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I. Introduction 
In order to successfully develop agents with the LIDA Framework, a basic understanding of 

the LIDA Model and its analogues in the Framework is necessary. The LIDA Model is both a 
conceptual model of minds and a computational model that provides an architectural design for 
autonomous agents.  The LIDA Framework is a partial implementation of the LIDA Model in the 
form of a software framework using the Java programming language. Throughout our discussion, 
the reader should bear in mind the differences between the Model and the Framework. A concept 
may have a different meaning in the context of the Model than it does in the context of the 
Framework. The Framework constitutes one, but not the only, way of implementing the Model. 

 This LIDA Tutorial introduces the user to the basics of designing and implementing agents 
based on the LIDA Model using the LIDA Framework.  This document begins with a high-level 
description of the LIDA Model and Framework.  A more detailed description can be found in the 
paper “The LIDA Framework as a General Tool for AGI” (Snaider, McCall & Franklin, 2011). 
Next some specifics of the Framework’s modules, processes, and fundamental data structures are 
detailed.  A brief description of how an agent’s architecture is specified declaratively by an XML 
file follows.  Then, a high-level description of the Framework’s default implementations of 
modules, processes, data structures, etc. is given.  Finally, several Appendices appear, including 
a glossary, and additional details about the Framework. 

a.   The LIDA Model 
The LIDA Model (Franklin and Patterson 2006; Ramamurthy et al. 2006; Baars and Franklin 

2009) is a broad, conceptual and computational model covering a large portion of human 
cognition. Based primarily on Global Workspace theory (Baars 1988, 2002), the model 
implements and fleshes out a number of psychological and neuropsychological theories. The 
LIDA computational architecture is derived from the LIDA cognitive model. The LIDA Model 
and its ensuing architecture are grounded in the LIDA cognitive cycle. Every autonomous agent 
(Franklin and Graesser 1997), be it human, animal, or artificial, must frequently sample (sense) 
its environment and select an appropriate response (action). More sophisticated agents, such as 
humans, process (make sense of) the input from such sampling in order to facilitate their 
decision-making. The agent’s “life” can be viewed as consisting of a continual sequence of these 
cognitive cycles. Each cycle consists of units of sensing, attending and acting. A cognitive cycle 
can be thought of as a moment of cognition, a cognitive “moment.” 

We will now briefly describe what the LIDA Model hypothesizes as the rich inner structure of 
the LIDA cognitive cycle. More detailed descriptions are available elsewhere (Baars and 
Franklin 2003, Franklin et al. 2005). During each cognitive cycle the LIDA agent first makes 
sense of its current situation as best as it can by updating its representation of its current 
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situation, both external and internal. By a competitive process, as specified by Global 
Workspace Theory, it then decides what portion of the represented situation is most in need of 
attention. Broadcasting this portion, the current contents of consciousness, enables the agent to 
chose an appropriate action and execute it, completing the cycle. Learning also takes place with 
the broadcast. 

 

 
Figure 1.  The LIDA Model Diagram 

b.   The LIDA Framework 

Why use a software framework? 

Intelligent software agents can be exceedingly complex systems and, as such, are difficult to 
implement and to customize. Frameworks have been applied successfully in large-scale software 
engineering applications. A framework constitutes the skeleton of the application, capturing its 
generic functionality. Frameworks are powerful as they promote code reusability and 
significantly reduce the amount of effort necessary to develop customized applications. 

Features of this framework 

Main features of the framework include default implementations of the major LIDA modules 
and several abstract classes for the generic parts of an agent architecture. Thus the framework 
can be used to implement other agent architectures besides LIDA. These generic parts are 
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described briefly as follows: A module is a cohesive collection of representations (data) and the 
processes the operate on them. A task is a short algorithm that can run repeatedly implementing a 
small process. Several data structures implement common internal representations. A dedicated 
task manager supports the multithreaded execution of tasks. A configurable GUI displays the 
current internal state of the processes and data in the system. A factory is used to create common 
data structures and strategies, which encapsulate common algorithms.  Finally an XML parser is 
used to load and create an agent from a declarative XML file. 

Relationship between the LIDA Framework and the LIDA Model 

The Framework allows easy customization of an agent’s architecture.  Each code element in 
the Framework is encapsulated so that its functioning is coupled as loosely as possible with other 
code elements.  Thus, all modules and processes depicted in the LIDA Model diagram may, but 
need not, be implemented.  Moreover, the chosen modules and processes may be implemented 
using the default implementations provided with the Framework, or with custom code written by 
the user.   

While default implementations are provided for many modules and processes, the user will 
need to develop domain-specific code for the agent’s environment (or at least a sensory interface 
to its environment), its Sensory Memory module, and likely its Sensory-Motor Memory module 
as well.  The relationship between the Framework and the Model is summarized in the following 
bullet points.  See Section IV for details. 

• The generic idea of a module in the Model is specified by the FrameworkModule 
interface 

• Particular modules in the Model are typically specified by an interface, e.g., the 
Procedural Memory module is specified by the ProceduralMemory interface. 

• Module processes in the Model are implemented using tasks of various types, which 
are themselves implementations of the FrameworkTask interface 

• Time in the Model is represented by the Framework’s internal time mechanism 
measured in a unit called the tick 

• Asynchronous execution in the Model is implemented by concurrent execution of 
task s, which is managed by the TaskManager 

• Communication between modules in the Model is implemented using listeners 
(observer design pattern) implementing the ModuleListener interface  

• Nodes and Links in the Model are implemented using NodeStructures which, 
consisting of Nodes and Links  

• The activation of Nodes, Links and other elements of the LIDA Model is achieved by 
an implementation of the Activatible interface. This implementation also includes 
Strategies that control the decay and excitation of these elements. 
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Consider the following example: in the LIDA Model, a conscious broadcast is sent from the 
Global Workspace during each cognitive cycle. This broadcast is sent to most modules in the 
Model, as illustrated by the arrows in the LIDA Model diagram (Figure 1).  However, modules 
in a Framework agent will not receive conscious broadcasts unless they implement the 
BroadcastListener interface and register themselves as listeners of the GlobalWorkspace 
module. 

II. Basics of the LIDA Framework 
The LIDA Framework provides a generic structure for the creation of agents using the 

architecture defined by the LIDA Model (see Figure 1).  It is worth noting, however, that the 
Framework’s flexibility will allows it to possibly support other architectures as well.  Agents 
created with the Framework are composed of modules, listeners, and tasks. Tasks are run using 
TaskSpawners, which work closely with the TaskManager.  In this section we describe each of 
these basic features of the Framework. 

a.   Modules and Listeners 

Modules 

The LIDA Model has numerous modules as part of its conceptual architecture. Examples 
include Sensory Memory, Perceptual Associated Memory, and the Workspace.  Some of the 
modules are highly domain-dependent (e.g. Sensory Memory and Sensory-Motor Memory), 
while others are very much domain-independent (e.g. the Workspace).   

The LIDA Framework provides concrete default implementations for the domain-independent 
modules, which are easily customizable. Abstract default implementations of the domain-
dependent modules and tasks are also provided.  These classes must be extended for each 
particular agent implementation. 

Modules may contain submodules, for instance, the Workspace contains the Current 
Situational Model as submodule.  Each submodule is itself a module. 
In the LIDA Framework, modules are specified generically by the FrameworkModule interface.  
A default implementation, the abstract class FrameworkModuleImpl, is provided.  Modules 
extending this implementation inherit a name, zero or more submodules, and a TaskSpawner to 
help run tasks. This default implementation specifies a structure for the decay of the module and 
its submodules and specific modules must implement their own algorithm to decay the module. 
Similarly FrameworkModuleImpl defines a default method for adding listeners, and specific 
module implementations should override it and handle the specifics.  Specific module 
implementations must also implement methods and processes necessary to achieve their specific 
functions.  
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Each module in the LIDA Model has a corresponding interface in the Framework that 
specifies the required methods for that module’s implementation.  Custom module 
implementations can be used provided they extend from FrameworkModuleImpl and 
implement the appropriate interface.  For instance, an implementation of Sensory Memory will 
extend FrameworkModuleImpl and will implement the SensoryMemory interface. 

Many default implementations of modules and tasks in the framework inherit from the few 
key abstract classes (see Appendix 2).    

Listeners 

Modules must pass information to each other in order to have a connected system. These 
communication channels are indicated by arrows in the LIDA Model Diagram.  The LIDA 
Framework utilizes a design pattern known as the Observer Pattern as a generic way to 
implement communication between modules.  To this end, many modules in the Framework 
provide a Listener interface, which specifies the methods necessary to receive content from that 
module.  Any module wishing to receive the communications sent by this module must 
implement this interface (i.e. it must implement all of the methods in the Listener interface) and 
register itself to the sending module.  The Listener methods allow the producer module to send 
information to all of its registered listeners in a generic way, without needing to know specific 
details about the listening modules themselves. 

An example of the use of the Observer Pattern is illustrated by the relationship between the 
GlobalWorkspace module and the BroadcastListener interface.  The Model demands that 
most modules receive the conscious broadcast from the GlobalWorkspace.  Thus these 
modules in the Framework must implement the BroadcastListener interface.  Each 
receiving (consumer) module must then register itself with the GlobalWorkspace module 
using its addBroadcastListener method.  When the GlobalWorkspace needs to send a 
broadcast, it simply calls the receiveBroadcast method of each of the registered listeners. 

Listeners are not the only mechanism to create a relationship between modules.  Any module 
can have one or more associated modules. In this relationship the associated module is more 
tightly coupled than if it were added as a listener. Modules are associated using the 
addAssociatedModule method in the FrameworkModule interface.  This allows for close 
relationships between modules that may be required for some modules’ functionality.  For 
instance, the AttentionCodeletModule needs to directly access to both the Workspace 
and GlobalWorkspace modules. Using codelets this module will check and retrieve content 
from the Workspace. Also its codelets will be adding coalitions directly to the Global 
Workspace (and only this module). 



The LIDA Tutorial:  II.  Framework Basics 7 

b.  Tasks, TaskSpawners, and the TaskManager 

Tasks 

In the LIDA Framework, the processes of the LIDA Model are implemented using 
FrameworkTasks, or simply “tasks”.  A task can be thought of as a “demon” as in Jackson’s 
Pandemonium Theory (1987), or as a codelet a la Hofstadter (1995). Every agent application has 
a single TaskManager that is the heart of the LIDA Framework’s simulation engine.  The 
TaskManager uses a pool of threads for the execution of tasks. Modules do not directly use the 
TaskManager; rather, each module in the Framework has an associated TaskSpawner that 
works with the TaskManager.  Next we describe additional aspects of the TaskManager. 

The TaskManager controls the application’s internal time.  The unit of this time is termed 
the tick.  All tasks are scheduled for and executed at a particular tick. The current tick is an 
integer starting at zero, which is incremented as the execution of an agent simulation progresses.  

Each task has an algorithm contained in its runThisFrameworkTask method, a scheduled 
tick (i.e., the tick at which it will be executed next), and a status. Tasks can be run a single time 
or repeatedly.  For instance, to pass activation to a Node (see below), an ExciteTask is 
executed once.  On the other hand, a feature detector is implemented as a task that runs every 
few ticks.  The run frequency is determined by the ticksPerRun attribute of the task. 
Additional features exist for the fine tuning of this mechanism. 

During a task’s execution, its status may change, and, after execution, the task is returned to 
the TaskSpawner that originally ran it.  The TaskSpawner then has an opportunity to process 
the task’s result, and, based on the task’s status, determine whether the task should be scheduled 
for further execution.   

The TaskManager  

The TaskManager  is in charge of the execution of tasks and the application’s internal time. 
It receives tasks to be run from TaskSpawners.  It schedules these tasks for execution in a queue 
called the task queue.  The task queue is ordered by tick and each position in the queue contains 
the tasks to be executed during at that tick.  

The TaskManager’s main loop cycles through the following sequence:  1) Decay all 
modules; 2) Execute all tasks scheduled for the current tick and wait for them to finish; 3) 
Possibly refresh the GUI; and finally, 4) increment the current tick. The TaskManager  has 
public methods to start, stop, and resume the execution of this sequence. The Start/Pause button 
in the toolbar of the Framework GUI uses these methods to control the execution of an agent 
simulation. 

The tick duration is the minimum amount of real time it takes for a single tick to occur.  This 
can be set by the user to control the apparent speed of a simulation.  The actual duration of a 
given tick may exceed this minimum because the execution of the scheduled tasks may take 
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longer than the specified duration.  (This depends on the speed of the microprocessor and the 
number and complexity of the tasks scheduled for that tick.) If tick duration is set to 0, task 
execution will proceed as quickly as possible (this speed will be machine-dependent).    

Stated another way, the execution of any task always takes exactly one tick in Framework 
time.  Depending upon the size of the TaskManager’s thread pool, multiple tasks can be 
executed concurrently, but still within a single tick.  Some tasks may take longer (in real time) 
than others to execute, and the execution of many concurrently scheduled tasks may take longer 
than the execution of a few, so due to this variability, ticks do not in general have a uniform 
length in units of real time.   

In the agent declaration file (see Section IIIa), the TaskManager  can be configured using 
two parameters, tickDuration, and maxNumberOfThreads.  The former parameter is the 
starting tick duration and the latter determines the size of the thread pool that the TaskManager  
uses to execute tasks.  Additionally, the tool bar in the Framework’s GUI provides a means to 
adjust tick duration interactively. 

c.  Nodes, Links, and NodeStructures 
Nodes and Links are major data structures in the LIDA Framework.  Both have activation, a 

measure of current salience, which can be excited in several situations and which decays over 
time.  A Node can represent features, objects, events, concepts, feelings, actions, etc.  Every 
Node is grounded in a Node in PAM called a PamNode. Nodes are instantiations of PamNodes. 
Every Node in a simulation has a reference to its originating PamNode in PAM, as well as an id 
that uniquely identifies the Node.   

A Link connects a Node to either another Node or another Link.  A Link that connects two 
Nodes is known as a simple Link.  On the other hand, a complex Link connects a source Node to 
a simple Link. For example, given two Nodes, B and C, connected by a simple Link, L2, a 
complex Link would be one that connects a third Node, A, to the simple Link L2.   Additionally, 
Links have a LinkCategory attribute that specifies the nature of the relationship represented by 
the Link.  For instance, a red ball can be represented by a “ball” Node connected to a “red” 
Node by a Link with LinkCategory “feature”. Both Nodes and Links implement the 
Linkable interface, and have an ExtendedId that uniquely identifies any Linkable element.  

The Framework allows the specification of different subtypes of Nodes and Links.  In this 
way custom Nodes and Links can have their own implementation class that customizes their 
properties and functionality.  All Node and Link instances, both default and custom types, are 
created dynamically by the ElementFactory (discussed below). 

A NodeStructure is a graph-like structure composed of Nodes and Links, and is the 
“common currency” for information exchange between most modules.  The 
NodeStructureImpl implementation provides methods to add, remove, or retrieve, and 
manage the Nodes and Links contained inside it.  When a Node or a Link is added to a 
NodeStructure, a copy of the element is added (and returned) rather than the element itself.  
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This prevents the same Java object from existing in multiple NodeStructures, a problematic 
situation. While the objects are different, the new Node retains (at least to start) the same 
attributes as its original Node including its id. This also allows the new element to have different 
parameters and/or functionality than the original element.  For example, when a Node in PAM is 
added to the Workspace’s Perceptual Buffer, the new Node may have its own activation and 
different mechanism for its excitation and decay. 

d.  Activation and Strategies 
Nodes, Links, and other elements including coalitions, codelets, schemes, and behaviors have 

activation. Activation is represented as a real number between 0.0 and 1.0 inclusive.  In general 
activation represents the salience of an element. The elements mentioned above all have a 
current activation, which measures their salience at the current moment.  Other elements have an 
additional activation called base-level activation, which is used to implement learning.  The 
Framework provides the Activatible and Learnable interfaces for the implementation of 
elements with these functionalities.   

An Activatible element has excite and decay methods to regulate its activation 
appropriately.  Elements are typically removed if their activation decays below a certain removal 
threshold.  The Activatible must specify two Strategies to determine how its activation level 
changes when its excite and decay methods are called.  In this way, the excitation and decay 
functions of elements can easily be configured.   

A Learnable element, implementing the Learnable interface, is an extension of 
Activatible. In addition to a current activation, it additionally has a base-level activation to 
implement learning. A PamNode is one example of a Learnable element; the base-level 
activation might correspond to the past usefulness of the concept represented by a PamNode.  
The current version of the LIDA Framework does not yet implement learning algorithms in its 
default implementations. In order to implement learning at this time, custom module 
implementations could be developed that implement a learning method. Such an algorithm 
would modify the base-level activation of Learnable elements.   

As mentioned above, the LIDA Framework uses the Strategy design pattern to implement 
excitation and decay of Activatible elements. This approach allows for fine control, easy 
modification, and reuse of activation mechanisms. Default implementations for linear excitation, 
sigmoid excitation, linear decay and sigmoid decay are provided with the LIDA Framework.  
Strategies are obtained from the ElementFactory (see next section). 
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e. Framework Tools 

ElementFactory 

New instances of many elements in the LIDA Framework, such as Nodes, Links, tasks and 
Strategies can and should be created by requesting them from the ElementFactory.  This 
utility implements the Singleton and the Factory design patterns. In general factories provide 
valuable encapsulation of the constructor of the various elements it produces. This also allows 
for the addition of new elements types using different classes such as new Node and Link types, 
tasks (which include feature detectors, attention codelets, and others), and strategies (which 
include excite, decay, and others).  Additionally element types can specify particular activation, 
strategies, and parameters.  For example several Node types can be defined that all use the same 
underlying class, e.g. NodeImpl, but have different excite and decay strategies and initial 
activations. Each element type definition includes a name, which is used to request a new 
instance of that type from the ElementFactory. The element types that the ElementFactory 
can produce can be configured in the factoryData.xml file. Type definitions include the name, 
class and parameter values that establish the factory settings for each element type.  

The Graphical User Interface (GUI) 

The LIDA Framework includes a customizable GUI that allows the real-time display of 
module contents, parameter values, running tasks, and other variables of interest during the 
operation of a LIDA agent.  A “GUI Panels” properties file allows the addition of default or 
custom panels and configures the appearance of the GUI Panels in the Framework’s GUI. 

III. Framework Initialization 
The Framework’s initialization package contains the classes involved in the run-time 

setup of an agent simulation.  The class AgentStarter provides methods to run an agent 
simulation.  It also provides a main method that can be executed from the command line with a 
parameter specifying the path of the primary configuration file.  The start method of 
AgentStarter performs the following steps:   

1) It loads the definitions of the element types found in a secondary configuration file known 
as the factory data file.  This file is specified in the lida.elementfactory.data 
property of the primary configuration file (the default name of which is 
lidaConfig.properties).   

2) An instance of the Agent class is created based on the contents of the agent declaration 
file.  This file is specified in the lida.agentdata property of the primary configuration 
file.  See the following sections for further details. 
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3) If the lida.gui.enable property in the primary configuration file is set to true, the 
framework’s graphical user interface is created using the information found in the GUI 
configuration files, specified by the lida.gui.panel and lida.gui.commands 
properties of the primary configuration file. 

4) The agent is loaded  

5)   The GUI is loaded and displayed. 

In the following sections, some of the details of this process will be described. 

a.   The Agent Declaration File 
The file specified in the lida.agentdata property of the primary configuration file 

contains the declaration of the components of the agent, and is known as the agent declaration 
file.  This is an XML document that contains the root tag, <lida>, and has the following first 
level nested tags. 

• <globalparams> — an optional tag that contains parameters to be used during the 
module initialization process 

• <taskmanager> — contains parameters for the configuration of the TaskManager , 
as explained in a previous section 

• <taskspawners> — contains subtags of type <taskspawner> that declare the 
TaskSpawner types available to the agent’s modules 

• <submodules> — contains subtags of type <module> that specify the classes and 
parameters necessary to create the modules of the agent; optionally, the <module> 
subtags may contain nested tags of type <associatedmodule>, <initialtasks>, 
<initializerclass>, or even <submodules>, the latter allowing for declaration 
of nested modules 

• <listeners> — contains subtags of type <listener> that declare the listener 
connections between the agent’s modules 

A formal specification of these tags can be found in the file LidaXMLSchema.xsd. 

b.   AgentXMLFactory 
The AgentXMLFactory class loads the agent declaration file, parses it, creates the 

components declared in the file, and assembles them into an Agent object.  The getAgent 
method performs the following sequence of actions. 

1) The global parameters, if any, are read and added to the GlobalInitializer class. 
2) The TaskManager is created. 
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3) The TaskSpawners are created. 
4) The modules are created.  At this time, the init method of each module is called. 
5) The ModuleListener connections are established. 

6) Optionally, the modules are associated, if this was specified in the module declarations. 
7) Each module that specifies an initializer class in its declaration is re-initialized using the 

specified class. 
8) For each module that has as initial tasks specified in its declaration, the specified tasks are 

created, and the module’s TaskSpawner schedules them for execution. 

c.   The Factory Data Definition File 
The file specified in the lida.elementfactory.data property of the primary 

configuration file contains the definition of the Strategy, Node, Link, and task types to be 
added to the ElementFactory at startup, and is known as the factory data definition file. Note 
the ElementFactory internally defines several default types not specified in this file including 
“NodeImpl”, “PamNodeImpl”, “noDecayPamNode”, “LinkImpl”, “PamLinkImpl”, 
“noDecayPamLink”, “defaultDecay”, “defaultExcite”, “noDecay”, “noExcite”.   
This XML document that contains the root tag, <LidaFactories>, and has the following first 
level nested tags. 

• <strategies> — contains subtags of type <strategy> that define the Strategy 
types to be loaded into the ElementFactory 

• <nodes> — contains subtags of type <node> that define the Node types to be loaded 
into the ElementFactory 

• <links> — contains subtags of type <link> that define the Link types to be loaded 
into the ElementFactory 

• <tasks> — contains subtags of type <task> that define the task types to be loaded 
into the ElementFactory 

d.   The Initializable Interface 
Several elements in the Framework implement the Initializable interface, including the 

default implementations of Node, Link, and Strategy.  This interface provides a uniform way 
to initialize elements with parameters. Subclasses that users will typically work with need only 
override the init method specified by this interface to perform custom initialization of the 
element.  Within the overriding init method the getParam method should be used to retrieve 
parameters set in the configuration files. 
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The FullyInitializable interface extends Initializable and additionally allows the 
association of modules using the setAssociatedModule method.  FrameworkModule and 
FrameworkTask are examples of FullyInitializable elements.  

IV. Default Implementations of LIDA Modules 
Default implementations of the following LIDA modules are included in this version:  
• Environment (abstract) 
• Sensory Memory (abstract) 
• Perceptual Associative Memory 
• Transient Episodic Memory 
• Declarative Memory 
• Workspace 
• Structure-Building Codelets 
• Attention Codelets 
• Global Workspace 
• Procedural Memory 
• Action Selection 
• Sensory-Motor Memory   

There are several details to mention regarding the default module implementations: 
The Environment module is designed to be one that the user provides. The framework 

provides a basic abstract class, EnvironmentImpl, which should be extended implementing 
either an environment for the agent in Java or serving as an interface between a non-Java 
environment implementation and the agent. Users’ Environment module implementations 
should, at a minimum, implement the methods getState and processAction, which allow 
the environment to be sensed and process agent actions respectively.  

The Sensory Memory module is currently provided in the form of an abstract class, as sensory 
memories typically vary greatly from domain to domain. Thus users should extend from the 
default implementation, SensoryMemoryImpl, and implement the domain-specific parts. There 
are plans for a Sensory Memory implementation with object recognition algorithms in future 
framework versions.  

The default Action Selection implementation provided in the current version does not 
implement all the features that are described by the LIDA Model.  An enhanced Behavior 
Network (Maes 1989) implementing these additional features is planned for the next version of 
the Framework.  

The two episodic memories describe by the LIDA Model, Transient Episodic Memory and 
Declarative Memory, are both implemented using a sparse distributed memory (Kanerva, 1988).  
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Finally, several learning algorithms specified by the LIDA Model have not yet been 
implemented for any default module in this version. 
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Appendix 1:  Glossary of Terms 
Action 
An action is a conceptual memory of a procedure the agent can perform, e.g., grab a cup, which 
can have several associated algorithms for execution in Sensory-Motor Memory. 
 
Activation 
Activation can represent different things, but, generally, it represents the salience or usefulness 
of an element. Nodes, Links, and other elements such as coalitions, codelets, and behaviors, have 
activation. 
 
Aggregate-Coalition-Activation Trigger  
A broadcast trigger that fires when the sum of the activations of all coalitions in the Global 
Workspace is greater than a certain threshold. 
 
Attention Codelet 
An Attention Codelet is a type of task that tries to bring particular Workspace content in the 
Current Situational Model to the Global Workspace.  Upon finding such content it creates a 
coalition containing the content and adds it to the Global Workspace to compete for 
consciousness. 
 
Autonomous agent 
A system situated within and a part of an environment that senses that environment and acts on 
it, over time, in pursuit of its own agenda, and so as to affect what it senses in the future. Most 
animals and software agents are examples. 
 
Background Task 
A task, typically internal to a module, which implements a process integral to the module's 
functionality. Such tasks run repeatedly “in the background”. An example is the 
SensoryMemoryBackgroundTask that runs the agent's sensors each time it is executed. 
 
Base-Level Activation 
Activation that represents the general usefulness and relevance of an element in the past. Its 
value can range from 0.0 to 1.0 inclusive and is modified by learning. 
 
Behavior 
A behavior is an instantiated scheme. Schemes are instantiated in Procedural Memory.  
Instantiation binds variables in the scheme’s context and result, based on the current conscious 
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broadcast.  Instantiated schemes (behaviors) are then sent to Action Selection where they 
compete with each other for selection and execution. 
 
Behavior Network 
An implementation of the Action Selection module inspired by Maes’ (1989) Behavior Net.  It 
selects a behavior to execute at the conclusion of each cognitive cycle.  This selection is based on 
the activation of the Behavior, which is itself dependent on the current contents of consciousness 
as well as the relationship the Behavior has with other Behaviors currently in the Behavior 
Network. 
 
Bit Vector 
Bit vectors are typically large vectors with values of either 0 or 1. They are used in the Sparse 
Distributed implementation of Episodic Memory as a means to store episodic memories. 
 
Broadcast Trigger 
A process that monitors the Global Workspace for a particular condition. Upon detecting that 
condition it prompts the Global Workspace to hold a competition for consciousness. 
 
Coalition 
A coalition contains a portion of the Current Situational Model that is brought to the Global 
Workspace as a unit along with the attention codelet that created it.  Coalitions compete for 
consciousness based on their activation derived from both the activation of the content and of the 
attention codelet.  The winning coalition’s contents are broadcast throughout the system. 
 
Cognitive Cycle 
In the LIDA Model, a sequence of processes that occur over time beginning with the sensing of 
stimuli, proceeding with understanding, then continuing with attention (consciousness), and 
ending with action selection and execution.  Thus this cycle can be conceived of as having three 
main phases: understanding, attention (consciousness), and acting. Multiple cognitive cycles may 
be occurring in parallel (cascade): as one cognitive cycle has reached the action phase another 
could be in the attention phase while a third is in the understanding phase. A cognitive cycle can 
be thought of as a cognitive "atom" — the basic unit on which higher-level cognitive processes 
are built. The agent’s “life” can be viewed as consisting of a continual cascade of these cognitive 
cycles. 
 
Complex Link 
A Link that has a Node for its source and a simple Link for its sink.  Complex Links cannot be 
sinks. 
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Conscious Contents Queue 
The Conscious Contents Queue holds the contents of the last several seconds of broadcasts and 
allows LIDA to ground and produce time-related concepts including duration. 
 
Current Activation 
An activation that represents an element’s current salience.  Can take a value from 0.0 to 1.0 
inclusive. 
 
Current Situational Model 
The Current Situational Model is a buffer in the Workspace containing structures representing 
the agent’s current situation.  It contains a perceptual scene comprised a real and virtual part. The 
former consists of the current internal representation of the real world while the latter consists of 
the current internal rememberings, plannings or imaginings of the agent. 
 
Decay Strategy 
A strategy that decreases an activation value over time (in ticks). May be implemented using a 
sigmoid function for example. 
 
Declarative Memory 
Declarative Memory is a module in the LIDA Model, also called long-term episodic memory. 
Declarative Memory can be subdivided into the autobiographical memories of events, e.g., your 
last birthday celebration, and the semantic memory of facts like “Paris is the capital of France.” 
 
ElementFactory 
The ElementFactory’s main purpose is to create new element objects (e.g. Nodes) in a 
centralized, configurable way.  This class implements the singleton and factory design pattern 
and thus provides an encapsulation of the constructors of basic framework elements.  It is the 
preferred way to obtain new Nodes, Links, some tasks, and Strategies. 
 
Episodic Memory 
Episodic Memory is a memory for events, the what, the where, and the when of a given episode.  
In the LIDA Model it is comprised of Transient Episodic Memory and Declarative Memory. 
 
Excite Strategy 
A strategy that increases an activation value by a specific amount. May be implemented using a 
sigmoid function for example.  Note that exciting activation value with a negative amount will 
likely decrease the activation. 
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Feature Detector Algorithm 
A feature detector algorithm is a specific type of task. Its function is to detect a particular feature 
in Sensory Memory and excite a PAM Node representing this feature in Perceptual Associative 
Memory. 
 
Global Workspace 
A module where coalitions, created and added by AttentionCodelets, compete for consciousness. 
The content carried by the winning coalition becomes the current contents of consciousness and 
it broadcast throughout the system. 
 
Global Workspace Theory 
A theory of consciousness and cognition proposed by Baars, which describes consciousness 
functionally as a process by which many unconscious processors compete for access to a “Global 
Workspace.”  The winning processor has its contents broadcasted globally throughout the 
cognitive system.  It is one important foundation theory of LIDA, which implements the Global 
Workspace and global broadcast. 
 
GUI Command 
GUI-generated events, e.g. a button press, that require a response in the model (the agent) are 
implemented as GUI commands. These are thus encapsulations of commands from the GUI to be 
performed in the model. GUI commands implement the Command design pattern. 
 
Individual-Coalition-Activation Trigger  
A broadcast trigger that initiates a competition for consciousness if there exists a coalition with 
activation above a certain threshold in the Global Workspace. 
 
LIDA Cognitive Model 
An integrated artificial cognitive system that attempts to model a broad spectrum of cognition in 
biological systems, from low-level perception/action to high-level reasoning. It is empirically 
grounded in cognitive science and cognitive neuroscience. In addition to providing hypotheses to 
guide further research, the model can support control structures for software agents and robots. 
 
LIDA Software Framework 
A software framework developed to allow a customizable implementation of the LIDA 
Cognitive Model. Specifically, an application programming interface (API) containing Java 
classes and interfaces that implement modules and processes according to the computational 
architecture of the LIDA Model.  Also, due to its high degree of flexibility, this framework is 
suitable for wider use in developing other cognitive architectures.  
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Link 
A connection between a source Node and a sink, which may be either a Node or a simple Link. A 
Link has a LinkCategory, which is the Link’s conceptual meaning. 
 
LinkCategory 
LinkCategory is the conceptual meaning of a Link, e.g. membership, lateral, causal, parent, none, 
etc. 
 
Listener 
Modules need to communicate with other modules. To implement this, we use the observer 
design pattern. In this pattern a “listener” module registers itself with another “producer” 
module. Each time the producer has something to send, it transmits the information to all of its 
registered listeners.  
 
Logger 
Logger is a Java utility used to log messages about important events and warnings from specific 
framework components. 
 
Module 
Similar to a module in the LIDA Cognitive Model, we generically define a module in the 
Framework. Modules contain information of various kinds, and include processes and algorithms 
with which to manipulate, modify, and move that information. All modules implement a generic 
module interface (API) but each one also has its own API that defines its particular functionality. 
 
Node 
A Node is a major unit of representation in the framework, which can represent a feature, object, 
category, event, etc. 
 
NodeStructure 
NodeStructure is a graph structure, containing Nodes and the Links between them. It constitutes 
the main internal representation for many framework modules. 
 
No-Broadcast-Occurring Trigger   
A broadcast trigger that initiates a competition in the Global Workspace when no broadcast has 
occurred for a certain period of ticks. 
 
No-Coalition-Arriving trigger  
A broadcast trigger that initiates a competition in the Global Workspace when no new coalition 
has been added to the Global Workspace for a certain period of ticks. 
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Perceptual Associative Memory (PAM) 
A module that makes sense of the incoming sensory information, creating additional 
understanding. Contains feature detector processes, which detect features in Sensory Memory 
and excite their associated PAM Nodes. The Node-and-Link memory of PAM is implemented as 
a semantic net with activation passing. Nodes propagate their activation to the other Nodes they 
are linked to.  Those Nodes that gain activation above their threshold become part of the current 
percept, which becomes a part of working memory (enters the Workspace). PAM is essentially 
recognition memory. 
 
Procedural Memory 
A module where schemes are stored.  Here schemes can be activated by each conscious 
broadcast, and, if this puts them over their threshold, are instantiated as behaviors and sent to 
Action Selection.  Procedural Memory essentially remembers what to do in what circumstance to 
achieve a given result. 
 
Receptive Field 
The set of units from which a feature detector (PAM Node) takes as its input. The units can be 
other PAM Nodes or elements in Sensory Memory. 
 
Scheme 
Schemes are memories, stored in Procedural Memory, for various actions (procedures), which 
may be selected for execution. A scheme consists of a context, an action and a result. With some 
reliability, a scheme’s result is expected to occur when its action is taken when its context is 
satisfied. 
 
Sensory Memory 
A module that senses the environment and holds the incoming sensory stimuli for a brief period. 
Low-level processing (e.g. color, texture, segmentation in the visual modality) of the sensory 
stimuli occurs here. Feature detectors have their receptive fields in Sensory Memory. 
 
Sensory-Motor Memory 
A module that stores algorithms (motor plans) for actuator execution.  This module receives 
selected Behaviors from the Behavior Network and determines the appropriate algorithm for 
executing the action.  The agent’s actuators then execute the algorithm. During the execution it 
receives information from Sensory Memory in an implementation of the so-called “dorsal” 
stream. 
 
Simple Link 
A Link that connects two Nodes. 
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Strategy 
Strategies are implementations of the Strategy design pattern.  They are encapsulations of 
calculations, algorithms, etc. which may have several desirable implementations.  This allows for 
flexibility, for example, either a linear function or a quadratic function could be used as a Node’s 
excite strategy (provided they implement the ExciteStrategy interface). 
 
Structure-Building Codelet 
A Structure-Building Codelet is a specific type of task. It operates with representations in the 
submodules of the Workspace making associations among representations, creating new 
representational structures, and combining similar ones. They play a role in maintaining the 
agent’s model of its current situation in the Current Situational Model. 
 
Submodules 
Modules can have submodules, which are modules themselves that are nested inside another 
module. For example, the Workspace module in LIDA has several submodules such as the 
Current Situational Model. 
 
Task 
Tasks are encapsulations of small, specialized, routines (algorithms), which typically run 
repeatedly at a specified rate. Tasks consist of an algorithm, an execution frequency, a time of 
next execution, and a status. Modules or even other tasks can create tasks to perform the small 
operations needed to achieve their specific functionalities. Tasks may run once or repeatedly.  If 
they run repeatedly the period is based on their execution frequency. 
 
TaskManager  
The TaskManager controls the scheduling and execution of all tasks in the framework. It 
maintains the Framework’s internal clock measured in ticks.  Tasks are scheduled for execution 
in accordance with this clock. 
  
Task Queue 
A queue maintained by the TaskManager, as a schedule of the execution of tasks. Each position 
in the queue represents a tick and can contain 0 or more tasks.  The TaskManager advances one 
position at a time, executing all tasks scheduled at that position (for that tick).  It does not 
proceed to the next position until all tasks scheduled for the current position have finished 
running. 
 
TaskSpawner 
A TaskSpawner is an assistant to the TaskManager, which manages tasks’ status and determines 
what to do with a task after each time it runs. 
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Tick 
Each position in the task queue represents a discrete instant in the application’s time.  These 
positions are termed ‘ticks’. All tasks scheduled for a particular tick are executed concurrently 
and the TaskManager does not advance to the next tick until all tasks scheduled for the current 
tick finish. 
 
Total Activation 
An activation value that represents the total salience of an element. It is a function of both 
current activation and base-level activation. 
 
Transient Episodic Memory 
Transient Episodic Memory is a module in the LIDA Model. It is the episodic memory that 
decays after a few hours or up to a day.  Declarative memories are formed offline from transient 
episodic memories by a process called consolidation. 
 
Workspace 
A module that receives and stores content from several modules including current percepts from 
PAM, recent local associations from Episodic Memory, and the recent contents of consciousness 
from the Global Workspace. Structure-building codelets operate on Workspace content, 
integrating structures, creating new Nodes, and building structures representing higher-level 
phenomena (events, plans, imaginations, etc.).   
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Appendix 2:  Classes and Interfaces 
The table below maps several framework classes to the broad concepts of the Framework 

described in this tutorial. However, this is not a comprehensive description of the classes in the 
Framework. For detailed description of all of the classes in the Framework see its Javadoc 
(http://ccrg.cs.memphis.edu/assets/code/doc/index.html).  

 

Framework 
Modules 

interface FrameworkModule 
abstract class FrameworkModuleImpl 

Framework Tasks interface FrameworkTask 
abstract class FrameworkTaskImpl 
interface TaskSpawner 
class TaskSpawnerImpl 
class TaskManager 

Activation interface Activatible 
class ActivatibleImpl 
interface Learnable 
class LearnableImpl 

Node, Link, and 
NodeStructure 

interface Node 
class NodeImpl 
interface Link 
class LinkImpl 
interface NodeStructure 
class NodeStructureImpl 
class ExtendedId 

Strategies interface Strategy 
interface ExciteStrategy 
interface DecayStrategy 

Initialization interface Initializable 
interface FullyInitializable 
interface Initializer 

Default Module  
Implementations 

abstract class EnvironmentImpl 
abstract class SensoryMemoryImpl 
class PerceptualAssociativeMemoryImpl 
class WorkspaceImpl 
class WorkspaceBufferImpl 
class BroadcastQueueImpl 
class EpisodicMemoryImpl 
class AttentionCodeletImpl 
class StructureBuildingCodeletImpl 
class GlobalWorkspaceImpl 
class ProceduralMemoryImpl 
class BasicActionSelection 
class BasicSensoryMotorMemory 

Default Task 
Implementations 

abstract class BasicDetectionAlgorithm 
abstract class MultipleDetectionAlgorithm 
abstract class AttentionCodeletImpl 
abstract class StructureBuildingCodeletImpl 
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Appendix 3: XML Configuration Basics 
Agent declaration file 
  In this discussion, agent.xml will refer to an xml file containing the definitions needed by 
AgentXMLFactory to build the agent in the LIDA Framework.  Any valid file name can be 
used for this file, but the proper path and file name must be specified in the 
lida.factory.data element of the lidaConfig.properties file (see also Section III). 
The agent.xml file contains the <lida> tag as its root element.  This tag contains the following 
nested tags: 

Tag Nested Tags Contents 

<globalparams> (node) global parameters available to 
Initializers during setup 

<taskmanager> (none) tick duration, max. number of 
threads 

<taskspawners> <taskspawner> name, Java class 

<submodules> <module> name, Java class, (associated 
modules), TaskSpawner, 
(initial tasks*) 

<listeners> <listener> type, sending module, 
receiving module 

 
() —indicates an optional element 
* — <initialtasks> contains one or more <task> definitions as defined in the factoryData.xml file 

  (see Section IIIc). 
 

<taskmanager> 

Two TaskManager parameters can be configured in this section: 

tickDuration is the length of one tick in milliseconds of actual time 

maxNumberOfThreads is the maximum number of threads the TaskManager will maintain. 

Let’s discuss the structure of these parameters, and for parameters in the agent.xml file in 
general.  Here is a parameter example: 
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<param name="taskManager.tickDuration" type="int">50 </param> 

All parameters appear within <param> tags.  Parameters should have a name, which will be 
parsed as a String.  It is convention to differentiate parameters across modules, tasks, etc. by 
beginning the name with the module or task name.  The variable types “int”, “double”,  
“boolean”, or “string” can be specified.  If type is specified the AgentXMLFactory will parse 
a variable of that type.  Finally, the value of the parameter goes inside the parameter tag. 

<taskspawners> 

Several TaskSpawners can be defined here for modules to use.  All definitions must include a 
name and a class name.  Optionally parameters can be defined too.  The name will be used to 
refer to the taskspawner in other places in the declarative agent file, e.g., when modules 
declare their taskspawner. 

<submodules> 

One or more <module> tags can be specified inside this tag.  The tag’s name is “submodules” 
because all these modules will technically be submodules of a special FrameworkModule 
called Agent.   

Every <module> must have a String name, a class name, and a taskspawner specified for 
it.  Optionally the module can have one or more associatedmodule specified by module name 
(as defined in this same file).  The optional <initializerclass> tag specifies the class name 
of the Initializer to be run at startup to configure this module.  Also optionally, one or more 
tasks may be specified in an <initialtasks> tag.  These will be created and added to the 
module’s taskspawner at startup. Modules declared by name within a <submodules> tag will 
be stored as submodules inside the module.  Finally a <module> can have several parameters 
defined for it was described in the previous section. 

Here is an illustrative example of a <module> declaration, which uses some, but not all, of the 
possible tags: 

<module name="AttentionModule">   

<class> attentioncodelets.AttentionCodeletModule</class> 

 <associatedmodule>Workspace</associatedmodule> 

 <associatedmodule>GlobalWorkspace</associatedmodule> 

 <taskspawner>defaultTS</taskspawner> 

 <initializerclass>init.AttentionInitializer</initializerclass> 

</module> 

As mentioned, initial tasks can be specified for modules.  Every <task> in 

<initialtasks> must specify a name parameter, as well as a class name.  Optionally the 
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declaration may specify ticksperrun – how often, in ticks, the task will be run.  Additionally 
<associatedmodule> and parameters can be defined exactly as was done for other xml nodes.   

Here is an example initial task declaration for a module: 

<initialTasks> 

 <task name="cueBackground"> 

     <tasktype>CueBackgroundTask</tasktype> 

     <ticksperrun>15</ticksperrun> 

     <param name="cueThreshold" type="double">0.4</param> 

 </task> 

</initialTasks> 

 

<listeners> 

In this xml node the inter-module communication (implemented using the observer pattern) of 
the agent is created.  Specifically, those modules implementing a ModuleListener interface 
can be added to a specified module.   The xml declaration for a listener specifies three things: 
first the type of Listener, then the transmitting module, then, finally, the listener module.  For 
example, if the PerceptualAssociativeMemory module should have the Workspace 
module as a PamListener then there should be the following declaration: 

 

<listener>  
 <listenertype>edu.memphis.ccrg.lida.pam.PamListener</listenertype> 

<modulename>PerceptualAssociativeMemory</modulename> 

<listenername>Workspace</listenername> 

</listener> 

 

An easy way to read this is that the first module will transmit content to the second module.  The 
“protocol” for the communication is the listenertype and the second module must implement 
this interface to receive the communication. 
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