

The LIDA Tutorial

Version 1.0
Cognitive Computing Research Group

The University of Memphis

Javier Snaider – LIDA Framework main designer, developer, and team leader
Ryan McCall – LIDA Framework co-developer and designer
Steve Strain – LIDA Tutorial first draft author
Stan Franklin – CCRG director and the LIDA Model founder

The LIDA Tutorial: I. Introduction 2

I. Introduction
In order to successfully develop agents with the LIDA Framework, a basic understanding of

the LIDA Model and its analogues in the Framework is necessary. The LIDA Model is both a
conceptual model of minds and a computational model that provides an architectural design for
autonomous agents. The LIDA Framework is a partial implementation of the LIDA Model in the
form of a software framework using the Java programming language. Throughout our discussion,
the reader should bear in mind the differences between the Model and the Framework. A concept
may have a different meaning in the context of the Model than it does in the context of the
Framework. The Framework constitutes one, but not the only, way of implementing the Model.

 This LIDA Tutorial introduces the user to the basics of designing and implementing agents
based on the LIDA Model using the LIDA Framework. This document begins with a high-level
description of the LIDA Model and Framework. A more detailed description can be found in the
paper “The LIDA Framework as a General Tool for AGI” (Snaider, McCall & Franklin, 2011).
Next some specifics of the Framework’s modules, processes, and fundamental data structures are
detailed. A brief description of how an agent’s architecture is specified declaratively by an XML
file follows. Then, a high-level description of the Framework’s default implementations of
modules, processes, data structures, etc. is given. Finally, several Appendices appear, including
a glossary, and additional details about the Framework.

a. The LIDA Model
The LIDA Model (Franklin and Patterson 2006; Ramamurthy et al. 2006; Baars and Franklin

2009) is a broad, conceptual and computational model covering a large portion of human
cognition. Based primarily on Global Workspace theory (Baars 1988, 2002), the model
implements and fleshes out a number of psychological and neuropsychological theories. The
LIDA computational architecture is derived from the LIDA cognitive model. The LIDA Model
and its ensuing architecture are grounded in the LIDA cognitive cycle. Every autonomous agent
(Franklin and Graesser 1997), be it human, animal, or artificial, must frequently sample (sense)
its environment and select an appropriate response (action). More sophisticated agents, such as
humans, process (make sense of) the input from such sampling in order to facilitate their
decision-making. The agent’s “life” can be viewed as consisting of a continual sequence of these
cognitive cycles. Each cycle consists of units of sensing, attending and acting. A cognitive cycle
can be thought of as a moment of cognition, a cognitive “moment.”

We will now briefly describe what the LIDA Model hypothesizes as the rich inner structure of
the LIDA cognitive cycle. More detailed descriptions are available elsewhere (Baars and
Franklin 2003, Franklin et al. 2005). During each cognitive cycle the LIDA agent first makes
sense of its current situation as best as it can by updating its representation of its current

The LIDA Tutorial: I. Introduction 3

situation, both external and internal. By a competitive process, as specified by Global
Workspace Theory, it then decides what portion of the represented situation is most in need of
attention. Broadcasting this portion, the current contents of consciousness, enables the agent to
chose an appropriate action and execute it, completing the cycle. Learning also takes place with
the broadcast.

Figure 1. The LIDA Model Diagram

b. The LIDA Framework

Why use a software framework?

Intelligent software agents can be exceedingly complex systems and, as such, are difficult to
implement and to customize. Frameworks have been applied successfully in large-scale software
engineering applications. A framework constitutes the skeleton of the application, capturing its
generic functionality. Frameworks are powerful as they promote code reusability and
significantly reduce the amount of effort necessary to develop customized applications.

Features of this framework

Main features of the framework include default implementations of the major LIDA modules
and several abstract classes for the generic parts of an agent architecture. Thus the framework
can be used to implement other agent architectures besides LIDA. These generic parts are

The LIDA Tutorial: I. Introduction 4

described briefly as follows: A module is a cohesive collection of representations (data) and the
processes the operate on them. A task is a short algorithm that can run repeatedly implementing a
small process. Several data structures implement common internal representations. A dedicated
task manager supports the multithreaded execution of tasks. A configurable GUI displays the
current internal state of the processes and data in the system. A factory is used to create common
data structures and strategies, which encapsulate common algorithms. Finally an XML parser is
used to load and create an agent from a declarative XML file.

Relationship between the LIDA Framework and the LIDA Model

The Framework allows easy customization of an agent’s architecture. Each code element in
the Framework is encapsulated so that its functioning is coupled as loosely as possible with other
code elements. Thus, all modules and processes depicted in the LIDA Model diagram may, but
need not, be implemented. Moreover, the chosen modules and processes may be implemented
using the default implementations provided with the Framework, or with custom code written by
the user.

While default implementations are provided for many modules and processes, the user will
need to develop domain-specific code for the agent’s environment (or at least a sensory interface
to its environment), its Sensory Memory module, and likely its Sensory-Motor Memory module
as well. The relationship between the Framework and the Model is summarized in the following
bullet points. See Section IV for details.

• The generic idea of a module in the Model is specified by the FrameworkModule
interface

• Particular modules in the Model are typically specified by an interface, e.g., the
Procedural Memory module is specified by the ProceduralMemory interface.

• Module processes in the Model are implemented using tasks of various types, which
are themselves implementations of the FrameworkTask interface

• Time in the Model is represented by the Framework’s internal time mechanism
measured in a unit called the tick

• Asynchronous execution in the Model is implemented by concurrent execution of
task s, which is managed by the TaskManager

• Communication between modules in the Model is implemented using listeners
(observer design pattern) implementing the ModuleListener interface

• Nodes and Links in the Model are implemented using NodeStructures which,
consisting of Nodes and Links

• The activation of Nodes, Links and other elements of the LIDA Model is achieved by
an implementation of the Activatible interface. This implementation also includes
Strategies that control the decay and excitation of these elements.

The LIDA Tutorial: I. Introduction 5

Consider the following example: in the LIDA Model, a conscious broadcast is sent from the
Global Workspace during each cognitive cycle. This broadcast is sent to most modules in the
Model, as illustrated by the arrows in the LIDA Model diagram (Figure 1). However, modules
in a Framework agent will not receive conscious broadcasts unless they implement the
BroadcastListener interface and register themselves as listeners of the GlobalWorkspace
module.

II. Basics of the LIDA Framework
The LIDA Framework provides a generic structure for the creation of agents using the

architecture defined by the LIDA Model (see Figure 1). It is worth noting, however, that the
Framework’s flexibility will allows it to possibly support other architectures as well. Agents
created with the Framework are composed of modules, listeners, and tasks. Tasks are run using
TaskSpawners, which work closely with the TaskManager. In this section we describe each of
these basic features of the Framework.

a. Modules and Listeners

Modules

The LIDA Model has numerous modules as part of its conceptual architecture. Examples
include Sensory Memory, Perceptual Associated Memory, and the Workspace. Some of the
modules are highly domain-dependent (e.g. Sensory Memory and Sensory-Motor Memory),
while others are very much domain-independent (e.g. the Workspace).

The LIDA Framework provides concrete default implementations for the domain-independent
modules, which are easily customizable. Abstract default implementations of the domain-
dependent modules and tasks are also provided. These classes must be extended for each
particular agent implementation.

Modules may contain submodules, for instance, the Workspace contains the Current
Situational Model as submodule. Each submodule is itself a module.
In the LIDA Framework, modules are specified generically by the FrameworkModule interface.
A default implementation, the abstract class FrameworkModuleImpl, is provided. Modules
extending this implementation inherit a name, zero or more submodules, and a TaskSpawner to
help run tasks. This default implementation specifies a structure for the decay of the module and
its submodules and specific modules must implement their own algorithm to decay the module.
Similarly FrameworkModuleImpl defines a default method for adding listeners, and specific
module implementations should override it and handle the specifics. Specific module
implementations must also implement methods and processes necessary to achieve their specific
functions.

The LIDA Tutorial: II. Framework Basics 6

Each module in the LIDA Model has a corresponding interface in the Framework that
specifies the required methods for that module’s implementation. Custom module
implementations can be used provided they extend from FrameworkModuleImpl and
implement the appropriate interface. For instance, an implementation of Sensory Memory will
extend FrameworkModuleImpl and will implement the SensoryMemory interface.

Many default implementations of modules and tasks in the framework inherit from the few
key abstract classes (see Appendix 2).

Listeners

Modules must pass information to each other in order to have a connected system. These
communication channels are indicated by arrows in the LIDA Model Diagram. The LIDA
Framework utilizes a design pattern known as the Observer Pattern as a generic way to
implement communication between modules. To this end, many modules in the Framework
provide a Listener interface, which specifies the methods necessary to receive content from that
module. Any module wishing to receive the communications sent by this module must
implement this interface (i.e. it must implement all of the methods in the Listener interface) and
register itself to the sending module. The Listener methods allow the producer module to send
information to all of its registered listeners in a generic way, without needing to know specific
details about the listening modules themselves.

An example of the use of the Observer Pattern is illustrated by the relationship between the
GlobalWorkspace module and the BroadcastListener interface. The Model demands that
most modules receive the conscious broadcast from the GlobalWorkspace. Thus these
modules in the Framework must implement the BroadcastListener interface. Each
receiving (consumer) module must then register itself with the GlobalWorkspace module
using its addBroadcastListener method. When the GlobalWorkspace needs to send a
broadcast, it simply calls the receiveBroadcast method of each of the registered listeners.

Listeners are not the only mechanism to create a relationship between modules. Any module
can have one or more associated modules. In this relationship the associated module is more
tightly coupled than if it were added as a listener. Modules are associated using the
addAssociatedModule method in the FrameworkModule interface. This allows for close
relationships between modules that may be required for some modules’ functionality. For
instance, the AttentionCodeletModule needs to directly access to both the Workspace
and GlobalWorkspace modules. Using codelets this module will check and retrieve content
from the Workspace. Also its codelets will be adding coalitions directly to the Global
Workspace (and only this module).

The LIDA Tutorial: II. Framework Basics 7

b. Tasks, TaskSpawners, and the TaskManager

Tasks

In the LIDA Framework, the processes of the LIDA Model are implemented using
FrameworkTasks, or simply “tasks”. A task can be thought of as a “demon” as in Jackson’s
Pandemonium Theory (1987), or as a codelet a la Hofstadter (1995). Every agent application has
a single TaskManager that is the heart of the LIDA Framework’s simulation engine. The
TaskManager uses a pool of threads for the execution of tasks. Modules do not directly use the
TaskManager; rather, each module in the Framework has an associated TaskSpawner that
works with the TaskManager. Next we describe additional aspects of the TaskManager.

The TaskManager controls the application’s internal time. The unit of this time is termed
the tick. All tasks are scheduled for and executed at a particular tick. The current tick is an
integer starting at zero, which is incremented as the execution of an agent simulation progresses.

Each task has an algorithm contained in its runThisFrameworkTask method, a scheduled
tick (i.e., the tick at which it will be executed next), and a status. Tasks can be run a single time
or repeatedly. For instance, to pass activation to a Node (see below), an ExciteTask is
executed once. On the other hand, a feature detector is implemented as a task that runs every
few ticks. The run frequency is determined by the ticksPerRun attribute of the task.
Additional features exist for the fine tuning of this mechanism.

During a task’s execution, its status may change, and, after execution, the task is returned to
the TaskSpawner that originally ran it. The TaskSpawner then has an opportunity to process
the task’s result, and, based on the task’s status, determine whether the task should be scheduled
for further execution.

The TaskManager

The TaskManager is in charge of the execution of tasks and the application’s internal time.
It receives tasks to be run from TaskSpawners. It schedules these tasks for execution in a queue
called the task queue. The task queue is ordered by tick and each position in the queue contains
the tasks to be executed during at that tick.

The TaskManager’s main loop cycles through the following sequence: 1) Decay all
modules; 2) Execute all tasks scheduled for the current tick and wait for them to finish; 3)
Possibly refresh the GUI; and finally, 4) increment the current tick. The TaskManager has
public methods to start, stop, and resume the execution of this sequence. The Start/Pause button
in the toolbar of the Framework GUI uses these methods to control the execution of an agent
simulation.

The tick duration is the minimum amount of real time it takes for a single tick to occur. This
can be set by the user to control the apparent speed of a simulation. The actual duration of a
given tick may exceed this minimum because the execution of the scheduled tasks may take

The LIDA Tutorial: II. Framework Basics 8

longer than the specified duration. (This depends on the speed of the microprocessor and the
number and complexity of the tasks scheduled for that tick.) If tick duration is set to 0, task
execution will proceed as quickly as possible (this speed will be machine-dependent).

Stated another way, the execution of any task always takes exactly one tick in Framework
time. Depending upon the size of the TaskManager’s thread pool, multiple tasks can be
executed concurrently, but still within a single tick. Some tasks may take longer (in real time)
than others to execute, and the execution of many concurrently scheduled tasks may take longer
than the execution of a few, so due to this variability, ticks do not in general have a uniform
length in units of real time.

In the agent declaration file (see Section IIIa), the TaskManager can be configured using
two parameters, tickDuration, and maxNumberOfThreads. The former parameter is the
starting tick duration and the latter determines the size of the thread pool that the TaskManager
uses to execute tasks. Additionally, the tool bar in the Framework’s GUI provides a means to
adjust tick duration interactively.

c. Nodes, Links, and NodeStructures
Nodes and Links are major data structures in the LIDA Framework. Both have activation, a

measure of current salience, which can be excited in several situations and which decays over
time. A Node can represent features, objects, events, concepts, feelings, actions, etc. Every
Node is grounded in a Node in PAM called a PamNode. Nodes are instantiations of PamNodes.
Every Node in a simulation has a reference to its originating PamNode in PAM, as well as an id
that uniquely identifies the Node.

A Link connects a Node to either another Node or another Link. A Link that connects two
Nodes is known as a simple Link. On the other hand, a complex Link connects a source Node to
a simple Link. For example, given two Nodes, B and C, connected by a simple Link, L2, a
complex Link would be one that connects a third Node, A, to the simple Link L2. Additionally,
Links have a LinkCategory attribute that specifies the nature of the relationship represented by
the Link. For instance, a red ball can be represented by a “ball” Node connected to a “red”
Node by a Link with LinkCategory “feature”. Both Nodes and Links implement the
Linkable interface, and have an ExtendedId that uniquely identifies any Linkable element.

The Framework allows the specification of different subtypes of Nodes and Links. In this
way custom Nodes and Links can have their own implementation class that customizes their
properties and functionality. All Node and Link instances, both default and custom types, are
created dynamically by the ElementFactory (discussed below).

A NodeStructure is a graph-like structure composed of Nodes and Links, and is the
“common currency” for information exchange between most modules. The
NodeStructureImpl implementation provides methods to add, remove, or retrieve, and
manage the Nodes and Links contained inside it. When a Node or a Link is added to a
NodeStructure, a copy of the element is added (and returned) rather than the element itself.

The LIDA Tutorial: II. Framework Basics 9

This prevents the same Java object from existing in multiple NodeStructures, a problematic
situation. While the objects are different, the new Node retains (at least to start) the same
attributes as its original Node including its id. This also allows the new element to have different
parameters and/or functionality than the original element. For example, when a Node in PAM is
added to the Workspace’s Perceptual Buffer, the new Node may have its own activation and
different mechanism for its excitation and decay.

d. Activation and Strategies
Nodes, Links, and other elements including coalitions, codelets, schemes, and behaviors have

activation. Activation is represented as a real number between 0.0 and 1.0 inclusive. In general
activation represents the salience of an element. The elements mentioned above all have a
current activation, which measures their salience at the current moment. Other elements have an
additional activation called base-level activation, which is used to implement learning. The
Framework provides the Activatible and Learnable interfaces for the implementation of
elements with these functionalities.

An Activatible element has excite and decay methods to regulate its activation
appropriately. Elements are typically removed if their activation decays below a certain removal
threshold. The Activatible must specify two Strategies to determine how its activation level
changes when its excite and decay methods are called. In this way, the excitation and decay
functions of elements can easily be configured.

A Learnable element, implementing the Learnable interface, is an extension of
Activatible. In addition to a current activation, it additionally has a base-level activation to
implement learning. A PamNode is one example of a Learnable element; the base-level
activation might correspond to the past usefulness of the concept represented by a PamNode.
The current version of the LIDA Framework does not yet implement learning algorithms in its
default implementations. In order to implement learning at this time, custom module
implementations could be developed that implement a learning method. Such an algorithm
would modify the base-level activation of Learnable elements.

As mentioned above, the LIDA Framework uses the Strategy design pattern to implement
excitation and decay of Activatible elements. This approach allows for fine control, easy
modification, and reuse of activation mechanisms. Default implementations for linear excitation,
sigmoid excitation, linear decay and sigmoid decay are provided with the LIDA Framework.
Strategies are obtained from the ElementFactory (see next section).

The LIDA Tutorial: II. Framework Basics 10

e. Framework Tools

ElementFactory

New instances of many elements in the LIDA Framework, such as Nodes, Links, tasks and
Strategies can and should be created by requesting them from the ElementFactory. This
utility implements the Singleton and the Factory design patterns. In general factories provide
valuable encapsulation of the constructor of the various elements it produces. This also allows
for the addition of new elements types using different classes such as new Node and Link types,
tasks (which include feature detectors, attention codelets, and others), and strategies (which
include excite, decay, and others). Additionally element types can specify particular activation,
strategies, and parameters. For example several Node types can be defined that all use the same
underlying class, e.g. NodeImpl, but have different excite and decay strategies and initial
activations. Each element type definition includes a name, which is used to request a new
instance of that type from the ElementFactory. The element types that the ElementFactory
can produce can be configured in the factoryData.xml file. Type definitions include the name,
class and parameter values that establish the factory settings for each element type.

The Graphical User Interface (GUI)

The LIDA Framework includes a customizable GUI that allows the real-time display of
module contents, parameter values, running tasks, and other variables of interest during the
operation of a LIDA agent. A “GUI Panels” properties file allows the addition of default or
custom panels and configures the appearance of the GUI Panels in the Framework’s GUI.

III. Framework Initialization
The Framework’s initialization package contains the classes involved in the run-time

setup of an agent simulation. The class AgentStarter provides methods to run an agent
simulation. It also provides a main method that can be executed from the command line with a
parameter specifying the path of the primary configuration file. The start method of
AgentStarter performs the following steps:

1) It loads the definitions of the element types found in a secondary configuration file known
as the factory data file. This file is specified in the lida.elementfactory.data
property of the primary configuration file (the default name of which is
lidaConfig.properties).

2) An instance of the Agent class is created based on the contents of the agent declaration
file. This file is specified in the lida.agentdata property of the primary configuration
file. See the following sections for further details.

The LIDA Tutorial: III. Framework Initialization 11

3) If the lida.gui.enable property in the primary configuration file is set to true, the
framework’s graphical user interface is created using the information found in the GUI
configuration files, specified by the lida.gui.panel and lida.gui.commands
properties of the primary configuration file.

4) The agent is loaded

5) The GUI is loaded and displayed.

In the following sections, some of the details of this process will be described.

a. The Agent Declaration File
The file specified in the lida.agentdata property of the primary configuration file

contains the declaration of the components of the agent, and is known as the agent declaration
file. This is an XML document that contains the root tag, <lida>, and has the following first
level nested tags.

• <globalparams> — an optional tag that contains parameters to be used during the
module initialization process

• <taskmanager> — contains parameters for the configuration of the TaskManager ,
as explained in a previous section

• <taskspawners> — contains subtags of type <taskspawner> that declare the
TaskSpawner types available to the agent’s modules

• <submodules> — contains subtags of type <module> that specify the classes and
parameters necessary to create the modules of the agent; optionally, the <module>
subtags may contain nested tags of type <associatedmodule>, <initialtasks>,
<initializerclass>, or even <submodules>, the latter allowing for declaration
of nested modules

• <listeners> — contains subtags of type <listener> that declare the listener
connections between the agent’s modules

A formal specification of these tags can be found in the file LidaXMLSchema.xsd.

b. AgentXMLFactory
The AgentXMLFactory class loads the agent declaration file, parses it, creates the

components declared in the file, and assembles them into an Agent object. The getAgent
method performs the following sequence of actions.

1) The global parameters, if any, are read and added to the GlobalInitializer class.
2) The TaskManager is created.

The LIDA Tutorial: III. Framework Initialization 12

3) The TaskSpawners are created.
4) The modules are created. At this time, the init method of each module is called.
5) The ModuleListener connections are established.

6) Optionally, the modules are associated, if this was specified in the module declarations.
7) Each module that specifies an initializer class in its declaration is re-initialized using the

specified class.
8) For each module that has as initial tasks specified in its declaration, the specified tasks are

created, and the module’s TaskSpawner schedules them for execution.

c. The Factory Data Definition File
The file specified in the lida.elementfactory.data property of the primary

configuration file contains the definition of the Strategy, Node, Link, and task types to be
added to the ElementFactory at startup, and is known as the factory data definition file. Note
the ElementFactory internally defines several default types not specified in this file including
“NodeImpl”, “PamNodeImpl”, “noDecayPamNode”, “LinkImpl”, “PamLinkImpl”,
“noDecayPamLink”, “defaultDecay”, “defaultExcite”, “noDecay”, “noExcite”.
This XML document that contains the root tag, <LidaFactories>, and has the following first
level nested tags.

• <strategies> — contains subtags of type <strategy> that define the Strategy
types to be loaded into the ElementFactory

• <nodes> — contains subtags of type <node> that define the Node types to be loaded
into the ElementFactory

• <links> — contains subtags of type <link> that define the Link types to be loaded
into the ElementFactory

• <tasks> — contains subtags of type <task> that define the task types to be loaded
into the ElementFactory

d. The Initializable Interface
Several elements in the Framework implement the Initializable interface, including the

default implementations of Node, Link, and Strategy. This interface provides a uniform way
to initialize elements with parameters. Subclasses that users will typically work with need only
override the init method specified by this interface to perform custom initialization of the
element. Within the overriding init method the getParam method should be used to retrieve
parameters set in the configuration files.

The LIDA Tutorial: III. Framework Initialization 13

The FullyInitializable interface extends Initializable and additionally allows the
association of modules using the setAssociatedModule method. FrameworkModule and
FrameworkTask are examples of FullyInitializable elements.

IV. Default Implementations of LIDA Modules
Default implementations of the following LIDA modules are included in this version:
• Environment (abstract)
• Sensory Memory (abstract)
• Perceptual Associative Memory
• Transient Episodic Memory
• Declarative Memory
• Workspace
• Structure-Building Codelets
• Attention Codelets
• Global Workspace
• Procedural Memory
• Action Selection
• Sensory-Motor Memory

There are several details to mention regarding the default module implementations:
The Environment module is designed to be one that the user provides. The framework

provides a basic abstract class, EnvironmentImpl, which should be extended implementing
either an environment for the agent in Java or serving as an interface between a non-Java
environment implementation and the agent. Users’ Environment module implementations
should, at a minimum, implement the methods getState and processAction, which allow
the environment to be sensed and process agent actions respectively.

The Sensory Memory module is currently provided in the form of an abstract class, as sensory
memories typically vary greatly from domain to domain. Thus users should extend from the
default implementation, SensoryMemoryImpl, and implement the domain-specific parts. There
are plans for a Sensory Memory implementation with object recognition algorithms in future
framework versions.

The default Action Selection implementation provided in the current version does not
implement all the features that are described by the LIDA Model. An enhanced Behavior
Network (Maes 1989) implementing these additional features is planned for the next version of
the Framework.

The two episodic memories describe by the LIDA Model, Transient Episodic Memory and
Declarative Memory, are both implemented using a sparse distributed memory (Kanerva, 1988).

The LIDA Tutorial: IV. Default Implementations 14

Finally, several learning algorithms specified by the LIDA Model have not yet been
implemented for any default module in this version.

Acknowledgments
We want to thank the members of the CCRG for their invaluable help and insightful discussions,
the members of the computational LIDA group for their participation in the development and
testing of the framework, and especially Stan, for his unconditional support and inspiration.

The LIDA Tutorial: Appendix 1. Glossary of Terms 15

Appendix 1: Glossary of Terms
Action
An action is a conceptual memory of a procedure the agent can perform, e.g., grab a cup, which
can have several associated algorithms for execution in Sensory-Motor Memory.

Activation
Activation can represent different things, but, generally, it represents the salience or usefulness
of an element. Nodes, Links, and other elements such as coalitions, codelets, and behaviors, have
activation.

Aggregate-Coalition-Activation Trigger
A broadcast trigger that fires when the sum of the activations of all coalitions in the Global
Workspace is greater than a certain threshold.

Attention Codelet
An Attention Codelet is a type of task that tries to bring particular Workspace content in the
Current Situational Model to the Global Workspace. Upon finding such content it creates a
coalition containing the content and adds it to the Global Workspace to compete for
consciousness.

Autonomous agent
A system situated within and a part of an environment that senses that environment and acts on
it, over time, in pursuit of its own agenda, and so as to affect what it senses in the future. Most
animals and software agents are examples.

Background Task
A task, typically internal to a module, which implements a process integral to the module's
functionality. Such tasks run repeatedly “in the background”. An example is the
SensoryMemoryBackgroundTask that runs the agent's sensors each time it is executed.

Base-Level Activation
Activation that represents the general usefulness and relevance of an element in the past. Its
value can range from 0.0 to 1.0 inclusive and is modified by learning.

Behavior
A behavior is an instantiated scheme. Schemes are instantiated in Procedural Memory.
Instantiation binds variables in the scheme’s context and result, based on the current conscious

The LIDA Tutorial: Appendix 1. Glossary of Terms 16

broadcast. Instantiated schemes (behaviors) are then sent to Action Selection where they
compete with each other for selection and execution.

Behavior Network
An implementation of the Action Selection module inspired by Maes’ (1989) Behavior Net. It
selects a behavior to execute at the conclusion of each cognitive cycle. This selection is based on
the activation of the Behavior, which is itself dependent on the current contents of consciousness
as well as the relationship the Behavior has with other Behaviors currently in the Behavior
Network.

Bit Vector
Bit vectors are typically large vectors with values of either 0 or 1. They are used in the Sparse
Distributed implementation of Episodic Memory as a means to store episodic memories.

Broadcast Trigger
A process that monitors the Global Workspace for a particular condition. Upon detecting that
condition it prompts the Global Workspace to hold a competition for consciousness.

Coalition
A coalition contains a portion of the Current Situational Model that is brought to the Global
Workspace as a unit along with the attention codelet that created it. Coalitions compete for
consciousness based on their activation derived from both the activation of the content and of the
attention codelet. The winning coalition’s contents are broadcast throughout the system.

Cognitive Cycle
In the LIDA Model, a sequence of processes that occur over time beginning with the sensing of
stimuli, proceeding with understanding, then continuing with attention (consciousness), and
ending with action selection and execution. Thus this cycle can be conceived of as having three
main phases: understanding, attention (consciousness), and acting. Multiple cognitive cycles may
be occurring in parallel (cascade): as one cognitive cycle has reached the action phase another
could be in the attention phase while a third is in the understanding phase. A cognitive cycle can
be thought of as a cognitive "atom" — the basic unit on which higher-level cognitive processes
are built. The agent’s “life” can be viewed as consisting of a continual cascade of these cognitive
cycles.

Complex Link
A Link that has a Node for its source and a simple Link for its sink. Complex Links cannot be
sinks.

The LIDA Tutorial: Appendix 1. Glossary of Terms 17

Conscious Contents Queue
The Conscious Contents Queue holds the contents of the last several seconds of broadcasts and
allows LIDA to ground and produce time-related concepts including duration.

Current Activation
An activation that represents an element’s current salience. Can take a value from 0.0 to 1.0
inclusive.

Current Situational Model
The Current Situational Model is a buffer in the Workspace containing structures representing
the agent’s current situation. It contains a perceptual scene comprised a real and virtual part. The
former consists of the current internal representation of the real world while the latter consists of
the current internal rememberings, plannings or imaginings of the agent.

Decay Strategy
A strategy that decreases an activation value over time (in ticks). May be implemented using a
sigmoid function for example.

Declarative Memory
Declarative Memory is a module in the LIDA Model, also called long-term episodic memory.
Declarative Memory can be subdivided into the autobiographical memories of events, e.g., your
last birthday celebration, and the semantic memory of facts like “Paris is the capital of France.”

ElementFactory
The ElementFactory’s main purpose is to create new element objects (e.g. Nodes) in a
centralized, configurable way. This class implements the singleton and factory design pattern
and thus provides an encapsulation of the constructors of basic framework elements. It is the
preferred way to obtain new Nodes, Links, some tasks, and Strategies.

Episodic Memory
Episodic Memory is a memory for events, the what, the where, and the when of a given episode.
In the LIDA Model it is comprised of Transient Episodic Memory and Declarative Memory.

Excite Strategy
A strategy that increases an activation value by a specific amount. May be implemented using a
sigmoid function for example. Note that exciting activation value with a negative amount will
likely decrease the activation.

The LIDA Tutorial: Appendix 1. Glossary of Terms 18

Feature Detector Algorithm
A feature detector algorithm is a specific type of task. Its function is to detect a particular feature
in Sensory Memory and excite a PAM Node representing this feature in Perceptual Associative
Memory.

Global Workspace
A module where coalitions, created and added by AttentionCodelets, compete for consciousness.
The content carried by the winning coalition becomes the current contents of consciousness and
it broadcast throughout the system.

Global Workspace Theory
A theory of consciousness and cognition proposed by Baars, which describes consciousness
functionally as a process by which many unconscious processors compete for access to a “Global
Workspace.” The winning processor has its contents broadcasted globally throughout the
cognitive system. It is one important foundation theory of LIDA, which implements the Global
Workspace and global broadcast.

GUI Command
GUI-generated events, e.g. a button press, that require a response in the model (the agent) are
implemented as GUI commands. These are thus encapsulations of commands from the GUI to be
performed in the model. GUI commands implement the Command design pattern.

Individual-Coalition-Activation Trigger
A broadcast trigger that initiates a competition for consciousness if there exists a coalition with
activation above a certain threshold in the Global Workspace.

LIDA Cognitive Model
An integrated artificial cognitive system that attempts to model a broad spectrum of cognition in
biological systems, from low-level perception/action to high-level reasoning. It is empirically
grounded in cognitive science and cognitive neuroscience. In addition to providing hypotheses to
guide further research, the model can support control structures for software agents and robots.

LIDA Software Framework
A software framework developed to allow a customizable implementation of the LIDA
Cognitive Model. Specifically, an application programming interface (API) containing Java
classes and interfaces that implement modules and processes according to the computational
architecture of the LIDA Model. Also, due to its high degree of flexibility, this framework is
suitable for wider use in developing other cognitive architectures.

The LIDA Tutorial: Appendix 1. Glossary of Terms 19

Link
A connection between a source Node and a sink, which may be either a Node or a simple Link. A
Link has a LinkCategory, which is the Link’s conceptual meaning.

LinkCategory
LinkCategory is the conceptual meaning of a Link, e.g. membership, lateral, causal, parent, none,
etc.

Listener
Modules need to communicate with other modules. To implement this, we use the observer
design pattern. In this pattern a “listener” module registers itself with another “producer”
module. Each time the producer has something to send, it transmits the information to all of its
registered listeners.

Logger
Logger is a Java utility used to log messages about important events and warnings from specific
framework components.

Module
Similar to a module in the LIDA Cognitive Model, we generically define a module in the
Framework. Modules contain information of various kinds, and include processes and algorithms
with which to manipulate, modify, and move that information. All modules implement a generic
module interface (API) but each one also has its own API that defines its particular functionality.

Node
A Node is a major unit of representation in the framework, which can represent a feature, object,
category, event, etc.

NodeStructure
NodeStructure is a graph structure, containing Nodes and the Links between them. It constitutes
the main internal representation for many framework modules.

No-Broadcast-Occurring Trigger
A broadcast trigger that initiates a competition in the Global Workspace when no broadcast has
occurred for a certain period of ticks.

No-Coalition-Arriving trigger
A broadcast trigger that initiates a competition in the Global Workspace when no new coalition
has been added to the Global Workspace for a certain period of ticks.

The LIDA Tutorial: Appendix 1. Glossary of Terms 20

Perceptual Associative Memory (PAM)
A module that makes sense of the incoming sensory information, creating additional
understanding. Contains feature detector processes, which detect features in Sensory Memory
and excite their associated PAM Nodes. The Node-and-Link memory of PAM is implemented as
a semantic net with activation passing. Nodes propagate their activation to the other Nodes they
are linked to. Those Nodes that gain activation above their threshold become part of the current
percept, which becomes a part of working memory (enters the Workspace). PAM is essentially
recognition memory.

Procedural Memory
A module where schemes are stored. Here schemes can be activated by each conscious
broadcast, and, if this puts them over their threshold, are instantiated as behaviors and sent to
Action Selection. Procedural Memory essentially remembers what to do in what circumstance to
achieve a given result.

Receptive Field
The set of units from which a feature detector (PAM Node) takes as its input. The units can be
other PAM Nodes or elements in Sensory Memory.

Scheme
Schemes are memories, stored in Procedural Memory, for various actions (procedures), which
may be selected for execution. A scheme consists of a context, an action and a result. With some
reliability, a scheme’s result is expected to occur when its action is taken when its context is
satisfied.

Sensory Memory
A module that senses the environment and holds the incoming sensory stimuli for a brief period.
Low-level processing (e.g. color, texture, segmentation in the visual modality) of the sensory
stimuli occurs here. Feature detectors have their receptive fields in Sensory Memory.

Sensory-Motor Memory
A module that stores algorithms (motor plans) for actuator execution. This module receives
selected Behaviors from the Behavior Network and determines the appropriate algorithm for
executing the action. The agent’s actuators then execute the algorithm. During the execution it
receives information from Sensory Memory in an implementation of the so-called “dorsal”
stream.

Simple Link
A Link that connects two Nodes.

The LIDA Tutorial: Appendix 1. Glossary of Terms 21

Strategy
Strategies are implementations of the Strategy design pattern. They are encapsulations of
calculations, algorithms, etc. which may have several desirable implementations. This allows for
flexibility, for example, either a linear function or a quadratic function could be used as a Node’s
excite strategy (provided they implement the ExciteStrategy interface).

Structure-Building Codelet
A Structure-Building Codelet is a specific type of task. It operates with representations in the
submodules of the Workspace making associations among representations, creating new
representational structures, and combining similar ones. They play a role in maintaining the
agent’s model of its current situation in the Current Situational Model.

Submodules
Modules can have submodules, which are modules themselves that are nested inside another
module. For example, the Workspace module in LIDA has several submodules such as the
Current Situational Model.

Task
Tasks are encapsulations of small, specialized, routines (algorithms), which typically run
repeatedly at a specified rate. Tasks consist of an algorithm, an execution frequency, a time of
next execution, and a status. Modules or even other tasks can create tasks to perform the small
operations needed to achieve their specific functionalities. Tasks may run once or repeatedly. If
they run repeatedly the period is based on their execution frequency.

TaskManager
The TaskManager controls the scheduling and execution of all tasks in the framework. It
maintains the Framework’s internal clock measured in ticks. Tasks are scheduled for execution
in accordance with this clock.

Task Queue
A queue maintained by the TaskManager, as a schedule of the execution of tasks. Each position
in the queue represents a tick and can contain 0 or more tasks. The TaskManager advances one
position at a time, executing all tasks scheduled at that position (for that tick). It does not
proceed to the next position until all tasks scheduled for the current position have finished
running.

TaskSpawner
A TaskSpawner is an assistant to the TaskManager, which manages tasks’ status and determines
what to do with a task after each time it runs.

The LIDA Tutorial: Appendix 1. Glossary of Terms 22

Tick
Each position in the task queue represents a discrete instant in the application’s time. These
positions are termed ‘ticks’. All tasks scheduled for a particular tick are executed concurrently
and the TaskManager does not advance to the next tick until all tasks scheduled for the current
tick finish.

Total Activation
An activation value that represents the total salience of an element. It is a function of both
current activation and base-level activation.

Transient Episodic Memory
Transient Episodic Memory is a module in the LIDA Model. It is the episodic memory that
decays after a few hours or up to a day. Declarative memories are formed offline from transient
episodic memories by a process called consolidation.

Workspace
A module that receives and stores content from several modules including current percepts from
PAM, recent local associations from Episodic Memory, and the recent contents of consciousness
from the Global Workspace. Structure-building codelets operate on Workspace content,
integrating structures, creating new Nodes, and building structures representing higher-level
phenomena (events, plans, imaginations, etc.).

The LIDA Tutorial: Appendix 2. Classes and Interfaces 23

Appendix 2: Classes and Interfaces
The table below maps several framework classes to the broad concepts of the Framework

described in this tutorial. However, this is not a comprehensive description of the classes in the
Framework. For detailed description of all of the classes in the Framework see its Javadoc
(http://ccrg.cs.memphis.edu/assets/code/doc/index.html).

Framework
Modules

interface FrameworkModule
abstract class FrameworkModuleImpl

Framework Tasks interface FrameworkTask
abstract class FrameworkTaskImpl
interface TaskSpawner
class TaskSpawnerImpl
class TaskManager

Activation interface Activatible
class ActivatibleImpl
interface Learnable
class LearnableImpl

Node, Link, and
NodeStructure

interface Node
class NodeImpl
interface Link
class LinkImpl
interface NodeStructure
class NodeStructureImpl
class ExtendedId

Strategies interface Strategy
interface ExciteStrategy
interface DecayStrategy

Initialization interface Initializable
interface FullyInitializable
interface Initializer

Default Module
Implementations

abstract class EnvironmentImpl
abstract class SensoryMemoryImpl
class PerceptualAssociativeMemoryImpl
class WorkspaceImpl
class WorkspaceBufferImpl
class BroadcastQueueImpl
class EpisodicMemoryImpl
class AttentionCodeletImpl
class StructureBuildingCodeletImpl
class GlobalWorkspaceImpl
class ProceduralMemoryImpl
class BasicActionSelection
class BasicSensoryMotorMemory

Default Task
Implementations

abstract class BasicDetectionAlgorithm
abstract class MultipleDetectionAlgorithm
abstract class AttentionCodeletImpl
abstract class StructureBuildingCodeletImpl

The LIDA Tutorial: Appendix 3. XML Configuration Basics 24

Appendix 3: XML Configuration Basics
Agent declaration file
 In this discussion, agent.xml will refer to an xml file containing the definitions needed by
AgentXMLFactory to build the agent in the LIDA Framework. Any valid file name can be
used for this file, but the proper path and file name must be specified in the
lida.factory.data element of the lidaConfig.properties file (see also Section III).
The agent.xml file contains the <lida> tag as its root element. This tag contains the following
nested tags:

Tag Nested Tags Contents

<globalparams> (node) global parameters available to
Initializers during setup

<taskmanager> (none) tick duration, max. number of
threads

<taskspawners> <taskspawner> name, Java class

<submodules> <module> name, Java class, (associated
modules), TaskSpawner,
(initial tasks*)

<listeners> <listener> type, sending module,
receiving module

() —indicates an optional element
* — <initialtasks> contains one or more <task> definitions as defined in the factoryData.xml file

 (see Section IIIc).

<taskmanager>

Two TaskManager parameters can be configured in this section:

tickDuration is the length of one tick in milliseconds of actual time

maxNumberOfThreads is the maximum number of threads the TaskManager will maintain.

Let’s discuss the structure of these parameters, and for parameters in the agent.xml file in
general. Here is a parameter example:

The LIDA Tutorial: Appendix 3. XML Configuration Basics 25

<param name="taskManager.tickDuration" type="int">50 </param>

All parameters appear within <param> tags. Parameters should have a name, which will be
parsed as a String. It is convention to differentiate parameters across modules, tasks, etc. by
beginning the name with the module or task name. The variable types “int”, “double”,
“boolean”, or “string” can be specified. If type is specified the AgentXMLFactory will parse
a variable of that type. Finally, the value of the parameter goes inside the parameter tag.

<taskspawners>

Several TaskSpawners can be defined here for modules to use. All definitions must include a
name and a class name. Optionally parameters can be defined too. The name will be used to
refer to the taskspawner in other places in the declarative agent file, e.g., when modules
declare their taskspawner.

<submodules>

One or more <module> tags can be specified inside this tag. The tag’s name is “submodules”
because all these modules will technically be submodules of a special FrameworkModule
called Agent.

Every <module> must have a String name, a class name, and a taskspawner specified for
it. Optionally the module can have one or more associatedmodule specified by module name
(as defined in this same file). The optional <initializerclass> tag specifies the class name
of the Initializer to be run at startup to configure this module. Also optionally, one or more
tasks may be specified in an <initialtasks> tag. These will be created and added to the
module’s taskspawner at startup. Modules declared by name within a <submodules> tag will
be stored as submodules inside the module. Finally a <module> can have several parameters
defined for it was described in the previous section.

Here is an illustrative example of a <module> declaration, which uses some, but not all, of the
possible tags:

<module name="AttentionModule">

<class> attentioncodelets.AttentionCodeletModule</class>

 <associatedmodule>Workspace</associatedmodule>

 <associatedmodule>GlobalWorkspace</associatedmodule>

 <taskspawner>defaultTS</taskspawner>

 <initializerclass>init.AttentionInitializer</initializerclass>

</module>

As mentioned, initial tasks can be specified for modules. Every <task> in

<initialtasks> must specify a name parameter, as well as a class name. Optionally the

The LIDA Tutorial: Appendix 3. XML Configuration Basics 26

declaration may specify ticksperrun – how often, in ticks, the task will be run. Additionally
<associatedmodule> and parameters can be defined exactly as was done for other xml nodes.

Here is an example initial task declaration for a module:

<initialTasks>

 <task name="cueBackground">

 <tasktype>CueBackgroundTask</tasktype>

 <ticksperrun>15</ticksperrun>

 <param name="cueThreshold" type="double">0.4</param>

 </task>

</initialTasks>

<listeners>

In this xml node the inter-module communication (implemented using the observer pattern) of
the agent is created. Specifically, those modules implementing a ModuleListener interface
can be added to a specified module. The xml declaration for a listener specifies three things:
first the type of Listener, then the transmitting module, then, finally, the listener module. For
example, if the PerceptualAssociativeMemory module should have the Workspace
module as a PamListener then there should be the following declaration:

<listener>
 <listenertype>edu.memphis.ccrg.lida.pam.PamListener</listenertype>

<modulename>PerceptualAssociativeMemory</modulename>

<listenername>Workspace</listenername>

</listener>

An easy way to read this is that the first module will transmit content to the second module. The
“protocol” for the communication is the listenertype and the second module must implement
this interface to receive the communication.

The LIDA Tutorial: Bibliography 27

Bibliography
Baars, B. J. (1988). A Cognitive Theory of Consciousness. Cambridge: Cambridge University
Press.

Baars, B. J. (2002). The conscious access hypothesis: origins and recent evidence. Trends in
Cognitive Science, 6, 47–52.

Baars, B. J., & Franklin, S. (2003). How conscious experience and working memory interact.
Trends in Cognitive Science, 7, 166–172.

Baars, B. J., & Franklin, S. (2009). Consciousness is computational: The LIDA model of Global
Workspace Theory. International Journal of Machine Consciousness, 1(1), 23-32.

Franklin, S., Baars, B. J., Ramamurthy, U., & Ventura, M. (2005). The Role of Consciousness in
Memory. Brains, Minds and Media, 1, 1–38.

Franklin, S., & Graesser, A. C. (1997). Is it an Agent, or just a Program?: A Taxonomy for
Autonomous Agents Intelligent Agents III (pp. 21–35). Berlin: Springer Verlag.

Franklin, S., & Patterson, F. G. J. (2006). The LIDA Architecture: Adding New Modes of
Learning to an Intelligent, Autonomous, Software Agent IDPT-2006 Proceedings (Integrated
Design and Process Technology): Society for Design and Process Science.

Hofstadter D., & Mitchell M., (1995). “The copycat project: A model of mental fluidity and
analogy-making,” in Hofstadter and the Fluid Analogies Research group: “Fluid Concepts and
Creative Analogies,” Basic Books, Chapter 5, pp. 205-267.

Jackson, J. V. (1987). “Idea for a Mind,” ACM SIGART Bulletin Issue 101.

Kanerva, P. (1988). Sparse Distributed Memory., Cambridge MA: The MIT Press.

Maes, P. (1989). How to do the right thing. Connection Science 1:291-323.

Ramamurthy, U., Baars, B. J., D'Mello, Sidney K., & Franklin, S. (2006). LIDA: A Working
Model of Cognition. In D. Fum, F. Del Missier & A. Stocco (Eds.), Proceedings of the 7th
International Conference on Cognitive Modeling (pp. 244–249). Trieste: Edizioni Goliardiche.

Snaider, J., McCall, R., & Franklin, S. (2011). The LIDA Framework as a General Tool for AGI.
Paper presented at The Fourth Conference on Artificial General Intelligence, Mountain View,
California, USA.

