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Abstract 
Human-level intelligent agents must autonomously navigate complex, dynamic, uncertain 
environments with bounded time and memory. This requires that they continually update a 
hierarchical, dynamic, probabilistic (uncertain) internal model of their current situation, via 
approximate Bayesian inference, incorporating both the sensory data and a generative model of its 
causes. Such modeling requires suitable representation at multiple levels of abstraction from the 
subsymbolic, sensory level to the most abstract conceptual representation. To guide our approach, 
we identify principles for perceptual representation, perceptual inference, and the associated 
learning processes. Based on these principles, a predictive coding extension to the HTM Cortical 
Learning Algorithms (CLA), termed PC-CLA, is proposed as a foundational building block for the 
systems-level LIDA cognitive architecture. PC-CLA fleshes out LIDA’s internal representations, 
memory, learning and attentional processes; and takes an initial step towards the comprehensive 
use of distributed and probabilistic (uncertain) representation throughout the architecture. 

1.  Introduction 
In this work we describe how modern treatments of perception might be integrated with a broad 
systems-level cognitive architecture, LIDA. This work is presented in the context of the LIDA 
model; however, it does not depend on the commitments of this model (Franklin, Strain, McCall, 
& Baars, 2013). As such, much should be widely applicable to other cognitive architectures. We 
view solutions to the problem of perception or internal representation as central to building 
intelligent machines, since accurate modeling of the world underlies many of the faculties needed 
for generally intelligent agents, including action selection, motivations or goal-directedness, 
higher-level cognition, etc.  
 The outline of the paper is as follows: We first review several inspirational models of 
perception and data analysis. Some, as models of cortical computation, have biological 
inspiration to their credit. Others feature equally compelling information-theoretical and 
mathematical justifications. We next identify key principles, across these various approaches, to 
guide the research and development of networks capable of modeling complex, “real-world” 
sensory data. While such an approach might have more narrow applications to pattern recognition 
problems, we focus here on PC-CLA’s potential application as a building block for the 
implementation of the current representations, memory, and learning and attentional processes of 
a systems-level cognitive architecture. Goertzel (2012) also discusses integrating symbolic and 
subsymbolic processing in a cognitive architecture and favors a tight integration between separate 
algorithms for the two. In contrast, we view PC-CLA as a single algorithm for integrating both 
the symbolic and the subsymbolic. After identifying these principles, we then focus on the 
umbrella-like free-energy principle and its application to model inference for complicated 
hierarchical dynamic models in an approach termed Generalized Filtering (GF). GF provides the 
theoretical guide for the proposed PC-CLA. Next, we give a brief description of the LIDA model 
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of cognition and discuss some of the theoretical issues surrounding the integration of PC-CLA 
with LIDA. Finally, we describe the initial implementation of PC-CLA, report on some initial 
tests, and discuss directions for future work.  

2.  Models of Perceptual Analysis and Learning 
Several existing theories of perception and pattern recognition provide inspiration and motivation 
for the PC-CLA model. Hierarchical Temporal Memory (Hawkins & Blakeslee, 2004; Hawkins, 
Ahmad, & Dubinsky, 2011) postulates that the neocortex builds a model of the world using a 
spatiotemporal hierarchy of basic computational units, each performing the same learning and 
inference algorithm, which entails storing co-occurrence patterns and then sequences of such 
patterns. Rao & Ballard’s (1999) “predictive coding” models the visual cortex as a hierarchical 
network with units at each hierarchical level continually predicting the responses the units in he 
next lower level via top-down, feedback connections. Through feed-forward connections the 
lower level units send back the errors between the top-down predictions and the actual activity. 
These error signals are then used to correct the higher-level representation of the cause of the 
input signal, ideally improving future top-down predictions. Generalized Filtering (Friston et al., 
2010) is an online recursive Bayesian estimation scheme1 for nonlinear state-space models in 
continuous time. It provides a method for estimating the posterior (or conditional) probability 
density functions on the hidden states (current representations) and unknown parameters (e.g., 
connections implementing memory) generating the observed input data (e.g., audio signals or 
human kinematics). Finally, we mention, but will not focus on, some closely related theories 
including HMAX (Riesenhuber & Poggio, 1999), Leabra (O’Reilly & Munakata, 2000), DeSTIN 
(Arel, Rose, & Coop, 2009) and rRNN (Bitzer & Kiebel, 2012). 
 Taken together, these theories call for the use of hierarchy, non-linear dynamics, approximate 
Bayesian inference, and biological inspiration from the primate neocortex to confront the problem 
of data analysis or data modeling, a problem we view as central to the development of intelligent 
agents. Based on these ideas, we next identify guiding principles for the PC-CLA model.   

3.  Perceptual Principles for Systems-Level Cognitive Architectures 
Here we identify key principles for perceptual representation, processing, and learning in 
cognitive systems. We focus on ideas supported by evidence from neurobiology and neuroscience 
as well as information theory and mathematics. What evidence is there that common perceptual 
principles might exist? Mountcastle (1978) first proposed that a common function is performed 
throughout the entire neocortex. In support of this are experiments that successfully rerouted 
sensory stimuli to foreign cortical areas in mammals suggesting neocortical adaptability across 
modalities (e.g., Métin & Frost, 1989). Bedney et al. (2011) found congenitally blind humans 
perform language processing in their visual cortices during verbal tasks, and concluded that so-
called “visual” cortical areas could take on language processing. Finally, several researchers have 
suggested that the neo-cortex may be implementing a large number of similar, hierarchically 
arranged “cortical circuits” (e.g., Douglas & Martin, 2004; Felleman & van Essen, 1991; Phillips 
& Singer, 1997).  

3.1  Autonomy and Agency 
Autonomous agents require online learning without stoppage or interruption. However, this still 
allows for a human-like developmental period, in which the agent learns autonomously from its 
environment. In addition, agents must be able to learn autonomously without the aid of labeled 
                                                      
1 Recursive Bayesian estimation is an approach for estimating an unknown probability density function recursively 
over time using incoming measurements and a mathematical process model. 
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data, i.e., to perform unsupervised learning. 

3.2  Hierarchical decomposition 

Hierarchical decomposition allows a computational task to “be reduced to a small number of 
activities at the next lower level so the computational cost of finding the correct way to arrange 
those activities [...] is small” (Russell & Norvig, 2010). In the context of internal representations, 
a multitude of representations can be constructed from different combinations of the same 
representations in the next lower level. This achieves substantial pattern reuse and such 
decomposition can be repeated recursively. Hierarchical decomposition via nonlinear operations 
is a major foundation of the “deep learning” movement (Bengio, 2009).  

3.3  Sparse Distributed Representation 

With distributed representations, a number of units represent each pattern, and each unit can 
participate in the representation of many patterns. Each unit in a distributed representation can be 
thought of as representing a single “microfeature” (Hinton, McClelland, & Rumelhart, 1986), 
with the information being encoded by particular combinations of such features, and not by a 
single bit or feature. With distributed representation, the explicitness in representation is lost; 
however, it is more efficient than the localist one. Additionally, similar elements have similar 
representations, because they may share multiple features.  
 The idea of sparse representation can be traced to the infomax principle (Linsker, 1990), 
which suggests the brain maximizes the mutual Shannon information between sensations and 
representations. Similarly, the sparse coding hypothesis (Olshausen & Field, 1996) suggests that 
sensory patterns are represented by the strong activation of a relatively small set of neurons. 
Kanerva (1998) demonstrated that high-dimensional sparse representations are highly unique and 
noise robust.  

3.4  Prediction 

Modern views of perception see the human brain as a constructive or predictive organ actively 
generating predictions of its sensory inputs using a generative model2. Bar (2009) describes a 
“proactive” brain continuously generating predictions anticipating the relevant future. HTM 
theory (Hawkins, Ahmad, & Dubinsky, 2011) suggests that temporal predictions are useful 
because they help produce temporally invariant representations and can help with the recognition 
of noisy temporal patterns. Here we distinguish top-down prediction, a prediction coming from a 
given hierarchical level and predicting the pattern of the next lower level, from temporal 
prediction, one coming from a given level and predicting future patterns of the same level.  

3.5  Approximate Bayesian Inference 

A close correspondence has been shown between human decision making and judgments made by 
Bayesian decision theory, which defines optimal behavior in uncertain environments with noisy 
signals (Kording & Wolpert, 2004). Lee & Mumford (2003) suggested the visual cortex performs 
hierarchical Bayesian inference where “top-down contextual priors and bottom-up observations 
[...] implement concurrent probabilistic inference.” Knill & Pouget (2004) popularized the 
“Bayesian coding hypothesis” suggesting that the brain represents information probabilistically, 
by coding and computing with probability density functions or approximations to them.  
 

                                                      
2 A generative model is a model for probabilistically generating observable data from some distribution, typically given 
some hidden parameters. 
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3.6  The Free-Energy Principle 

The free-energy principle (Friston, 2010) is a theory of brain function that accounts for action, 
perception and learning. The principle unifies a number of existing theories including predictive 
coding, the Bayesian coding hypothesis, the infomax principle, associative plasticity, optimal 
control, and value learning. The principle suggests that the brain changes to minimize its 
(variational) free energy, an upper bound on the surprisal3 in sampling sensory data, given an 
approximate probabilistic model of the data. If an agent minimizes free energy, it implicitly 
minimizes surprisal since free energy is an upper bound. Unlike surprisal, free energy can be 
evaluated because it is a function of the agent’s sensory states and its approximate internal 
probabilistic model of the causes of the sensory data.  

4.  Applying the Free-Energy Principle 

Here we overview the application of the free-energy principle to a hierarchical dynamic 
generative model showcasing an approach termed Generalized Filtering (Friston et al., 2010). 
Attractively, Generalized Filtering makes biologically plausible assumptions (Feldman & Friston, 
2010) and conforms to the free-energy principle. It operates online and unsupervised, inferring 
model states (current representations), parameters (memory), and hyperparameters 
(uncertainties). The approach can also be viewed a form of hierarchical Bayesian inference. 
Embodying our identified principles, we adopt Generalized Filtering as a theoretical guide for 
PC-CLA. 
 Generalized Filtering is a method for the approximate Bayesian inversion (estimation) of a 
statistical model with a quite sophisticated and general form. Specifically, Generalized Filtering 
considers a hierarchical, dynamic, generative model comprised of hidden state variables, the 
dynamics of which can be influenced by an appropriate non-linear function (equation of motion). 
Furthermore, at each level, these hidden state variables may be subject to (random) stochastic 
fluctuations representing the variables’ statistical uncertainty. We will discuss uncertainty in terms 
of precision, the multiplicative inverse of the variance4. High statistical precision implies a 
probability distribution that is highly concentrated about its mean suggesting that the mean is 
known with a high degree of precision in the ordinary sense. In terms of statistical model 
inference, precision is a hyperparameter to be estimated from the data. We will refer to such 
hyperparameters that parameterize estimations of precision as precisions. Precisions in 
Generalized Filtering’s form of generative model may themselves undergo state-dependent 
changes in amplitude and can have arbitrary autocorrelation5 functions influencing their time 
evolution. An important aspect of this model is its hierarchical form, which induces top-down 
priors (predictions) into lower levels. Figure 1 illustrates these features for one hierarchical level.  
 The next key feature of Generalized Filtering is the representation of internal states and 
hidden parameters in a generalized coordinate system. That is, one where the coordinates describe 
the configuration of the system relative to some reference configuration under the constraint that 
the set of coordinates uniquely defines the configuration of the system relative to the reference 
configuration. For example, the position of the end of a pendulum can be defined in terms of a 
coordinate that represents the angle of the pendulum’s arm from its stationary position, which is 
the reference configuration. This simplifies calculations about the arm’s dynamics. Generalized 
Filtering uses generalized coordinates of motion where the coordinates include the values of the 
model variables, and the infinite set of the higher order derivatives of each variable’s equations of 
motion. In this system a point can be viewed as encoding a variable’s current trajectory since 

                                                      
3 Surprisal is a measure of the information content associated with the outcome of a random variable. 
4 For a multivariate distribution, the precision takes the form of a precision matrix, which is the matrix inverse of the 
covariance matrix, if such an inverse exists. 
5 Autocorrelation is the correlation between a signal and itself at some offset in time as a function of the offset. 
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Figure 1. A single hierarchical level in Generalized Filtering. The dashed lines bound one level with the 
lower level to the left and the higher level to the right. The level’s state variables are depicted by the blue 
boxes. Two non-linear functions and their parameters (green) govern both top-down and dynamical priors 
(or predictions). Two corresponding sets of precisions (purple) affect the hidden states and vice versa. The 
dynamics of precisions are governed by some autocorrelation function. 

future variable values can be extrapolated using the higher order terms. Concretely, if x represents 
a set of state variables, then such a coordinate system is parameterized by . With 
generalized coordinates of motion, instead of simply estimating the conditional density of hidden 
states (and parameters), one optimizes the conditional density on their generalized motion to an 
arbitrarily high order. In practice, this can be truncated to a relatively low order. 
 The third main feature of Generalized Filtering is a fixed-form, Gaussian, approximation to 
the internal probabilistic representations of the causes of sensory data. While the Gaussian 
distribution has several advantages, a critical one is that, when free energy is minimized, the 
conditional covariance of hidden states becomes an analytic function of the conditional mean. 
This implies that only the mean need be optimized since the covariance can be derived from it. It 
also simplifies the mathematics of model optimization to a single ordinary differential equation 
describing the motion of the conditional mean of states (Friston et al., 2010).  
 Given the above form of a generative model, the treatment of variables in generalized 
coordinates of motion, and Gaussian assumptions on the form of probabilistic representation of 
the causes of data, Generalized Filtering prescribes a set of ordinary differential equations, 
governing recognition dynamics, that update the conditional density on the model states (e.g. 
hidden state variables), parameters (e.g., weighted links), and hyperparameters (e.g., precision 
parameters). Next, we discuss these equations conceptually.  

4.1  State Optimization via Prediction Error Minimization 

The update equation for the model’s hidden state suggests that instances of two kinds of 
computational units send and receive messages at each hierarchical level (Figure 2). State units 
(blue) encode the mean vector of the multivariate Gaussian distribution over unknown states 
generating sensory data, while error units (red) encode prediction error. The activity of each error  
unit is a function of state units (or the input), while state unit activity is a function of error units. 
State units provide top-down and temporal predictions to same-level and lower-level error units. 
Hierarchical inference requires only the prediction error from the lower level, which drives the 
conditional expectations toward a better prediction, so as to minimize the prediction error in the 
level below. This recurrent message passing between hierarchical levels and its processing 
optimizes free energy by minimizing prediction error, and constitutes perceptual inference. It is 
also known as (hierarchical) predictive coding (Rao & Ballard, 1999). Note that prediction errors 
can be based on top-down predictions (rTD in Figure 2) or on temporal predictions (not shown). 
Temporal prediction error would be based on a temporal prediction and the actual future state. 
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Figure 2. Hierarchical Predictive Coding. Each hierarchical level (dashed box) receives top-down 
predictions, rTD, of the level’s current representation, r, of the input signal, y. Feed-forward pathways carry 
errors (e.g., r–rTD) between the predictions and the actual activity. Errors (rTD–r) are used to correct the 
current representation, r, and, hopefully, future top-down predictions, yTD. g represents a set of feedforward 
connection weights and g-1 a set of feedback connection weights. Redrawn from Rao & Ballard (1999). 

4.2  Parameter Optimization via Associative Plasticity 
Parameter optimization6 may also reduce a model’s free energy. Parameters modulate the effects 
of the nonlinear functions shown in Figure 1. In a computational network, a parameter would be 
some connection between units, and its value would be the weight of a connection. GF supplies 
parameter update equations similar to models of associative plasticity based on correlated pre- 
and post-synaptic activity. The update has two forms: The structural parameter update is 
illustrated in Figure 3a, and considers a currently active hidden variable at a given level (e.g., 
Level 2) as the connection’s source, and a currently active bottom-up prediction error variable as 
the sink. Such an update changes future top-down predictions, to hopefully better minimize future 
bottom-up prediction error. Figure 3b illustrates a dynamical update. Initially, there was a state 
variable, p, active at time t from bottom-up prediction error. This update takes a state variable, q, 
at the same level whose activity preceded q’s at time t – 1, and updates a dynamical connection 
from q to p. At a future time t + n – 1, the re-activation of q produces a temporal prediction of p 
(shaded), to hopefully minimize future prediction error. In either case, the parameter value is 
updated as a function of 1) the product of the qth pre-synaptic input and post-synaptic response of 
the pth error-unit, 2) the product of the parameter value and its function’s associated precision, and 
3) a value-dependent decay, e.g., sigmoidal decay (Friston & Feldman, 2010, p. 8).  
 

 
Figure 3. Structural and dynamical parameter updates. Both updates are performed in response to bottom-
up prediction errors (red). a) A structural update modifies (or adds) a structural connection (parameter), 
from a higher to a lower level, which changes future top-down predictions, to minimize future bottom-up 
prediction error. b) A dynamical update modifies (or adds) a dynamic connection between hidden state 
variables in the same level changing future temporal predictions to also minimize future prediction error. 

                                                      
6 In Bayesian statistics, parameters are continually estimated and updated; they are not assumed fixed. 
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4.3  Hyperparameter Optimization via Gain Control 

GF also provides an update equation for the model’s hyperparameters that estimate the precision 
of the mean encoded by a level’s hidden states. Such precisions weight the magnitude of their 
associated prediction errors and are estimate from the state via prediction error (Figure 4). 
Precision parameters change as a function of 1) the precision-weighted sum of squared prediction 
error term, and 2) a decay in proportion to the current precision value. Such precision parameters 
are thought to correspond to gain control, the control of synaptic gain or post-synaptic 
responsiveness. Synchrony and neurotransmitters have been suggested as the neurobiological 
implementation of gain control (Friston & Feldman, 2010, p. 8).  

 

 

Figure 4. A single precision hyperparameter in a hierarchical predictive coding network. It is updated based 
on the sum of squared bottom-up prediction (red) and a value-dependent decay (purple arrow). It modulates 
the magnitude of the same prediction error signal from which it is estimated. Precisions can similarly exist 
for temporal prediction errors at each hierarchical level.  

 We have just described Generalized Filtering, an application of the free-energy principle to 
complicated, hierarchical dynamic uncertain statistical models yielding update equations for 
model states, parameters, and hyperparameters. We adopt GF as a theoretical guide for PC-CLA. 
Next, we review the LIDA cognitive architecture leading up to PC-CLA, which is proposed as a 
foundational building block for LIDA and provides detailed data structures and algorithms for 
LIDA’s current representations, memory, and attention and learning processes. 

5.  The LIDA Model and its Cognitive Cycle 

The LIDA model is a comprehensive, conceptual and computational model that covers a large 
portion of human cognition while implementing and fleshing out Baars’ Global Workspace 
Theory (1988). Early versions of the model have seen successful real-world applications 
(Franklin, Keleman, & McCauley, 1998), while, more recently, the model has replicated some 
experimental findings (Faghihi, McCall, & Franklin, 2012; Madl, Baars, & Franklin, 2011; Madl 
& Franklin, 2012). The model and its ensuing architecture are grounded in the LIDA cognitive 
cycle. The cycle is based on the fact that every autonomous agent (Franklin & Graesser, 1997), be 
it human, animal, or artificial, must frequently sample (sense) its environment and select an 
appropriate response (action). A cognitive cycle can be thought of as a cognitive “moment.” 
Higher-level cognitive processes are composed of many of these cognitive cycles. 
 LIDA hypothesizes a rich inner structure for its cognitive cycles (Franklin, Baars, 
Ramamurthy, & Ventura, 2005). The cycle (see Figure 5) begins with sensory stimuli from 
external and internal sources in the agent’s environment. Low-level feature detectors in Sensory 
Memory begin the process of making sense of the incoming stimuli. These low-level features are 
passed on to Perceptual Associative Memory where higher-level features, such as objects, 
feelings, events, categories, relations etc. are recognized. These entities that have been recognized 
preconsciously make up the percept that passes asynchronously to the Workspace, where a model 
of the agent’s current situation is updated. This percept serves as a cue to two forms of episodic 



R. J. MCCALL AND S. FRANKLIN 

 156 

memory, transient and declarative. Responses to the cue, called local associations, consist of 
remembered events from these two memory systems that were associated with the various 
elements of the cue. Besides the current percept, the Workspace contains recent percepts and 
portions of the structures assembled from them that haven’t yet decayed away. 
 A new model of the agent’s current situation is assembled from the percepts, the local 
associations, and the undecayed parts of the previous model. This assembling process will 
typically require structure-building codelets. These are small, special purpose processors, each of 
which has some particular type of structure it is designed to build. To fulfill their task these 
codelets may draw upon Perceptual Associative Memory, to enable the recognition of relations 
and situations. They may also draw on the Conscious Contents Queue, which stores the conscious 
contents of the past few seconds. The newly assembled model forms the agent’s understanding of 
its current situation within its world. It has made sense of the incoming stimuli.  

 

 

Figure 5. The LIDA Architecture and its Cognitive Cycle. 

 For an agent operating within a complex, dynamically changing environment, this Current 
Situational Model (CSM) may well be much too much for the agent to consider all at once in 
deciding what to do next. It needs to selectively attend to a portion of the model, the most salient 
portion. Portions of the CSM compete for attention. These competing portions take the form of 
coalitions of structures from the CSM. Such coalitions are formed by attention codelets, whose 
function is to try to bring certain structures to consciousness. When one of the coalitions wins the 
competition, the agent has effectively decided on what to attend. 
 One purpose of this processing is to help the agent decide what to do next. To this end, a 
representation of the contents of the winning coalition is broadcast globally. LIDA’s multiple 
modes of learning all occur continually, simultaneously, and online using the contents of 
consciousness of each broadcast (Franklin & Patterson, 2006). Consciousness in LIDA refers to 
functional consciousness; no assumption is made with regard to phenomenal consciousness. 
While conscious contents are available globally, a primary recipient is Procedural Memory, which 
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stores schemes, which are templates of possible actions including their contexts and possible 
results. It also stores an activation value that attempts to measure, for each such template, the 
likelihood that an action taken within its context produces the expected result. Templates whose 
contexts intersect sufficiently with the contents of the conscious broadcast instantiate copies of 
themselves with their variables specified to the current situation. Instantiated templates remaining 
from previous cycles may also continue to be available. These instantiations are passed to the 
action selection mechanism, which chooses a single action from one of them. The chosen 
behavior then goes to Sensory-Motor Memory, where an appropriate algorithm, called a motor 
plan, executes it. The relevant actuators affect the environment, and the cycle is complete.  

6.  Cortical Learning Algorithms with Predictive Coding for LIDA 

Generalized Filtering provides a general-purpose, biologically plausible, Bayes-approximate 
mathematical prescription for an advanced filtering network. We are interested in a computational 
model and see promise in the computational HTM Cortical Learning Algorithms (Hawkins, 
Ahmad, & Dubinsky, 2011), which integrate sparse distributed representation, clustering based on 
temporal coincidence, the representation of high-order temporal dynamics, and online learning in 
a single algorithm. However, not all of the features suggested by GF are implemented by the 
Cortical Learning Algorithms (CLA) including 1) hierarchical prediction coding, the optimization 
of states and structural (top-down) parameters based on prediction error minimization, and 2) 
precision hyperparameters. While we have discussed precision parameters (hyperparameters) 
theoretically we will not approach this aspect computationally in this work. Instead our aim is to 
extend the CLA by incorporating hierarchical predictive coding, an approach we term the 
Predictive Coding CLA (PC-CLA). This is a first step towards a long-term goal to develop a 
network with the capacity to process a broad range of sensory signals, estimating complex models 
of the form approached by Generalized Filtering from sensory data. While GF does not restrict 
the types of state variables used, PC-CLA, following CLA, uses binary variables. 
 Again, while PC-CLA is a data analysis algorithm, we also propose it here as a potential 
building block for cognitive systems. As with the CLA, the algorithm is recursive, and can be 
repeated in a large tree-structured hierarchy, possibly following Fuster’s (2006) outline of two 
intertwined perceptual and executive memory hierarchies. We conjecture that, out of such a 
network, we will be able implement the larger, more global, more cognitive features typically 
addressed by LIDA and similar cognitive systems. Additionally, an agent built using a PC-CLA 
network would have the capacity to deal with high-dimensional “real-world” sensory data in a 
grounded manner (Barsalou, 1999). Currently, neither the CLA nor any other high-dimensional 
pattern recognition algorithm has been implemented within LIDA for its perception. 
 A number of aspects of PC-CLA correspond to previously conceived entities in LIDA: the 
notion of hidden state variables and their values corresponds to the current representations in the 
Current Situational Model of LIDA’s Workspace. The long-term synapse-like connections of PC-
CLA could potentially implement one or more of LIDA’s memories including Perceptual 
Associative Memory, Procedural Memory, Declarative Memory, etc. PC-CLA’s learning 
procedures are akin to LIDA’s structure-building codelets, which build new nodes, links, and 
other representations in the Workspace. With this view, PC-CLA then suggests some general 
structure-building codelets for proposing and reinforcing links. Structural links connecting hidden 
units in neighboring hierarchical levels serve to implement memory for co-occurrence patterns, 
and are used in producing top-down predictions. Similarly, dynamical links connecting hidden 
units in the same hierarchical level are the foundations for temporal predictions.  
 If PC-CLA were to incorporate precision parameters, then their update could be performed by 
attention codelets concerned with the activity of prediction-error units and performing the 
aforementioned update operation to estimate precision. Previously in LIDA, attention codelets did 
not have such general concerns. Recall that Generalized Filtering suggested that precisions be 
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used to weight prediction errors. Feldman and Friston (2010) suggest that attention can be seen as 
the “selective sampling of sensory data that have high precision in relation to the model’s 
predictions.” In LIDA terms, this suggests that precision modulates the salience of current 
representations. It also suggests that top-down predictions also contribute to salience as they can 
create an attentional “bottleneck” by biasing particular representations, preventing others from 
being expressed. LIDA has defined attention as the process of bringing content to consciousness 
based on salience. PC-CLA then suggests that current salience involves: 1) prediction error that 
updates current representations, 2) precision that weights prediction error, and 3) both top-down 
and temporal predictions. Each is influential, in the short term, in determining which pattern, 
representing the cause(s) of the sensory input, is expressed.  

7.  Computational Implementation 

Building from the HTM Cortical Learning Algorithms (CLA) described by Hawkins, Ahmad, & 
Dubinsky (2011), and incorporating the ideas of hierarchical predictive coding, we developed an 
initial implementation of the PC-CLA. The algorithm, like CLA, is defined recursively allowing 
for hierarchical arrangement whereby instances of the algorithm appear at each level, each 
sending and receiving Boolean vectors. At the first level, the original input is processed, while 
higher levels process the output of their immediately lower level. For best performance, input 
patterns should be, on average, as uniformly distributed throughout the input dimensions as 
possible. This constraint arises because the CLA is limited in its ability to produce more 
distributed representations than it receives, and insufficiently distributed representations do not 
enjoy the advantages of sparse high-dimensional spaces. “Natural” auditory and visual stimuli fit 
this distribution requirement quite easily, while, for human-generated data, a preprocessing step is 
often required to produce distributed inputs. While proposed for LIDA, due to PC-CLA’s 
complexity, we first focus here on it as a stand-alone algorithm, not integrated with LIDA. 
 PC-CLA adds the following to the CLA model: 1) Multiple hierarchical levels, 2) predictive 
coding message passing involving the feed-forward passing of only prediction error between 
levels, and 3) Being initially interested in visual data streams, we focus on a 2D arrangement of 
receptive fields and internal elements. 

7.1  Cortical Region 

The description in this section applies to both the original CLA and PC-CLA unless otherwise 
noted. To start, the fundamental data structure of the CLA is called the Cortical Region (Figure 
6). A Cortical Region consists of a set of columns, which are based on the functionality of cortical 
minicolumns. In this PC-CLA implementation, we focus on a square 2D column arrangement, 
although other arrangements are possible. Each column is comprised of multiple cells (defined 
below), and has one proximal dendrite segment, a functional approximation to a neuronal dendrite 
segment. The proximal dendrite segments integrate the activity of artificial proximal synapses 
(described later), implementing connections in close proximity to the column. Proximal synapses 
can transmit the input activity received by the region. 
 For each column, the input locations of its proximal synapses are modeled using a bivariate 
(2D) Gaussian distribution. Figure 7 depicts a single column, its proximal dendrite segment, and 
the segment’s proximal synapses. The activity of the proximal synapses on a proximal dendrite 
segment determine its column’s overlap score7, a scalar measure of column activity from the 
bottom-up input. Each column also has a boost attribute that weights the overlap score and is 
based on the column’s recent history of activity. Boost is used to make under-utilized columns 
more salient. Each column also has an activity state, which may take a value of inactive, not 
sufficiently active to compete with other columns, competitive, sufficiently active to compete  
                                                      
7 The original CLA called both overlap score and boosted overlap score “overlap.” Here we distinguish between them. 
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Figure 6. A single Cortical Region with 900 (30x30) columns, arranged in a 2D fashion, with each column 
having 4 cells. Typical implementations have 1024–2048 columns.  

with other columns, or active, competitive and having won a competition with its neighboring 
columns to determine the most salient columns. A column’s activity state is based on its boosted 
overlap score. For PC-CLA, the activity state also depends on the predicted column activation, a 
scalar measure of salience based on current temporal predictions (see below) of the column’s 
activity. Predicted column activation ensures predicted columns remain competitive during an 
inter-column inhibition step (Step 2c below) since, in predictive coding, the column being 
predicted effectively inhibits its receiving bottom-up input. A predicted column must remain 
competitive because its cell(s) are likely encoding the current temporal context. 
 

 

Figure 7. Left: A single column having four cells (gray). Each column has a single proximal dendrite 
segment (blue) that integrates the activity of many proximal synapses (green). Right: A single cell with five 
distal dendrite segments, which are depicted by the circles containing a step-function. Each segment has 
multiple distal synapses, shown as open and filled blue circles. Each circle represents a possible connection 
with a neighboring cell in the region. A cell becomes predictive whenever one or more segments become 
active, while a segment’s activity depends on its synaptic activity (filled blue circles). 

 Moving on, a cell (gray circles in Figure 7 left) is a representational unit belonging to exactly 
one column. If a column is currently active, one or more of its cells may become active. Active 
cells constitute the current representation of the temporal context. Long-term information about 
context is encoded in CLA using a combination of distal synapses and distal dendrite segments. 
Each distal synapse is a synapse that has a cell as its source, and has, as its sink, a distal dendrite 
segment, which is connected to another cell, with the constraint that these two cells must be from 
different columns. Distal dendrite segments maintain a set of distal synapses, and integrate the 
synapses’ activity. Distal dendrite segments also have an activation threshold, measured in the 
number of active synapses (explained shortly). If the number of active synapses is above this 
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threshold, the segment is considered active. Finally, each cell has multiple distal dendrite 
segments (Figure 7 right) whose activity, in part, determines the cell’s state. Specifically, they 
determine whether a cell state is predicted to become active in the future. Alternatively, cell state 
may be active or inactive.  
 All synapses, proximal or distal, have a source, a sink, a binary weight, and a permanence 
(defined below). A potential synapse is one with a weight of 0, while a connected synapse is one 
with a weight of 1. A synapse is active if, and only if, its source is active and it is connected. 
Synapse weight is determined by permanence, a scalar attribute of all synapses modified during 
learning. If the permanence is above the synapse connection threshold, then the synapse is 
connected with a weight of 1. If the permanence is below this threshold, but above 0, then the 
synapse is potential with weight 0. Finally, if a synapse’s permanence drops to 0 or less, then it is 
removed. In review, the source of a distal synapse is some cell in the Cortical Region, and the 
sink is a distal dendrite segment of a neighboring cell. In contrast, the source of a proximal 
synapse is a bit in the Cortical Region’s input and the sink is the proximal dendrite segment of a 
column. 

7.2  Predictive Coding Cortical Region Process 
In this implementation of PC-CLA, each Cortical Region is driven by its own Cortical Region 
Process, which runs a serial cycle updating the region’s state and performing learning. The 
Cortical Region Process can be roughly subdivided into two sub-processes, spatial pooling and 
temporal pooling, to reuse terminology from the original CLA description. Spatial pooling refers 
to the process of grouping similar inputs into the same (or nearly the same) sparse distributed set 
of active columns representing the input. Spatial pooling approximately corresponds to Step 2 in 
the detailed description below. Temporal pooling (Step 3) occurs sequentially after spatial 
pooling. It takes the active columns representation produced by spatial pooling, and the current 
temporal context encoded by the cells predicted in the previous cycle, and produces the current 
active cell state. From the current active cell state, the temporal pooler then produces a current 
predicted cell state, the context for the next cycle. Both the current active cell state and the 
current predicted cell state comprise the temporal pooler’s output. Representing multiple time 
steps, the union of these two states ideally exhibits some temporal invariance, hence the name 
temporal pooler.  
 Predictive coding brings additional steps to the Cortical Region Process. Briefly, it requires us 
to compute and process the prediction error between 1) the top-down prediction of a Cortical 
Region and 2) the region’s input, not to just process the original input. Additionally, the Cortical 
Region Process must incorporate top-down predictions with the Cortical Region’s active cell 
representation. Compared to the original CLA, this corresponds to the addition of Steps 1, 4, and 
5 (below) and includes modifications to Steps 2ab and 6a. We now summarize the main loop of 
the Predictive Coding Cortical Region Process (Figure 8) at an arbitrary cycle t as follows: 
  
Step 1. Compute the current bottom-up prediction error, εv, between the current bottom-up 
Boolean input, y, and the previous cycle’s top-down prediction, . 
Step 2. Compute the active columns of the Cortical Region for cycle t, L1.  
a) Perform process g taking the bottom-up prediction error, εv, and the columns’ proximal 
dendrites and associated proximal synapses, and outputting the columns’ overlap score.  
b) Add each column’s (bottom-up) overlap score to its predicted column activation, a scalar 
measure of column activation from temporal predictions for the column for this cycle (computed 
in Step 5a of cycle t – 1), to obtain the overall column activity. 
c) For columns with overall column activity greater than a threshold, perform a local k-winners-
take-all procedure to determine the active columns, L1. The constraint, k, limits the number of 
possible active columns within a given area ensuring that the active columns are distributed. 
Step 3. Compute the active cells at cycle t, L2, the current cells predicted to be active at some 
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future cycle, PL2t, and their union, U. 
a) Based on the active columns, L1 and the currently predicted cells, PL2t-1 (computed in Step 3b 
of cycle t – 1), compute the current active cells, L2. 
b) Based on the active cells, L2, and the region’s distal dendrites and synapses, perform process, f, 
producing the region’s current predicted (for some future cycle) cells, PL2t. Based on only the 
cells predicted for the next cycle t + 1, determine the columns, predicted this cycle, to be active 
next cycle, PL1t (used later in Step 5). 
c) Compute the union, U, of the active cells, L2, and the current predicted cells, PL2t. 
 

 

Figure 8. The predictive coding Cortical Region Process for a single hierarchical level with an input. All 
the components of single Cortical Region appear within the gray dashed box. 

Step 4. Process the current received top-down prediction, UTD. 
a) Compute the error between U and the current received top-down prediction, UTD, and send the 
error to the next hierarchical level. 
b) Update PL2t, the current cells predicted to be active at some future cycle, by adding in those 
cells predicted in UTD. 
Step 5. Based on the columns predicted to be active next cycle, PL1t, (found in Step 3b): 
a) Compute each column’s predicted column activation (used in 2b of next cycle). 
b) Perform process g-1 to generate the region’s current top-down prediction, . 
Step 6. Perform the learning processes. 
a) Perform spatial learning, updating the permanence of proximal synapses based on bottom-up 
prediction error. Also update each column’s boost attribute based on its activity history. 
b) Perform temporal learning, updating the permanence of distal synapses, and possibly adding 
new distal synapses. Temporal learning is driven by both unpredicted columns and predicted 
columns that did not actually become active. We give more details of learning in the next section. 

7.3  Learning 
Her we further detail the learning processes of Step 6. In the original CLA, the spatial learning 
process iterates over each active column updating the permanence values of the column’s 
synapses based on the synapse’s input. Synapses with active inputs have their permanence 
incremented, while those with inactive inputs have their permanence decremented. This has the 
effect of tuning columns to be more selective to their current bottom-up inputs. In PC-CLA, an 
alternate version of spatial learning is used since the region’s bottom-up input is an error signal. 
This process iterates over each column, not just active columns, strengthening all synapses 
connected to an active input (to minimize future false negative error), and weakens all synapses 
whose input was predicted, but did not become active (false negatives).  
 For boosting, there are two separate mechanisms to bias underrepresented columns. If a 
column’s active history, the recent history of being an active column, is not a sufficient 
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percentage of its neighbors’ active history, its boost attribute is increased. Increased boost makes 
it more likely for a column to win in the inhibition step and become an active column. 
Additionally, if a column’s competition history, the recent history of whether its overall column 
activity was sufficient to enter the inhibition competition, is not a sufficient percentage of its 
neighbor’s competition history, the permanence of each of its proximal synapses is increased. 
 For the temporal pooler, learning updates distal dendrites segments. For computational 
reasons, we introduce an attribute unique to distal dendrite segments called prediction order. The 
prediction order of a distal dendrite segment represents the number of cycles in the future in 
which the segment’s sink is predicted to be active. Initially, the prediction order of all distal 
dendrite segments is one. Whenever the temporal learning process uses a segment in an attempt to 
add a temporal prediction with an order greater than one, the segment’s prediction order is 
changed to the new order. Given this, the temporal learning can be summarized in three cases: 1) 
New first-order learning attempts to add a first-order temporal prediction (via synaptic 
modifications) for each unpredicted active column. In particular, based on the active cells from 
the previous cycle, the distal dendrite segment best predicting the column’s activity is selected for 
learning in which the segment’s synapses are positively updated, and new synapses, also 
predictive of the column’s activity, are added to the segment. 2) Active prediction learning occurs 
for each active distal dendrite segment (determined in Step 3b). For each such segment a segment 
update is stored for processing at the cycle in which the prediction’s validity can be verified, 
which is termed the segment’s verification time. If this type of update is performed, new synapses 
are not added. 3) Extending prediction learning, like active prediction learning, involves currently 
predicting distal dendrite segments. For every such segment, d1, another distal dendrite segment, 
d2, which predicts the cell’s activity one cycle earlier than d1, is selected and a segment update is 
stored for possible implementation. If performed, this type of update adds new synapses to bolster 
the newfound prediction of higher-order.  
 Not all segment updates are actually performed as we also wish to keep the number of 
connected distal synapses, and the predicted cells they produce, sparse. If a column is already 
well predicted by an existing first-order dendrite segment, it is not necessary, and likely 
detrimental, to update synapses to bolster a similar prediction. In order to enforce sparsity in the 
temporal pooler, one learning cell is always designated during each cycle for each active column. 
A cell is marked learning if 1) a sufficient number of learning cells predicted it last cycle or, 2) it 
was the most strongly predicted by distal dendrite segments. 
 Segment updates of type one are always performed the same cycle they are created and 
always positively update the segment’s synapses. Updates of types two and three are processed at 
their verification time based on the state of their associated cell during that cycle. If the cell is 
active at the verification time, and is a learning cell during that cycle, the update is performed 
positively. This positively updates correct predictions concerning learning cells. If the cell is not 
learning, the update is not performed, and is discarded, keeping temporal learning minimal. 
Finally, if the associated cell is inactive at the verification time, then the update is performed and 
negatively modifies the segment’s synapses. This weakens predictions that do not come true. 
 We have delved into the details of PC-CLA, which adds predictive coding message passing to 
CLA allowing the algorithm to be deployed hierarchically. We hypothesize that PC-CLA will be 
generally useful in implementing representations, memory, and processing in systems-level 
cognitive architectures. 

8.  Testing 

Here we report on the results of initial tests of our implementation of PC-CLA as a stand-alone 
algorithm, not yet integrated within the LIDA architecture. The implementation is based on the 
ideas of the original CLA, but adds predictive coding and 2D receptive fields as mentioned. We 
use randomly generated 2D Boolean patterns, and sequences of such patterns, as an initial means 
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of obtaining data. One advantage of such patterns is that they are generic and introduce no bias. 
However, they may not produce patterns challenging to discriminate, since random patterns are 
likely to be quite different from one another.  
 While the CLA has been around for some years, the algorithm has not seen much in the way 
of published work reporting its abilities, or the effects of parameters. The two tests shown below 
constitute a representative sample of a larger body of tests that explore the spatial pooling 
operation (Steps 2, 6), temporal pooling (Steps 2, 3, 6), and the full PC-CLA. To our knowledge, 
hierarchy with the CLA has not been previously studied.  

8.1  Noise Robustness Test 
Recall that the spatial pooling operation attempts to produce a sparse distributed set of active 
columns representing the current bottom-up input. One benefit of sparse distributed 
representation is the noise robustness it affords. To determine how robust the CLA’s active 
columns representations are to noise, we tested the effect of varying amounts of noise, from 0% 
to 50%, added to input patterns, on the inputs’ resulting sets of active columns. We also varied 
the input activity, or the percentage of bits in the input patterns that were true, from 1% to 5%, 
since the CLA works best with, and tends to produce outputs having, around a 2% true bit rate. 
 Concretely, for each input activity condition, i, a single Boolean input, with 256 dimensions, 
was generated with i percent of its bits randomly set to true. Next, in a developmental period, the 
input was shown to a Cortical Region performing just the spatial pooling operation for 250 cycles. 
After this period the final set of active columns was recorded. Then, for a range of added noise 
amounts, the original input pattern was corrupted by that amount. Noise was added uniformly to 
true bits and false bits alike, turning the former false and the latter true. For a particular input 
activity and noise amount, 500 trials were performed, each generating a noisy version of the input, 
showing it to the same Cortical Region for a time, and comparing the “noisy” set of active 
columns with the original set. We computed the normalized taxicab distance between the two sets, 
which, here, is the total number of errors in the active columns representation, both false positives 
and false negatives, divided by total number of columns in the region. The scores were averaged 
across all trials for a given experimental condition. Figure 9 summarizes the results of this test. 
 

 
Figure 9. The average normalized taxicab distance, between the original active columns representations of 
inputs and noisy versions of the same inputs, as a function of the rate of true bits in the inputs. The legend 
to the right shows some different noise conditions. We identify noise robustness in these results, e.g., the 



R. J. MCCALL AND S. FRANKLIN 

 164 

addition of 10% noise yields less than 4% error in the active columns representation, while 50% noise gave 
about 10% error or less. Also, the data suggest a benefit in keeping the true bit rate low, which is especially 
true for higher amounts of added noise. 

8.2  Two Hierarchical Levels Test 
This test looks at the effects of having top-down predictions from a higher Cortical Region 
influence the cell activity of a lower region (Step 4b). We compare a two-level two-region 
network in which the higher region sends influencing top-down predictions into the lower level, 
with the same network that doesn’t send top-down predictions. We run the network on sequences 
of 2D Boolean patterns, each pattern having 529 dimensions, 2% of which are randomly set true.  
 In both conditions, we first create two Cortical Regions with the same parameters except for 
the columns per input parameter. While the lower Cortical Region had 4 times as many columns 
as inputs while the second Cortical Region had 1/cellsPerColumn as many to compensate for the 
fact that the first Cortical Region’s output is cellsPerColumn times greater than its input.  
 In each of 100 trials, a sequence of 2D patterns having length 8 was generated. Then, in a 
developmental period, the sequence was shown 200 times to the network. Both regions performed 
spatial and temporal pooling operations either with or without top-down predictions. We 
controlled for the effects of the Cortical Regions processing prediction errors by having both 
regions process only their respective input. The effect of processing prediction errors is the 
subject of another test. 
 After the developmental period, the regions’ current states, which encode context, are cleared, 
and the same sequence is again shown to the network, in the same manner as just described, 
except with learning turned off. For this test presentation, for each pattern in the sequence (except 
the first), the first-order temporal prediction accuracy of the active columns is recorded for both 
regions in terms of the F-score. Similarly, we also assess the top-down prediction accuracy of 
each region with respect to its input at each step in the sequence. Across each sequence and all 
sequence trials these two measures were averaged. We measure the accuracy of both top-down 
and temporal predictions using the F-score measure (van Rijsbergen, 1979) with beta8 set to 10. 
Figure 10 summarizes the results. 
 

 
Figure 10. The left graph plots the average F-score of the accuracy of top-down predictions as a function of 
hierarchical level. Top-down influence did not affect the first region’s accuracy, but significantly improved 
the second. The right graph is similar except the dependent variable is the temporal prediction accuracy of a 
given level. Again the top-down influence did not change accuracy for the first level but did for the second.   

Conclusions 
In the future, once well understood, PC-CLA must be extensively tested on real-world data 

                                                      
8 The F-score measures the effectiveness of retrieval with respect to a user who attaches beta times as much importance 
to recall as precision. This implies we tolerate false positives 10 times more than false negatives. 
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streams including visual, auditory, etc. It must also be studied on a larger scale with more than 
two hierarchical levels, and with high-dimensional input. Future work includes the addition of 
precision estimation to model the uncertainty in information sources based on accumulated 
prediction error. Implementing a cognitive system like LIDA with a PC-CLA network brings 
additional challenges, such as interfacing a PC-CLA network with Sensory-Motor Memory for 
action execution, and developing methods to build in preferences for goal-directed agents. 
 We identified several guiding principles on the nature of perceptual representation, perceptual 
inference, and the associated learning processes. Guided by these principles, in particular the free-
energy principle, we presented a predictive coding extension to the HTM Cortical Learning 
Algorithms, termed PC-CLA. We propose PC-CLA as a potential building block for the systems-
level LIDA cognitive architecture that fleshes out LIDA’s internal representations, memory, 
learning and attentional processes, and takes an initial step towards the comprehensive use of 
distributed and probabilistic (uncertain) representation throughout the architecture. Finally, we 
presented some results of initial tests of the algorithm. 
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