing of only prediction error between
levels, and 3) Being initially interested in visual data streams, we focus on a 2D arrangement of
receptive fields and internal elements.

7.1 Cortical Region

The description in this section applies to both the original CLA and PC-CLA unless otherwise
noted. To start, the fundamental data structure of the CLA is called the Cortical Region (Figure
6). A Cortical Region consists of a set of columns, which are based on the functionality of cortical
minicolumns. In this PC-CLA implementation, we focus on a square 2D column arrangement,
although other arrangements are possible. Each column is comprised of multiple cells (defined
below), and has one proximal dendrite segment, a functional approximation to a neuronal dendrite
segment. The proximal dendrite segments integrate the activity of artificial proximal synapses
(described later), implementing connections in close proximity to the column. Proximal synapses
can transmit the input activity received by the region.
 For each column, the input locations of its proximal synapses are modeled using a bivariate
(2D) Gaussian distribution. Figure 7 depicts a single column, its proximal dendrite segment, and
the segment’s proximal synapses. The activity of the proximal synapses on a proximal dendrite
segment determine its column’s overlap score7, a scalar measure of column activity from the
bottom-up input. Each column also has a boost attribute that weights the overlap score and is
based on the column’s recent history of activity. Boost is used to make under-utilized columns
more salient. Each column also has an activity state, which may take a value of inactive, not
sufficiently active to compete with other columns, competitive, sufficiently active to compete

7 The original CLA called both overlap score and boosted overlap score “overlap.” Here we distinguish between them.

CORTICAL LEARNING ALGORITHMS WITH PREDICTIVE CODING
FOR A SYSTEMS-LEVEL COGNITIVE ARCHITECTURE

 159

Figure 6. A single Cortical Region with 900 (30x30) columns, arranged in a 2D fashion, with each column
having 4 cells. Typical implementations have 1024–2048 columns.

with other columns, or active, competitive and having won a competition with its neighboring
columns to determine the most salient columns. A column’s activity state is based on its boosted
overlap score. For PC-CLA, the activity state also depends on the predicted column activation, a
scalar measure of salience based on current temporal predictions (see below) of the column’s
activity. Predicted column activation ensures predicted columns remain competitive during an
inter-column inhibition step (Step 2c below) since, in predictive coding, the column being
predicted effectively inhibits its receiving bottom-up input. A predicted column must remain
competitive because its cell(s) are likely encoding the current temporal context.

Figure 7. Left: A single column having four cells (gray). Each column has a single proximal dendrite
segment (blue) that integrates the activity of many proximal synapses (green). Right: A single cell with five
distal dendrite segments, which are depicted by the circles containing a step-function. Each segment has
multiple distal synapses, shown as open and filled blue circles. Each circle represents a possible connection
with a neighboring cell in the region. A cell becomes predictive whenever one or more segments become
active, while a segment’s activity depends on its synaptic activity (filled blue circles).

 Moving on, a cell (gray circles in Figure 7 left) is a representational unit belonging to exactly
one column. If a column is currently active, one or more of its cells may become active. Active
cells constitute the current representation of the temporal context. Long-term information about
context is encoded in CLA using a combination of distal synapses and distal dendrite segments.
Each distal synapse is a synapse that has a cell as its source, and has, as its sink, a distal dendrite
segment, which is connected to another cell, with the constraint that these two cells must be from
different columns. Distal dendrite segments maintain a set of distal synapses, and integrate the
synapses’ activity. Distal dendrite segments also have an activation threshold, measured in the
number of active synapses (explained shortly). If the number of active synapses is above this

R. J. MCCALL AND S. FRANKLIN

 160

threshold, the segment is considered active. Finally, each cell has multiple distal dendrite
segments (Figure 7 right) whose activity, in part, determines the cell’s state. Specifically, they
determine whether a cell state is predicted to become active in the future. Alternatively, cell state
may be active or inactive.
 All synapses, proximal or distal, have a source, a sink, a binary weight, and a permanence
(defined below). A potential synapse is one with a weight of 0, while a connected synapse is one
with a weight of 1. A synapse is active if, and only if, its source is active and it is connected.
Synapse weight is determined by permanence, a scalar attribute of all synapses modified during
learning. If the permanence is above the synapse connection threshold, then the synapse is
connected with a weight of 1. If the permanence is below this threshold, but above 0, then the
synapse is potential with weight 0. Finally, if a synapse’s permanence drops to 0 or less, then it is
removed. In review, the source of a distal synapse is some cell in the Cortical Region, and the
sink is a distal dendrite segment of a neighboring cell. In contrast, the source of a proximal
synapse is a bit in the Cortical Region’s input and the sink is the proximal dendrite segment of a
column.

7.2 Predictive Coding Cortical Region Process
In this implementation of PC-CLA, each Cortical Region is driven by its own Cortical Region
Process, which runs a serial cycle updating the region’s state and performing learning. The
Cortical Region Process can be roughly subdivided into two sub-processes, spatial pooling and
temporal pooling, to reuse terminology from the original CLA description. Spatial pooling refers
to the process of grouping similar inputs into the same (or nearly the same) sparse distributed set
of active columns representing the input. Spatial pooling approximately corresponds to Step 2 in
the detailed description below. Temporal pooling (Step 3) occurs sequentially after spatial
pooling. It takes the active columns representation produced by spatial pooling, and the current
temporal context encoded by the cells predicted in the previous cycle, and produces the current
active cell state. From the current active cell state, the temporal pooler then produces a current
predicted cell state, the context for the next cycle. Both the current active cell state and the
current predicted cell state comprise the temporal pooler’s output. Representing multiple time
steps, the union of these two states ideally exhibits some temporal invariance, hence the name
temporal pooler.
 Predictive coding brings additional steps to the Cortical Region Process. Briefly, it requires us
to compute and process the prediction error between 1) the top-down prediction of a Cortical
Region and 2) the region’s input, not to just process the original input. Additionally, the Cortical
Region Process must incorporate top-down predictions with the Cortical Region’s active cell
representation. Compared to the original CLA, this corresponds to the addition of Steps 1, 4, and
5 (below) and includes modifications to Steps 2ab and 6a. We now summarize the main loop of
the Predictive Coding Cortical Region Process (Figure 8) at an arbitrary cycle t as follows:

Step 1. Compute the current bottom-up prediction error, εv, between the current bottom-up
Boolean input, y, and the previous cycle’s top-down prediction, .
Step 2. Compute the active columns of the Cortical Region for cycle t, L1.
a) Perform process g taking the bottom-up prediction error, εv, and the columns’ proximal
dendrites and associated proximal synapses, and outputting the columns’ overlap score.
b) Add each column’s (bottom-up) overlap score to its predicted column activation, a scalar
measure of column activation from temporal predictions for the column for this cycle (computed
in Step 5a of cycle t – 1), to obtain the overall column activity.
c) For columns with overall column activity greater than a threshold, perform a local k-winners-
take-all procedure to determine the active columns, L1. The constraint, k, limits the number of
possible active columns within a given area ensuring that the active columns are distributed.
Step 3. Compute the active cells at cycle t, L2, the current cells predicted to be active at some

CORTICAL LEARNING ALGORITHMS WITH PREDICTIVE CODING
FOR A SYSTEMS-LEVEL COGNITIVE ARCHITECTURE

 161

future cycle, PL2t, and their union, U.
a) Based on the active columns, L1 and the currently predicted cells, PL2t-1 (computed in Step 3b
of cycle t – 1), compute the current active cells, L2.
b) Based on the active cells, L2, and the region’s distal dendrites and synapses, perform process, f,
producing the region’s current predicted (for some future cycle) cells, PL2t. Based on only the
cells predicted for the next cycle t + 1, determine the columns, predicted this cycle, to be active
next cycle, PL1t (used later in Step 5).
c) Compute the union, U, of the active cells, L2, and the current predicted cells, PL2t.

Figure 8. The predictive coding Cortical Region Process for a single hierarchical level with an input. All
the components of single Cortical Region appear within the gray dashed box.

Step 4. Process the current received top-down prediction, UTD.
a) Compute the error between U and the current received top-down prediction, UTD, and send the
error to the next hierarchical level.
b) Update PL2t, the current cells predicted to be active at some future cycle, by adding in those
cells predicted in UTD.
Step 5. Based on the columns predicted to be active next cycle, PL1t, (found in Step 3b):
a) Compute each column’s predicted column activation (used in 2b of next cycle).
b) Perform process g-1 to generate the region’s current top-down prediction, .
Step 6. Perform the learning processes.
a) Perform spatial learning, updating the permanence of proximal synapses based on bottom-up
prediction error. Also update each column’s boost attribute based on its activity history.
b) Perform temporal learning, updating the permanence of distal synapses, and possibly adding
new distal synapses. Temporal learning is driven by both unpredicted columns and predicted
columns that did not actually become active. We give more details of learning in the next section.

7.3 Learning
Her we further detail the learning processes of Step 6. In the original CLA, the spatial learning
process iterates over each active column updating the permanence values of the column’s
synapses based on the synapse’s input. Synapses with active inputs have their permanence
incremented, while those with inactive inputs have their permanence decremented. This has the
effect of tuning columns to be more selective to their current bottom-up inputs. In PC-CLA, an
alternate version of spatial learning is used since the region’s bottom-up input is an error signal.
This process iterates over each column, not just active columns, strengthening all synapses
connected to an active input (to minimize future false negative error), and weakens all synapses
whose input was predicted, but did not become active (false negatives).
 For boosting, there are two separate mechanisms to bias underrepresented columns. If a
column’s active history, the recent history of being an active column, is not a sufficient

R. J. MCCALL AND S. FRANKLIN

 162

percentage of its neighbors’ active history, its boost attribute is increased. Increased boost makes
it more likely for a column to win in the inhibition step and become an active column.
Additionally, if a column’s competition history, the recent history of whether its overall column
activity was sufficient to enter the inhibition competition, is not a sufficient percentage of its
neighbor’s competition history, the permanence of each of its proximal synapses is increased.
 For the temporal pooler, learning updates distal dendrites segments. For computational
reasons, we introduce an attribute unique to distal dendrite segments called prediction order. The
prediction order of a distal dendrite segment represents the number of cycles in the future in
which the segment’s sink is predicted to be active. Initially, the prediction order of all distal
dendrite segments is one. Whenever the temporal learning process uses a segment in an attempt to
add a temporal prediction with an order greater than one, the segment’s prediction order is
changed to the new order. Given this, the temporal learning can be summarized in three cases: 1)
New first-order learning attempts to add a first-order temporal prediction (via synaptic
modifications) for each unpredicted active column. In particular, based on the active cells from
the previous cycle, the distal dendrite segment best predicting the column’s activity is selected for
learning in which the segment’s synapses are positively updated, and new synapses, also
predictive of the column’s activity, are added to the segment. 2) Active prediction learning occurs
for each active distal dendrite segment (determined in Step 3b). For each such segment a segment
update is stored for processing at the cycle in which the prediction’s validity can be verified,
which is termed the segment’s verification time. If this type of update is performed, new synapses
are not added. 3) Extending prediction learning, like active prediction learning, involves currently
predicting distal dendrite segments. For every such segment, d1, another distal dendrite segment,
d2, which predicts the cell’s activity one cycle earlier than d1, is selected and a segment update is
stored for possible implementation. If performed, this type of update adds new synapses to bolster
the newfound prediction of higher-order.
 Not all segment updates are actually performed as we also wish to keep the number of
connected distal synapses, and the predicted cells they produce, sparse. If a column is already
well predicted by an existing first-order dendrite segment, it is not necessary, and likely
detrimental, to update synapses to bolster a similar prediction. In order to enforce sparsity in the
temporal pooler, one learning cell is always designated during each cycle for each active column.
A cell is marked learning if 1) a sufficient number of learning cells predicted it last cycle or, 2) it
was the most strongly predicted by distal dendrite segments.
 Segment updates of type one are always performed the same cycle they are created and
always positively update the segment’s synapses. Updates of types two and three are processed at
their verification time based on the state of their associated cell during that cycle. If the cell is
active at the verification time, and is a learning cell during that cycle, the update is performed
positively. This positively updates correct predictions concerning learning cells. If the cell is not
learning, the update is not performed, and is discarded, keeping temporal learning minimal.
Finally, if the associated cell is inactive at the verification time, then the update is performed and
negatively modifies the segment’s synapses. This weakens predictions that do not come true.
 We have delved into the details of PC-CLA, which adds predictive coding message passing to
CLA allowing the algorithm to be deployed hierarchically. We hypothesize that PC-CLA will be
generally useful in implementing representations, memory, and processing in systems-level
cognitive architectures.

8. Testing

Here we report on the results of initial tests of our implementation of PC-CLA as a stand-alone
algorithm, not yet integrated within the LIDA architecture. The implementation is based on the
ideas of the original CLA, but adds predictive coding and 2D receptive fields as mentioned. We
use randomly generated 2D Boolean patterns, and sequences of such patterns, as an initial means

CORTICAL LEARNING ALGORITHMS WITH PREDICTIVE CODING
FOR A SYSTEMS-LEVEL COGNITIVE ARCHITECTURE

 163

of obtaining data. One advantage of such patterns is that they are generic and introduce no bias.
However, they may not produce patterns challenging to discriminate, since random patterns are
likely to be quite different from one another.
 While the CLA has been around for some years, the algorithm has not seen much in the way
of published work reporting its abilities, or the effects of parameters. The two tests shown below
constitute a representative sample of a larger body of tests that explore the spatial pooling
operation (Steps 2, 6), temporal pooling (Steps 2, 3, 6), and the full PC-CLA. To our knowledge,
hierarchy with the CLA has not been previously studied.

8.1 Noise Robustness Test
Recall that the spatial pooling operation attempts to produce a sparse distributed set of active
columns representing the current bottom-up input. One benefit of sparse distributed
representation is the noise robustness it affords. To determine how robust the CLA’s active
columns representations are to noise, we tested the effect of varying amounts of noise, from 0%
to 50%, added to input patterns, on the inputs’ resulting sets of active columns. We also varied
the input activity, or the percentage of bits in the input patterns that were true, from 1% to 5%,
since the CLA works best with, and tends to produce outputs having, around a 2% true bit rate.
 Concretely, for each input activity condition, i, a single Boolean input, with 256 dimensions,
was generated with i percent of its bits randomly set to true. Next, in a developmental period, the
input was shown to a Cortical Region performing just the spatial pooling operation for 250 cycles.
After this period the final set of active columns was recorded. Then, for a range of added noise
amounts, the original input pattern was corrupted by that amount. Noise was added uniformly to
true bits and false bits alike, turning the former false and the latter true. For a particular input
activity and noise amount, 500 trials were performed, each generating a noisy version of the input,
showing it to the same Cortical Region for a time, and comparing the “noisy” set of active
columns with the original set. We computed the normalized taxicab distance between the two sets,
which, here, is the total number of errors in the active columns representation, both false positives
and false negatives, divided by total number of columns in the region. The scores were averaged
across all trials for a given experimental condition. Figure 9 summarizes the results of this test.

Figure 9. The average normalized taxicab distance, between the original active columns representations of
inputs and noisy versions of the same inputs, as a function of the rate of true bits in the inputs. The legend
to the right shows some different noise conditions. We identify noise robustness in these results, e.g., the

R. J. MCCALL AND S. FRANKLIN

 164

addition of 10% noise yields less than 4% error in the active columns representation, while 50% noise gave
about 10% error or less. Also, the data suggest a benefit in keeping the true bit rate low, which is especially
true for higher amounts of added noise.

8.2 Two Hierarchical Levels Test
This test looks at the effects of having top-down predictions from a higher Cortical Region
influence the cell activity of a lower region (Step 4b). We compare a two-level two-region
network in which the higher region sends influencing top-down predictions into the lower level,
with the same network that doesn’t send top-down predictions. We run the network on sequences
of 2D Boolean patterns, each pattern having 529 dimensions, 2% of which are randomly set true.
 In both conditions, we first create two Cortical Regions with the same parameters except for
the columns per input parameter. While the lower Cortical Region had 4 times as many columns
as inputs while the second Cortical Region had 1/cellsPerColumn as many to compensate for the
fact that the first Cortical Region’s output is cellsPerColumn times greater than its input.
 In each of 100 trials, a sequence of 2D patterns having length 8 was generated. Then, in a
developmental period, the sequence was shown 200 times to the network. Both regions performed
spatial and temporal pooling operations either with or without top-down predictions. We
controlled for the effects of the Cortical Regions processing prediction errors by having both
regions process only their respective input. The effect of processing prediction errors is the
subject of another test.
 After the developmental period, the regions’ current states, which encode context, are cleared,
and the same sequence is again shown to the network, in the same manner as just described,
except with learning turned off. For this test presentation, for each pattern in the sequence (except
the first), the first-order temporal prediction accuracy of the active columns is recorded for both
regions in terms of the F-score. Similarly, we also assess the top-down prediction accuracy of
each region with respect to its input at each step in the sequence. Across each sequence and all
sequence trials these two measures were averaged. We measure the accuracy of both top-down
and temporal predictions using the F-score measure (van Rijsbergen, 1979) with beta8 set to 10.
Figure 10 summarizes the results.

Figure 10. The left graph plots the average F-score of the accuracy of top-down predictions as a function of
hierarchical level. Top-down influence did not affect the first region’s accuracy, but significantly improved
the second. The right graph is similar except the dependent variable is the temporal prediction accuracy of a
given level. Again the top-down influence did not change accuracy for the first level but did for the second.

Conclusions
In the future, once well understood, PC-CLA must be extensively tested on real-world data

8 The F-score measures the effectiveness of retrieval with respect to a user who attaches beta times as much importance
to recall as precision. This implies we tolerate false positives 10 times more than false negatives.

CORTICAL LEARNING ALGORITHMS WITH PREDICTIVE CODING
FOR A SYSTEMS-LEVEL COGNITIVE ARCHITECTURE

 165

streams including visual, auditory, etc. It must also be studied on a larger scale with more than
two hierarchical levels, and with high-dimensional input. Future work includes the addition of
precision estimation to model the uncertainty in information sources based on accumulated
prediction error. Implementing a cognitive system like LIDA with a PC-CLA network brings
additional challenges, such as interfacing a PC-CLA network with Sensory-Motor Memory for
action execution, and developing methods to build in preferences for goal-directed agents.
 We identified several guiding principles on the nature of perceptual representation, perceptual
inference, and the associated learning processes. Guided by these principles, in particular the free-
energy principle, we presented a predictive coding extension to the HTM Cortical Learning
Algorithms, termed PC-CLA. We propose PC-CLA as a potential building block for the systems-
level LIDA cognitive architecture that fleshes out LIDA’s internal representations, memory,
learning and attentional processes, and takes an initial step towards the comprehensive use of
distributed and probabilistic (uncertain) representation throughout the architecture. Finally, we
presented some results of initial tests of the algorithm.

Acknowledgements
The authors would like to thank Tamas Madl and Pulin Agrawal as well as the anonymous
reviewers for their useful feedback.

References
Arel, I., Rose, D., & Coop, R., (2009). DeSTIN: A scalable deep learning architecture with

application to high-dimensional robust pattern recognition. Proceedings of AAAI Workshop on
Biologically Inspired Cognitive Architectures.

Baars, B. (1988). A Cognitive Theory of Consciousness. Cambridge: Cambridge Univ. Press.
Bar, M. (2009). The proactive brain: memory for predictions. Philosophical Transactions Royal

Society B: Biological Sciences, 364(1521), 1235–1243, doi:10.1098/rstb.2008.0310.
Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Science, 22(04), 577–

660.
Bedny, M., Pascual-Leone, A., Dodell-Feder, D., Fedorenko, E., & Saxe, R. (2011). Language

processing in the occipital cortex of congenitally blind adults. PNAS, 108(11), 4429–4434.
Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in Machine

Learning, 2(1), 1–127.
Bitzer, S., & Kiebel, S. (2012). Recognizing recurrent neural networks (rRNN): Bayesian

inference for recurrent neural networks. Biological Cybernetics, 106(4–5), 201–217.
Douglas, R. J., & Martin, K. A. (2004). Neuronal circuits of the neocortex. Annu. Rev. Neurosci.,

27, 419–451.
Faghihi, U., McCall, R., & Franklin, S. (2012). A Computational Model of Attentional Learning

in a Cognitive Agent. Biologically Inspired Cognitive Architectures, 2, 25–36.
Feldman, H., Friston, K. (2010). Attention, Uncertainty, and Free-Energy. Frontiers in Human

Neuroscience, 4(215).
Felleman, D. J., & van Essen, D. C. (1991). Distributed hierarchical processing in the primate

cerebral cortex. Cerebral Cortex, 1(1), 1–47.
Franklin, S., A. Kelemen, & L. McCauley. (1998). IDA: A Cognitive Agent Architecture. IEEE

Conference on Systems, Man, and Cybernetics, IEEE Press.
Franklin, S., Baars, B., Ramamurthy, U., & Ventura, M. (2005). The Role of Consciousness in

Memory. Brains, Minds, and Media, 1, 1–38.
Franklin, S., & Graesser, A. (1997). Is it an Agent, or just a Program?: A Taxonomy for

Autonomous Agents. Intelligent Agents III (p. 21–35). Berlin: Springer Verlag.
Franklin, S., & Patterson, F. (2006). The LIDA Architecture: Adding New Modes of Learning to

an Intelligent, Autonomous, Software Agent. Proceedings of IDPT-2006.

R. J. MCCALL AND S. FRANKLIN

 166

Franklin, S., Strain, S., McCall, R., & Baars, B. (2013). Conceptual Commitments of the LIDA
Model of Cognition. Journal of Artificial General Intelligence, 4(2), 1–22.

Friston, K. (2010). The free-energy principle: a unified brain theory? Nature Reviews
Neuroscience, 2, 127–38.

Friston, K., Stephan, K., Li, B., & Daunizeau, J. (2010). Generalised Filtering. Mathematical
Problems in Engineering, Article ID 621670, 34 pages, doi:10.1155/2010/621670

Fuster, J. (2006). The cognit: A network model of cortical representation. International Journal
of Psychophysiology, 60, 125–132.

Goertzel, B. (2012). Perception Processing for General Intelligence: Bridging the
Symbolic/Subsymbolic Gap. In Artificial General Intelligence (pp. 79-88). Springer Berlin.

Hawkins, J., Blakeslee, S. (2004). On Intelligence. New York, NY: Henry Holt.
Hawkins, J., Ahmad, S., & Dubinsky, D. (2011). Hierarchical Temporal Memory including HTM

Cortical Learning Algorithms. Retrieved from www.numenta.org
Hinton, G., McClelland, J., & Rumelhart, D. (1986). Distributed representations. In D. Rumelhart

& J. McClelland (Eds.), PDP: Explorations in the Microstructure of Cognition. Volume 1:
Foundations, (77–109). Cambridge, MA: MIT Press.

Kanerva, P. (1988). Sparse Distributed Memory. Cambridge, MA: The MIT Press.
Knill, D., & Pouget, A. (2004). The Bayesian brain: the role of uncertainty in neural coding and

computation. Trends in Neurosciences, 27(12), 712–719.
Kording, K. & Wolpert, D. (2004). Bayesian integration in sensorimotor learning. Nature, 427,

244–247.
Lee, T., & Mumford, D. (2003). Hierarchical Bayesian inference in the visual cortex. Journal of

the Optical Society of America A, 20(7), 1434–1448.
Linsker, R. (1990). Perceptual neural organization: some approaches based on network models

and information theory. Annual Review Neuroscience, 13, 257–281.
Madl, T., Baars, B., & Franklin, S. (2011). The Timing of the Cognitive Cycle. PLoS ONE, 6(4),

e14803.
Madl, T., & Franklin, S. (2012). A LIDA-based model of the attentional blink. ICCM 2012

Proceedings, 283.
Métin, C. & Frost, D. (1989). Visual responses of neurons in somatosensory cortex of hamsters

with experimentally induced retinal projections to somatosensory thalamus. PNAS, 86, 357–
361.

Mountcastle, V. (1978). An Organizing Principle for Cerebral Function: The Unit Model and the
Distributed System, In G. Edelman & V. Mountcastle, (Eds.), The Mindful Brain, Cambridge,
MA: MIT Press.

Olshausen, B. & Field, D. (1996). Emergence of simple-cell receptive field properties by learning
a sparse code for natural images. Nature, 381, 607–609.

O’Reilly, R., Munakata, Y. (2000). Computational explorations in cognitive neuroscience.
Cambridge: MIT Press.

Phillips, W. A., & Singer, W. (1997). In search of common foundations for cortical computation.
Behavioral and Brain Sciences, 20(4), 657–683.

Rao, R., & Ballard, D. (1999). Predictive coding in the visual cortex: a functional interpretation
of some extra-classical receptive-field effects. Nature Neuroscience, 2(1), 79–87.

Riesenhuber, M., & Poggio, T. (1999). Hierarchical models of object recognition in cortex.
Nature Neuroscience, 2(11), 1019–1025.

Van Rijsbergen, C. (1979). Information Retrieval, Retrieved from:
http://www.dcs.gla.ac.uk/Keith/Preface.html

	Cortical Learning Algorithms with Predictive Coding for a Systems-Level Cognitive Architecture
	Abstract

