
ACTION EXECUTION, ITS ESTIMATION AND LEARNING

FOR A SYSTEMS LEVEL COGNITIVE ARCHITECTURE

by

Daqi Dong

A Dissertation

Submitted in Partial Fulfillment of the

Requirements for the Degree of

Doctor of Philosophy

Major: Computer Science

The University of Memphis

August, 2016

ii

Acknowledgments

I am grateful for the generous support of the Faculty Research Grants (2011) of the

University of Memphis, without which this thesis would not have been possible.

I wish to thank my academic advisor, Dr. Stan Franklin. His daily guidance has

considerably added to my graduate experience; his trust and confidence have continually

supported my academic explorations; and the example of his remarkable work consistently

inspires me to pursue excellence. I would also like to thank the other members of my committee,

Dr. Dipankar Dasgupta, Dr. Vinhthuy Phan, and Dr. Vasile Rus, for the directions they have

provided both to my study and to this thesis.

The same gratitude goes out to my colleagues who have worked and continue to work in

our Cognitive Computing Research Group. This thesis is has grown out of our groupôs collective

work. Specific thanks go to Steve Strain, who provided edits, comments, and suggestions to the

thesis.

Significant acknowledgement is also due the Department of Computer Science, the

Institute for Intelligent Systems, and the University of Memphis where I am grateful for the

opportunity to study. These institutions offer the highest quality support to students pursuing

high-level development as academic researchers.

Finally, great thanks to my family for their love and support throughout my life, and

especially for their encouragement of my academic pursuits.

iii

Abstract

Daqi Dong. Ph.D The University of Memphis. August/2016. Action Execution, Its

Estimation and Learning for a Systems Level Cognitive Architecture. Major Professor: Stanley

P. Franklin.

An agent or robot achieves its goals by interacting with its environment, cyclically

choosing and executing suitable actions. Cognitive architectures are considered the control

structures of the agent, helping it decide what to do next, while the designs resemble how minds

work, be they human, animal, or artificial.

An action execution process is a critical part of an entire cognitive architecture, because

the process of generating executable motor commands is not only driven by low-level

environmental information, but is also initiated and affected by the agentôs high-level mental

processes. I give a review of the cognitive models of the action execution process as

implemented in a set of popular cognitive architectures, and conclude with some general

observations regarding the nature of action execution.

Next, I present a cognitive modelðthe Sensory Motor System (SMS)ðfor an action

execution process, as a new module of the LIDA (for ñLearning Intelligent Distribution Agentò)

systems-level cognitive model. A sensorimotor system derived from the subsumption

architecture has been implemented into the SMS; and several cognitive neuroscience hypotheses

have been incorporated as well.

Inspired by the hypothesis that humans estimate their movements based on their

knowledge of the dynamics of the environment, and on actual sensory data (Wolpert,

Ghahramani, & Jordan, 1995), I create a model of the estimation process of action execution

using SMS in LIDA. Also, based on a recent study in neuroscience (Herzfeld, Vaswani, Marko,

iv

& Shadmehr, 2014), I introduce a new factorðmemory of errorsðinto this model of estimation.

The historical errors help humans determine the stability of the environment, so as to decide the

degree to which knowledge of the environment may affect the estimation.

Learning is significant for for allowing an agent to act more intelligently. I present a new

model of sensorimotor learning in LIDA, one that helps an agent properly interact with its

environment using past experiences. Following Global Workspace Theory, the primary basis of

LIDA, this learning is cued by the agentôs conscious content, the most salient portion of the

agentôs understanding of the current situation. Furthermore, I add a dynamic learning rate to

control the extent to which newly arriving conscious content may affect the learning.

Finally, I introduce an extension of the SMS. This extension allows, and explains, the use

of the sensory data, the prime, perceived before a participant starts his or her movement, by the

SMS during action execution. Furthermore, this extension allows the replication by a LIDA-

based agent, of some human experiments (T. Schmidt, 2002) studying the priming process in

motor control.

v

Table of Contents

Chapter Page

1 Introduction ééééééééééééééééééééééééééé. 11

Action and action execution éééééééééééééééééééé.é 11

Action execution for cognitive architectures ééééééééééééé.é.. 14

Contributions of this work ééééééééééééééééééé.éé.. 17

Structure of this dissertation éééééééééééééééééé.ééé 21

2 Background and context éééééééééééééééééééééé. 23

The LIDA Model éééééééé.é.ééééééééééééééé.. 24

3 Action execution implemented in different cognitive architectures éééé...... 28

Introduction ééééé.ééééééééééééééééééééé... 28

Action execution processes of cognitive architectures éééééé.ééé..é 30

Conclusions ééééééééééééééééééééé.éééééé 56

4 A new action execution module for LIDA: The Sensory Motor System éééé 60

Introduction éééééééééééééé.ééééééééééééé 60

The subsumption architecture éééééééé.ééééééé..éééé.. 60

Conceptual design of the SMS éééééé.ééé..éééééééééé. 63

vi

Implementation and experiment éééééééé.éééééé.ééé.. 73

Comparison éééééééééééééééé.éééééééé.é.. 92

Conclusion éééééééééééééééé.éééééééé.éé 97

5 Estimating human movements ééééééééééééééééé.é. 99

Introduction éééééééééééééééééé.ééééé..éé. 99

Previous work éééééééééééééééééé.éééé..éé. 101

A model that estimates human movements éééééé.ééééééé.. 107

Experiments ééééééééééééééééé.éééééé..éé 111

Conclusion éééééééééééééééééé.ééééé.ééé 118

6 Modeling sensorimotor learning in LIDA ééééééééé.é.éé..é. 119

Introduction ééééééééééééé.éééééééééééé... 119

Modeling sensorimotor learning in LIDA éééé.éééééé.éééé. 121

A dynamic learning rate in sensorimotor learning ééé.éééééééé. 128

Experimental results ééééééééééééé.éééééé..ééé. 130

 Conclusions ééééééééééééééééé.ééééé...ééé. 134

7 Modeling Motor Priming in LIDA ééééééééééééééé...é. 136

Introduction éééééééééééééééééééééé.ééé..é 136

vii

Previous work éééééééé.ééééé.éééééééé.........éé. 136

The design of the extended SMS ééééééé.ééé..é..éééééé.. 140

Simulation experiments éééééééééééé.ééééééééé.... 146

Conclusion éééééééééééééééééé.ééééééééé 151

8 Conclusion ééééééééééééééééééééééééé..éé 152

 Limitations and future work ééééééé.ééééééééé.éééé.. 156

References ééééééééééééééééééééééééééééé 158

Appendices

A. The pseudo codes of the simulated controller components ééééééé.. 161

B. The software architecture of the simulated controller ééééééééé.. 162

Permission letter ééééééééééééééééééééééééééé165

viii

List of Tables

Table Page

1. The selected behavior and dorsal stream affect the SMSôs processes ééééééé.é 72

2. The extended youBot sensors ééééééééééééééééééééé.éé. 76

3: The sums of the distances that the boxes have been moved éééééééééééé 133

4: The cleaned trials for the replication éééééééééééééééééééé.. 148

5: The standard deviations of the average pointing trajectories ééééééééé..éé 150

6: Accomplishments and citations ééééééééééééééééééééé..é. 155

7: Herbertôs arm controller components and their simulated pseudo codes ééééééé. 161

ix

List of Figures

Figure Page

1. LIDA Cognitive Cycle Diagram éééééééééééééé.éééééé..é 24

2. The subsumption architecture example ééééééééééééé.éééééé 61

3. SMS with a MP and online control diagram éééééééééééé.ééééé. 65

4. A FSM and its components ééééééééééééééééééé..éééé. 67

5. A MPT Ą MP, online control, and specification diagram éééééééé.éé.é.. 69

6. SMS with all of its components éééééééééééééééééééééé.. 72

7. The LIDA Framework controlling a Webots robot ééééééééééééééé 74

8. The extended youBot and its sensors ééééééé..ééééééé..éééé..... 75

9. An extended youBot controlling its arm during a grip action éééééééé.éé... 77

10. The examples of a module, a suppress node, and wires éééééééééé...éé. 81

11. Simulated Herbertôs arm controller ééééééééééééééééé..é..é.. 83

12. A composite of the grip trajectories ééééééééééééééééé..é..é.. 84

13. The simulated arm controller grips an object éééééééééééééé.é.é.. 86

14. The simulated arm controller grips a small object or fails to grip éééééé..é...é 86

15. The agentôs grip aperture is sampled during the grip execution éééééééééé 88

16. The SMS is embedded into the LIDA Model éééééééééééééééé.... 91

17. An estimation process in the Sensory Motor System (SMS) of LIDA éééééé..é 110

18. A screen shot of a LIDA-based agent lifting an object ééééééééééé.éé. 112

19. Simulated estimation errors of hand lifting without memory of errors ..éééééé.. 115

20. Different propagation of simulated estimation errors of hand lifting action ééé...é. 115

21: A two-wheeled box pushing robot ééééééééééééééééééééé. 121

22: The design of a new SMS éééééééééééééééééééééééé.. 123

x

23: A birdôs eye view of the experimental environment and the agent éééééééé.... 130

24: The average values of rewards obtained by the pusher over 5000 steps éééééé.... 132

25: Four phases in the priming experiment ééééééééééééééééééé... 137

26: The distance between the finger and the correct target ééééééééééééé.. 139

27: The simulated environment of the priming éééééééééééééééééé 147

28: The simulated distance between the finger and the correct target éééééééé.é 149

29: The software architecture for the simulated Herbert arm controller éééé..éé..é. 164

11

1. Introduction

Humans seem very curious about their bodies, their minds, and especially their

intelligence. In the field of artificial intelligence (AI), the original aim was to reproduce human-

level intelligence. In robotics, people would like to create human-like robots. In addition to the

hardware bodies, a robot does need a controller determining what to do next. A human-level

controller allows the robot to be human-like.

I consider the robot that owns both the body and the controller to be an agent.

Furthermore, I require the agent to be autonomous. An autonomous agent acts independently in

its environment with an agenda, and over time its actions may affect what it senses in the future

(Franklin & Graesser, 1997). A general question motivating my research activities is ñhow do

minds work, be they human, animal, or artificial?ò Following the LIDA Model, I define a mind

as a control structure for an autonomous agent (Franklin, Madl, DôMello, & Snaider, 2014). In

my work, cognitive architectures are used as a concrete tool to explore cognitive representations

and processes of minds, from the perspective of computer science, the data structures and

algorithms of control structures.

Action and action execution

Action plays an essential role in creating a human-like agent: The agent interacts with its

environment by acting to achieve its goals. But how does that an action happen? For example,

when I am doing my daily driving, I know I am driving but I do not know exactly what I am

doing at every moment. How about the force applied by my fingers to the steering wheel, the

oxygen-level in my blood, or my mental states? I am not aware of much of that either during the

driving or afterwards. I only remember some ñscreen shotsò of the driving after I have arrived. It

is interesting to see that humans do not know much about how their actions have been done, in

12

the cases of driving, swimming, or even gripping a cup, while they do know that they can do

these things and, at a relatively abstract level, what they are doing.

From different fields of study such as psychology, neuroscience, and cognitive science,

researchers have provided evidence and formulated hypotheses to explain how human action

works. Marc Jeannerod, citing the work of Searle (1983), built upon the concept that covert

action representation is followed by overt, real execution of action. In detail, ñéthe conceptual

content, when it exists (i.e., when an explicit desire to perform the action is formed), is present

first. Then, at the time of execution, a different mechanism comes into play where the

representation loses its explicit character and runs automatically to reach the desired goalò

(Jeannerod, 2006, pp. 4-5). Jeannerod suggests that action representation (preparation) and action

execution are two different processes. A similar idea of distinguishing action execution from

action preparation (selection) is proposed by Milner and Goodale as well. In their work on the

two visual systems (1992; 2008), they proposed two cortical systems, the ventral and dorsal

streams, providing ñvision for perceptionò and ñvision for actionò respectively. Regarding the

roles of the two streams in the guidance of action, the perceptual mechanism in the ventral

stream identifies a goal object, and helps to select an appropriate course of action, while the

dorsal stream ñis critical for the detailed specification and online control of the constituent

movements that form the actionò (Milner & Goodale, 2008, p. 775). Additional studies regarding

human action, especially certain neuroscientific evidence, can be found in a set of review papers

(Castiello, 2005; Grafton, 2010; Wolpert, Diedrichsen, & Flanagan, 2011).

Dr. Stan Franklin and I have proposed as well that human action presents two aspects:

ñwhat to doò and ñhow to do itò (2014b). On the one hand, action is driven by the agentôs

intention. This means the agent selects the action via internal motivation as a result of mental

13

processes, rather than generating a simple reflex in response to a stimulus. Thus, the agent

understands what it will do before the action execution begins. However, this understanding of

the action is not executable in the real world, because the needed low-level environmental

information is not yet involved; executing an action in the real world requires us to conceive of

an agentôs action as occurring within its environment (Franklin & Graesser, 1997). On the other

hand, the actionôs execution may not be understandable to the agent, because the environmental

elements involved are low-level raw data without explicit meaning, while that which is

understandable must have some form of meaning for the agent. As an example, the agent does

not directly understand the raw stimulus data retrieved by its sensors from the environment.

Rather, the data must be transformed into higher level meaning by a perception process; that is,

the transformation produces an understandable representation of the sensed data. Action

execution performs a transformation similar to that of perception, but in reverse: converts an

understandable action into low-level movements.

We have further proposed and computationally implemented a new model, the Sensory

Motor System (SMS), for how a human maintains one facet of action: ñhow to do itò (Dong &

Franklin, 2015b). The SMS is a cognitive model of the action execution process. Action

execution refers to a situation in which an agent executes a selected goal-directed action in the

real world so as to produce pertinent movement. The SMS transforms the selected action into an

executable low-level action sequence, a sequence of motor commands, and executes them

through appropriate use of the agentôs actuators in the environment. This transformation is

assisted by the sensory data perceived online.

One important data structure used in the SMS is the motor plan. A set of motor

commands is prepared inside a motor plan, and the plan generates motor commands in an order

14

driven by the arrival of sensory data. Our motor plan is implemented based on the subsumption

architecture (Brooks, 1986, 1991), which behaves like a reactive structure that passively

produces output upon the arrival of input. The subsumption architecture fulfills the required

features of action execution as we model it, including (1) the bottom-up sensory data directly

driving the executable action, (2) the decomposition from an understandable action to executable

motor commands, and (3) the absence of an understandable actionôs ñexplicit characterò as

mentioned by Jeannerod above. But on the other hand, the subsumption architecture does not

reflect the process of specification for the movement parameters nor does it interact with high-

level goal-directed actions. We have implemented these in our SMS, an important extension of

the subsumption architecture. I introduce the details of the subsumption architecture, its

extension, and the fundamental concepts of the SMS in Chapter 4.

Action execution for cognitive architectures

For the last several decades, due to the difficulty of achieving human level intelligence,

the majority of AI researchers have focused on what has been called ñnarrow AIò, where the AI

system is highly constrained to specific tasks. But recently, a movement in AI research called

artificial general intelligence (AGI) has been initiated (Goertzel & Pennachin, 2007; Wang,

Goertzel, & Franklin, 2008). It aims to return to the original goal of AI, to construct computer

systems with human-like general intelligence. AGI research treats intelligence as a whole; it

carries out the engineering practice according to an outline of a system comparable to the human

mind in a certain sense. A parallel movement appeared a little later under the rubric of BICA

(Biologically Inspired Cognitive Architectures) as well. BICA focuses on the integration of

various research efforts from different disciplines to address the challenge of creating a

15

computational equivalent of the human mind. Both AGI and BICA address their AI dreams by

approaching things at a systems level, and proceeding to model the human mind.

Actually, the use of systems level cognitive architectures has been championed by several

researchers in the past as well. Artificial intelligence pioneer Allen Newell strongly supported

the need for systems-level theories and architectures, claiming that ñYou canôt play 20 questions

with nature and winò (1973). Langley, Laird, and Rogers (2009) argued as follows: ñInstead of

carrying out micro-studies that address only one issue at a time, we should attempt to unify many

findings into a single theoretical framework, then proceed to test and refine that theory.ò They

are calling for a broad-based, systems-level architecture.

Cognitive architectures are designed to be the basis for creating autonomous agents that

can solve a wide variety of problems using a wide range of knowledge; they define and organize

ñthe primitive computational structures that store, retrieve, and process knowledgeò to pursue the

agentôs goals (J. Laird, 2012). A collection of cognitive architectures has been reviewed in recent

studies (Duch, Oentaryo, & Pasquier, 2008; Goertzel et al., 2010; P Langley et al., 2009).

Regarding actions and their execution processes, a brief summary has been made in the

following lines:

A cognitive architecture must also be able to execute skills and actions in

the environment. In some frameworks, this happens in a completely

reactive manner, with the agent selecting one or more primitive actions on

each decision cycle, executing them, and repeating the process on the next

cycle. This approach is associated with closed-loop strategies for

execution, since the agent can also sense the environment on each time

step. The utilization of more complex skills supports open-loop execution,

in which the agent calls upon a stored procedure across many cycles

without checking the environment. However, a flexible architecture should

support the entire continuum from fully reactive, closed-loop behavior to

automatized, open-loop behavior, as can humans. (P Langley et al., 2009)

16

I give a review regarding the action execution process implemented in different cognitive

architectures in Chapter 3.

In our work, not only do we model action execution itself, we have also addressed the

relationship between action execution and other cognitive processes. We have developed the

Sensory Motor System (SMS) as a new module for a systems level cognitive architecture,

LIDA
1
. LIDA is a conceptual, systems level model of human mental processes. It had integrated

perception, attention, and action (selection) previously (Franklin et al., 2014), and now we have

added the SMS to fulfill its action execution part (Dong & Franklin, 2015b). In the current

LIDA, its Sensory Memory provides sensory data to drive the process of action execution

implemented by the SMS, while LIDAôs Action Selection module provides the selected goal-

directed action (the selected behavior in LIDA) to the SMS to execute. I describe the details of

LIDA in Chapter 2.

Furthermore, we have implemented estimation and learning of action execution in LIDA

(Dong & Franklin, 2015a; Dong, Franklin, & Agrawal, 2015).

Humans estimate their movements based on both their knowledge of the dynamics of the

environment and actual sensory data (Wolpert & Ghahramani, 2000; Wolpert et al., 1995).

Wolpert and colleagues have incorporated this understanding into a model that simulates this

estimation using the Kalman filter (Kalman, 1960). Inspired by their work, we have modeled the

estimation process embedded within action execution in LIDA (Dong et al., 2015). An internal

model has been added into the SMS and the Kalman Filter has been extended using the idea of

memory of errors (Herzfeld et al., 2014) for estimating action effects. I introduce this estimation

work in Chapter 5.

1
 For historical reasons LIDA stands for Learning Intelligent Distribution Agent.

17

In LIDA, by the competitive process specified in Global Workspace Theory (Baars,

1988, 2002), a LIDA-based agent decides what portion of the perceived present situation should

be attended to and broadcast to the rest of the system to modulate learning (Franklin et al., 2014).

Particularly, this attended present situation, called the current conscious content, is broadcast to

the SMS to assist its sensory motor learning (Dong & Franklin, 2015a). I introduce learning in

SMS in Chapter 6.

We have created different LIDA-based agents using different software robots, such as

youBot and a two-wheel robot, to implement our SMS. A software environment, Webots, is used

in our experiments as well. These computational implementations and experiments have

previously verified and improved the capabilities of the models we have created herein. I review

them in Chapter 4.

Finally, we have tested the LIDA Model to explain and predict an unconscious priming

effect on motor control as reported from a human experiment (T. Schmidt, 2002). The model

failed in both the explanation and the prediction before our improvement. Therefore, we

improved (refined) the LIDA Model by extending its Sensory Motor System (SMS) so as to

model, and thereby explain the empirical data. A software agent was created using this improved

model, which allowed the replication of the empirical data concerning motor priming. I introduce

our design of the extended SMS and the relevant computational simulations in Chapter 7.

Contributions of this work

An agent achieves its goals by interacting with its environment, cyclically choosing and

executing suitable actions. An action execution process is a reasonable and critical part of an

entire cognitive architecture, because the process of generating executable motor commands is

18

not only driven by low-level environmental information, but is also initiated and affected by the

agentôs high-level mental processes.

Many cognitive architectures exist, though none, as yet, at human-level intelligence

(Samsonovich, 2010). Especially, not very many cognitive architectures consider action

execution a standard component: In an online Comparative Table of Implemented Cognitive

Architectures
2
, from more than two dozen posted architectures, we find that less than half of

them have implemented action execution in a relatively complete form (Dong & Franklin,

2014a).

Even of those cognitive architectures in which action execution has been implemented,

none has fully addressed the features of action execution discussed above. For example, in the

Adaptive Control of Thought-Rational (ACT-R) architecture (ACT-R 6.0 Tutorial, 2012), ñthere

is typically no direct communication between the perceptual and motor modules.
3
 The data

passed to the motor module always comes from the high-level declarative memory.ò (Dong &

Franklin, 2015b). And in Soar (J. Laird, 2008, 2012), although it uses the term ñmotor

commandsò to describe its final output data, these commands cannot be directly executed in the

external world. Soar only transforms selected high-level actions into general low-level actions,

and an external program is always necessary to handle their final ñrealò execution. I give a

detailed discussion regarding action execution implemented in different cognitive architectures

in Chapter 3.

In our work, we have designed the Sensory Motor System (SMS) as a sub module of the

systems level cognitive model LIDA, thereby rendering it capable of communicating with other

cognitive modules naturally in a closed cognitive loop, from sensors to actions. The design of

2
 It is available at http://bicasociety.org/cogarch/

3
 There is only very limited direct connectivity between perceptual and motor modules. Spatial

information in particular is communicated directly.

19

LIDA is biologically inspired, aiming to model human-level minds, and the SMS follows

LIDAôs design philosophy, pursuing the model of human-level action execution. The features of

action execution introduced above have been well covered in our addition of the SMS into

LIDA. Furthermore, many new hypotheses and understandings regarding human minds and

action execution have been involved.

Here we provide a way to explore a specific cognitive module, action execution, and its

relationship with other relevant cognitive modules. This allows us to further explore how a mind

works, especially regarding its action execution part.

Specifically in the design of SMS, we have considered the subsumption architecture from

a new viewpoint, namely, that its capabilities fulfill the hypothesis regarding the online control

role of the dorsal stream. Also, we have modified the original subsumption architecture as

inspired by certain hypotheses from cognitive neuroscience so as to combine a reactive structure

with a goal-directed action.

We have modeled two distinct cognitive processes occurring in action execution,

estimation and learning. This makes the SMS behave in a manner closer to human-level action

execution. Also, the concept of memory of errors has been borrowed from recent studies in

neuroscience (Herzfeld et al., 2014) and applied into our models to improve their similarities to

certain human behaviors and their computational performance. I give full descriptions of the

estimation, learning, and memory of errors in Chapters 5 and 6.

We have published our work in peer-viewed journals. Some of the papers are

incorporated in the literature review (Chapter 3) and the three Chapters (4-6) reporting results.
4

4
 In all publications, Dong proposed the original idea, wrote the draft of paper, designed the experiment,

developed the software, and analyzed the data. Ideas provided by Franklin and Agrawal were reflected

into the final version by Dong after the discussion with these co-authors. All publications were supervised

by Franklin.

20

Also, we have submitted a new paper that is incorporated in Chapter 7.
5
 I list these papers and

their summarized contributions just below, presented as a summary of my research contributions

to Computer Science and Cognitive Modeling:

¶ Chapter 3: Dong, D., & Franklin, S. (2014). The Action Execution Process

Implemented in Different Cognitive Architectures: A Review. Journal of Artificial General

Intelligence, 5(1), 47-66.

Contributions: (1) A review of the action execution process as implemented in different

cognitive architectures. The common characteristics of action execution were identified, and its

comprehensive representations and functional procedures were summarized.

¶ Chapter 4: Dong, D., & Franklin, S. (2015). A New Action Execution Module for

the Learning Intelligent Distribution Agent (LIDA): The Sensory Motor System. Cognitive

Computation, 7(5), 552-568.

Contributions: (2) The completion of a systems level cognitive architecture, LIDA, by

fulfilling its action execution part, particularly by newly designing and implementing the

Sensory Motor System (SMS). The design is both biologically inspired and computationally

implementable. (3) The subsumption architecture has been newly applied in cognitive modeling,

and has been extended with variables dynamically specifiable at runtime. (4) The execution of a

grip action has been implemented using a LIDA-based agent incorporating the SMS. A software

robot, youBot, and a simulated environment, Webots, were configured and involved as well. This

grip implementation allows experimental verifications of the models.

5
 In this paper, Dong provided the design of the extended SMS, developed its software simulation, and

wrote the relevant sections. Agrawal prepared the experimental environments, replicated the human

experimental results using the extended SMS, and wrote the rest of the paper. All work was supervised by

Franklin.

21

¶ Chapter 5: Dong, D., Franklin, S., & Agrawal, P. (2015). Estimating Human

Movements Using Memory of Errors. Procedia Computer Science, 71, 1-10.

Contributions: (5) An internal model has been implemented in the SMS to produce an

estimation of the effect of action execution. The estimated result was determined by comparing it

with experimental results of humans. (6) The original implementation of the internal model

(Wolpert & Ghahramani, 2000; Wolpert et al., 1995) was novelly extended with the concept of

memory of errors (Herzfeld et al., 2014), resulting in improved similarity to humans in our

model.

¶ Chapter 6: Dong, D., & Franklin, S. (2015). Modeling Sensorimotor Learning in

LIDA Using a Dynamic Learning Rate. Biologically Inspired Cognitive Architectures, 14, 1-9.

Contributions: (7) Sensory motor learning has been implemented in LIDA following

global Workspace Theory (Baars, 1988, 2002). This is the second implementation of learning in

LIDA, the first being the modeling of attentional learning by Faghihi and colleagues (2012). (8)

A dynamic learning rate has been added into the reward updating process of the learning. We

have set up a software simulated experiment, where a LIDA-based agent looks for boxes and

pushes them around. Better execution of the push action has been obtained by using sensory

motor learning with the dynamic learning rate.

¶ Chapter 7: Agrawal, P., Dong, D., & Franklin, S. (submitted in 2016). Modeling

Motor Priming in a Systems Level Cognitive architecture. Cognitive Science.

Contributions: (8) Empirical data concerning unconscious motor priming has been

explained by an extension to the LIDA Model. In particular, LIDAôs Sensory Motor System

22

(SMS) has been extended so as to model, and thereby explain the data. A software agent is

created based on the improved LIDA incorporating the extended SMS, which allowed the

replication of the empirical data concerning motor priming.

Structure of this work

The rest of this dissertation is organized as follows: Chapter 2 introduces the context of

our work and the LIDA Model, especially its action part. Chapter 3 presents a review regarding a

set of cognitive architectures that have implemented the action execution process. The

fundamental concept of the Sensory Motor System (SMS) of LIDA, a model of action execution

for a systems level cognitive architecture, is introduced in Chapter 4. I introduce the models for

estimation and learning of action execution, using the SMS in LIDA, separately in Chapter 5 and

6. In Chapter 7, I describe the model of priming of action execution. Chapter 8 discusses the

conclusions, and outlines directions for future research.

23

2. Background and Context

We are working on cognitive modeling of human mental processes and relevant

behaviors. This area of computer science also has interdisciplinary ramifications, including

implications for psychology, neuroscience, cognitive science, and others.

The simulation of real-world human behavior provides an opportunity to create robots

that mimic different classes of movement, as well as the relationship between human movement

and the physical world. Physics offers rich empirical studies regarding these motions. The

simulation of the human mind, modeling the various internal processes and representations of

human cognition, naturally directs us to the field of psychology. An emphasis on the modeling of

human action execution hybridizes two complementary perspectives. From one point of view,

humans execute actions using actuators that produce physical movement of body parts; from

another, the action is an output of human mental activities initiated internally. This leads us to

the field of cognitive neuroscience.

Our approaches resemble those of traditional computer science. We have certain

requirements to satisfy and specific computational problems to resolve; we design and

implement appropriate data structures and algorithms (architectures); we test our results from

different levels and viewpoints as when releasing a software product. However, distinctly, since

the similarity between the subjects of study and their simulations is an important criterion for the

evaluation of a model, we borrow hypotheses from other disciplines regarding system

requirements, as well as replicate the experiments of such studies using our cognitive models,

and compare simulated results to human data as a means of model verification.

Although we neither study nor experiment on humans directly, a cognitive model of the

human mindðmore specifically, a computational implementationðprovides many potential

supports for human activities such as education, health care, or entertainment. It is similar to

24

computational simulations of physical or social phenomena, for instance, meteorological,

cosmological or economic models.

The LIDA Model

The LIDA Model is a systems level cognitive model (Franklin et al., 2016). It

implements and fleshes out a number of psychological and neuropsychological theories, but is

primarily based on Global Workspace Theory (Baars, 1988, 2002). The model is grounded in the

LIDA cognitive cycle (see Figure 1). The simulated human mind can be viewed as functioning

via a continual, overlapping sequence of these cycles. Each cognitive cycle consists of three

phases: 1) the LIDA agent first senses the environment, recognizes objects, and builds its

understanding of the current situation; 2) by a competitive process, as specified by Global

Workspace Theory (Baars, 1988, 2002), it then decides what portion of the represented situation

should be attended to and broadcasted to the rest of the system; 3) finally, the broadcasted

portion of the situation supplies information allowing the agent to choose an appropriate action

to execute, and modulates learning.

Global
Workspace

Sensory
Motor

Memory

Procedural
Memory

Action
Selection

Perceptual
Associative
Memory

Transient
Episodic
Memory

Attention
Codelets

Sensory
Memory

Declarative
Memory

Workspace

Current Situational Model

Conscious Contents
Queue

Structure Building
Codelets

Dorsal
Stream

Episodic
Learning

Perceptual
Learning

Sensory
Motor
Learning

Attentional
Learning

Procedural
Learning

Recruit
Schemes

Instantiated
Schemes
(Behaviors)

Selected
Behavior

Add Conscious Content

Add Coalitions

Form Coalitions

Ventral
Stream

Consolidate

Sensory
Stimulus

Spatial
Learning

Actuator
Execution

Update
Behaviors

Spatial
Memory

Motor
Plan

Execution

Motor
Plan

Internal &
External

Environment

Cue

Spatial
Maps

Cue

Local
Associations

Percepts

Cue

Local
Associations

Cue

Long Term

Short Term

Figure 1. LIDA Cognitive Cycle Diagram

25

Figure 1 gives an intuitive feel for the relationship among different modules. These LIDA

modules are introduced below ordered according to the three phases of the LIDA cognitive

cycle: understanding, attention, and action/learning. I describe them in a linear way in order to

make the process more easily understood. But actually, each LIDA module acts independently

and asynchronously with other modules in LIDA. I introduce more about action execution part in

action/learning phase while the details of other modules can be found in (Franklin et al., 2016).

Understanding phase

The incoming stimuli are sensed by the agentôs sensors from the external and internal

environment. Sensory Memory (SM) gets these sensory data (stimuli) and a set of low-level

features of the stimuli are made out of them. These low-level features are passed to Perceptual

Associative Memory (PAM) where higher-level features, such as objects, events, categories,

actions, feelings, etc. are recognized. These recognized entities make up the percept that passes

to the Workspace, where the agentôs perceived current situation is updated in the Current

Situational Model (CSM). The percept serves as a cue to Spatial Memory, Transient Episodic

Memory, and Declarative Memory, to recall the remembered contents from these memory

systems that were associated with the elements of the cue.

Structure building codelets build high-level and more abstract understanding of the

current situation. These codelets are small, special purpose programs, each of which has some

particular type of structure it is designed to build. The Conscious Contents Queue stores a few

past conscious contents that helps the agent to update its understanding of current situation as

well.

26

Attention phase

Attention Codelets are also special purpose programs that are concerned with certain

portions of the content maintained in CSM, and form them into coalitions. The codelets bring

these coalitions into the Global Workspace (GW) to compete to have the agentôs attention. The

winner of the competition, the most salient coalition, has its content become the so-called

contents of the consciousness (Baars, 1988), to which the agent selectively attends in the current

cognitive cycle. The contents of consciousness issued by GW are broadcast to the rest of the

system.

Action/Learning phase

The broadcast conscious contents helps (1) agent decide what to do next and (2) for

modulating different modes of learning.

Procedural Memory stores schemes, the templates of possible actions including their

contexts and expected results (Drescher, 1991). It also stores an activation value that attempts to

measure, for each such scheme, the likelihood that an action taken within its context produces

the expected result. The schemes whose contexts and results match the broadcast conscious

content well are instantiated into behaviors, which are the instances of the templates with their

variables instantiated to the current situation.

These behaviors are passed to the Action Selection (Maes, 1989), where a single

behavior, the selected action in LIDA, is selected to execute.

Ideas concerning action execution have been briefly proposed in the LIDA Model,

mainly expressed by two modules: Sensory Motor Memory and Motor Plan Execution depicted

in the bottom left corner of Figure 1. However, the complete concept of action execution and its

computational implementation have not yet been specified. We work on this here.

27

The original Sensory Motor Memory and Motor Plan Execution modules have been

implemented by the SMS in detail (See Chapter 4). Two of other LIDA modules, Action

Selection and Sensory Memory, provide relevant informationða selected behavior and the

sensory data through a dorsal stream channel
1
ïas inputs to the SMS. The selected behavior is a

data structure resulting from the preceding Action Selection in the LIDA Model. It is comprised

of three components: a context, an action
2
, and a result. With some reliability, the result is

expected to occur when the action is taken in its context. The SMS sends out motor commands to

agentôs actuators to generate its output in the environment.

Different types of learning are modeled in LIDA, in Figure 1 the learnings are illustrated

using the channel arrows starting from Global Workspace (GW) to different modules. The global

broadcast of the contents of the consciousness assists the learning. Particularly in our work, we

have implemented sensory motor learning, which is represented by the channel from GW to the

Sensory Motor Memory (See Chapter 6).

1
 In LIDA, the dorsal stream channel directly passes sensory information, some interpretation of

sensory data, from the sensory memory to the action execution process.

2
 In this context, the term ñactionò refers to a component of a behavior. This differs from the general

usage, such as in the phrase ñaction executionò. In this document, we use ñactionò in the general sense,

while ñaction of a behaviorò refers to a particular component of that behavior.

28

3. The Action Execution Process Implemented in Different Cognitive Architectures: A

Review

Introduction

This review focuses on cognitive models of action, or more specifically, of the action

execution process, as implemented in several popular cognitive architectures. We examine the

representations and procedures inside the action execution process, as well as the cooperation

between action execution and other high-level cognitive modules. We finally conclude with

some general observations regarding the nature of action execution. This work has been

published in 2014 (Dong & Franklin).

Cognitive architectures are designed to be the basis for creating general, autonomous

agents that can solve a wide variety of problems using a wide range of knowledge; they define

and organize ñthe primitive computational structures that store, retrieve, and process knowledgeò

to pursue the agentôs goals (J. Laird, 2012). Here we examine such cognitive models of actions,

and especially of the action execution process as it is implemented in different cognitive

architectures. The emphasis is placed on three questions: 1) What are the comprehensive

representations and functional procedures of action execution? 2) How do action

preparation/selection and action execution cooperate? and 3) What kind of specific designs are

useful for generating actions that both achieve the agentôs goals and execute appropriately using

actuators in the environment?

The cognitive model of action in different cognitive architectures might be implemented

variously because of the modelôs tasks. For example, an action implemented in a simulated chess

match could be an abstract move, such as moving a piece one square to the left, or the low-level

actions implemented in a simulated tennis match which are necessary for controlling the playerôs

muscles (actuators) during the game. A chess action is driven only by the agentôs internal goal; it

29

is not affected by the environmental situationðexcept the abstract representation of the position

of the piecesðnor does it require the maintenance of specifications for its actuators. On the other

hand, actions in tennis are generated on the basis of both the playerôs internal goals as well as the

present environmental situation. Tennis, unlike chess, requires an action execution process that

enables the agent to act in an uncertain and dynamic environment
1
. The action execution process

is the focus of this review.

Even for the cognitive architectures in which action execution has been considered, the

architecture may or may not completely implement it as a standard component. Some

architectures implement a complete action execution process, such as ACT-R (J. Anderson,

2007) and LIDA (Franklin et al., 2014); other architectures only transform prepared/selected

high-level actions into general low-level actions, and leave the action execution process to a

domain-dependent external program, such as Soar (J. Laird, 2012). We review both types of

architecturesô action execution models below.

The next section describes a set of popular cognitive architectures with models for action

execution. For each of these architectures, we first give a brief introduction and overview of the

architectureôs major components and functions; then we examine its specific implementation of

action execution; specifically, we may compare its action execution part to that of LIDA. The

following section concludes with a comparative summary of the action execution processes

reviewed herein.

1
 A task environment is uncertain if 1) the agent sensors do not detect all aspects that are relevant to the

choice of action, or 2) the next state is unable to be determined by the current state and the executed

action; and the environment is dynamic if it can change while an agent is deliberating (Russell & Norvig,

2009).

30

Action Execution Processes of Cognitive Architectures

In this section, we review the action execution processes of different cognitive

architectures in the ensuing subsections. In each of the subsections, after an introduction to the

architecture, we examine the representations and procedures inside the action execution process,

as well as the cooperation between action execution and other high-level cognitive modules.

4D/RCS

The review content of 4D/RCS mentioned here is mainly in response to a paper by Albus

and Barbera (2005). We cite the paper for this whole subsection, unless other explicit citations or

quotations are mentioned.

Real-time Control System (RCS) is a cognitive architecture designed to enable multiple

levels of intelligent behaviors, achieved by a multi-layered hierarchy of sensory-interactive

intelligent control process nodes. The most recent version, 4D/RCS, embeds the 4-D approach

(Dickmanns, 1992, 2000), a machine vision technology, within the RCS control architecture.

Each node in the architecture contains sensory processing (SP), world modeling (WM),

value judgment (VJ), behavior generation (BG), and a knowledge database (KD) (Albus &

Barbera, 2005). A SP process receives input from sensors; SP and WM processes cooperate to

filter, attribute, and classify the input data as a perception process; WM processes create and

update the recognized states of the world in the KD; a BG process accepts tasks and plans, and

executes behaviors to accomplish those tasks; a VJ process evaluates the results of tentative

plans, and saves evaluation results in the KD.

Process nodes act hierarchically. The BG processes form a command tree: each input task

is decomposed into a plan consisting of subtasks for subordinate BG processes. Information

maintained in the KD is shared between WM processes in nodes above, below, and at the same

31

level within the same sub tree. Sensory data flow up the SP hierarchy typically forms a graph;

and these data are populated by the WM in the KD at each level.

A WM predicts what will change in the world as the result of an action, and what will

stay the same, giving its solution to the frame problem. Specifically, the location and direction of

motion of objects in the world are represented in an image or map, and a simple comparison

between one frame and the next distinguishes what changes from what does not in a dynamic

environment.

A BG process receives tasks from a supervising BG process as input. The receiving BG

process has a planner that decomposes each task into a set of coordinated plans for subordinate

BG processes. During this period, tentative plans are proposed by the BG planner; the VJ

evaluates the probable results of those plans as predicted by the WM; and a plan selector in the

BG planner will choose the plan with the greatest value as the current plan. ñFor each

subordinate there is an executor that issues commands, monitors progress, and compensates for

errors between desired plans and observed results. The Executors use feedback to react quickly

to emergency conditions with reflexive actions. Predictive capabilities provided by the WM may

enable the executors to generate pre-emptive behaviorò (Albus & Barbera, 2005).

In each node, the content of the selected current plan is moved from the planner into an

ñexecutor plan bufferò that initiates and guides the upcoming execution. This buffer is an

interface between the planner and executor processes, and also the interface between deliberative

and reactive processes.

At the top level of the architecture, the task is defined by the agentôs goal that is

established typically by a human operator outside of the agent. At each successive level in the

hierarchy, tasks from the level above are decomposed into subtasks that are sent to the

32

subordinate levels below. Finally at the bottom level, decomposed task commands are sent to

actuators to generate movements.

In each node of 4D/RCS, the execution is driven by a selected plan so as to reflect the

requirements of the agentôs goal in a bottom-up fashion that is reactive to the sensory input.

Thus, at the lower levels of the architecture, the process nodes generate goal-directed reactive

behaviors, while at the higher levels, the process nodes enable decision-making. 4D/RCS has

implemented both the action preparation/selection and the action execution processes

hierarchically; it allows a more gradual, and thus smoother, transformation from the agentôs

motivations, represented by a top-level task, to low-level actions that are directly applied to the

agentôs actuators.

ACT-R

Adaptive Control of Thought-Rational (ACT-R) is a cognitive architecture, a theory for

simulating and understanding human cognition based on numerous facts derived from

psychological experiments (Budiu, 2013). ACT-R consists of two types of modules: memory

modules and perceptual-motor modules. Action preparation (selection) and action execution are

implemented in ACT-R by using these two types of modules separately. An agentôs motivation is

achieved by choosing a proper action in memory modules, and the action is appropriately

executed in the motor modules.

There are two types of memory modules in ACT-R: declarative memory and production

memory. Declarative memory, represented in structures called chunks, maintains knowledge that

people are aware of, and can share with others through a set of buffers. Procedural memory,

encoded in production rules, represents knowledge outside of their awareness that is expressed in

their behavior rules (ACT-R 6.0 Tutorial, 2012). A production rule is a condition-action pair.

33

The condition specifies a pattern of chunks that must be in declarative memoryôs buffers for the

production to apply; a production fires if its condition matches the chunks in the buffers. The

action specifies some actions, all of which are to be taken when the production fires (ACT-R 6.0

Tutorial, 2012). ñ[A] critical cycle in ACT-R is one in which the buffers hold representations

determined by the external world and internal modules, patterns in these buffers are recognized,

a production fires, and the buffers are then updated for another cycleò (J. R. Anderson et al.,

2004).

ACT-Rôs perceptual-motor modules provide an elementary cognitive layer by which to

couple the environment with the high-level cognition layer, including declarative memory and

production memory (Byrne & Anderson, 2001). Perceptual-motor modules embedded in ACT-R

6.0 was heavily influenced by Kieras and Meyerôs EPIC system (1996). Their major difference is

that, only one production rule fires each time in ACT-R, while EPIC allows multiple rules fire, a

parallel cognitive processing.

The motor module in ACT-R 6.0 is developed based on EPICôs manual motor processor

(module). It is designed for modeling a simulated hand to operate a virtual keyboard and mouse

(Bothell, n.d.). The motor module ñreceives commands from the production system that specify a

movement style (e.g., PUNCH, as in punch a key) and the parameters necessary to execute that

movement (e.g., LEFT hand and INDEX finger)ò (Byrne & Anderson, 2001). The movement is

generated through three phases: preparation, initiation, and execution. Below we describe each

phase in turn.

In the preparation phase, the motor module builds a list of ñfeaturesò which guide the

actual movement; the features include the movementôs style and parameters. For an example, in

the movement of ñpunch the key below the left index fingerò, three features of PUNCH, LEFT,

34

and INDEX are involved in the preparation. (Byrne & Anderson, 2001). The amount of time that

preparation takes depends on the number of features that need to be preparedðthe more that

need to be prepared, the longer it takes.

The motor module maintains a history of the last set of features that it prepared. The

actual number of features that need to be prepared depends upon two things: the complexity of

the movement to be made and the difference between that movement and the previous

movement. On one end of the scale, the motor module is simply repeating the previous

movement, then all the relevant features will already be prepared and do not require preparation.

On the other end, a request could specify a movement that requires the preparation of full

features, which have not been made in previous movements.

By default, the first 50ms after the preparation is movement initiation (Bothell, n.d.).

After that, the movement may be executed if the motor module is not already executing a

movement (Byrne & Anderson, 2001). ñIf a movement is currently being executed, then the

newly prepared movement will be queued and will not be executed until the current movement

and all other movements in the queue have been executedò (Byrne & Anderson, 2001).

In ACT-R, ñ[t]he world with which a model interacts is called the device. The device

defines the operations which the perceptual modules can use for gathering information and the

operators available to the motor modules for manipulating the device.ò (Bothell, n.d.). The

executed movement sent out from the ACT-R motor module is passed to the related device

module in order to carry out the execution in the real world.

There is typically no direct communication between the perceptual and motor modules in

ACT-R. There is only very limited direct connectivity between perceptual and motor modules
2
.

The data passed to the motor module always comes from the high-level declarative or production

2
 Spatial information in particular is communicated directly.

35

memory. This is almost the only significant conceptual difference between LIDAôs SMS and

ACT-Rôs motor module.

BECCA

This subsection heavily relies on a paper by Rohrer (2012). We cite it for the whole

subsection unless we explicitly cite or quote otherwise.

A Brain-Emulating Cognition and Control Architecture (BECCA) is developed to address

the problem of natural world interaction (NWI). NWI is the set of all tasks by which an agent

pursues its goal in an unstructured physical environment. BECCA consists of an automatic

feature creator and a model-based reinforcement learner to capture structure in the environment,

and to maximize rewards respectively. BECCA issues action commands to a world module, and

receives back a reward signal and observations in the form of sensory input and basic features.

The world module is not the part of the standard BECCA architecture. Rather, it maintains

simulations of the world, agent embodiment, actuators, and so on (see details later in this

section).

The feature creator identifies patterns in the input. Sensory inputs are formed into groups

based on how often they are co-active, and patterns within each group are identified as features

and added to a feature space. The creator also maps the input into that feature space at each time

step; the strongest feature voted by the projected input is activated. Features can be built

hierarchically into higher-level features. Low-level features progressively activate high-level

features, and the final set of activated features is passed to the reinforcement learner as a feature

simulation.

36

In the reinforcement learner, a feature activity vector maintains the recent incoming

feature simulations. A salience filter selects a single feature from the vector for attention
3
, and

the working memory maintains a brief history of attended features.

The reinforcement learner forms a model of the world and uses that model to select

actions that will maximize the amount of reward. ñThe model consists of a list of feature-space

transitions in the form of cause-effect pairs, each with an associated count and reward value. At

each time step, the previous working memory is compared to the list of causes and the attended

feature is compared to the list of effects. If a similar pair exists within the model, its count is

incremented, and its reward value is adjusted toward the current reward. If there isnôt a

sufficiently similar pair, the previous working memory and attended feature are added as a new

cause-effect pairò (Rohrer, 2012). In this way, the model is formed and updated. ñThe count

associated with each transition establishes its frequency of observation, and the reward value

represents the expected reward associated with making that transitionò (Rohrer, 2012).

In the feature space, a transition represents a path segment that, when linked to other

segments, may take a BECCA agent to its desired state from the current one. To predict the

likely effect of a transition, the agent ranks the expected transition by 1) the matching strength

between the current state and the cause of the transition, and 2) the count of the transition, and

selects the transition with the highest rank.

Many effects are conditional on the actions selected by the agent. If an expected

transition has both high similarity to the current state and high reward, and involves an agentôs

action on it, that action will be selected and executed.

3
 From the viewpoint of LIDA, this selection acts as the beginning of an agentôs consciousness, and the

most salient feature is the content of consciousness.

37

There are two types of action selection in BECCA, deliberative and reactive. Their major

difference regards the content of the current state that is used in the prediction of transitions and

in the action selection. In deliberative action selection, only the working memory (the recently

attended features) is used to seed predictions and action selections from the model, while the

entire feature activity vector is used in reactive action selection. The final selected action results

from a nonlinear sum of the actions selected by the two selection modes. The deliberative action

is also fed back to the working memory so that the actionôs effect can be recorded as part of the

previous working memory content when the model is trained on the following time step.

A world module maintains 1) the environmentðthe simulation of the real world with

which humans interact; 2) the physical embodiment of the agentðthe virtual actuators and

sensors of the hardware and the mechanisms that couple them; 3) preprocessing between

sensors/actuators and the BECCA agent; and 4) a reward calculator providing reward value to

the model of reinforcement learner
4
. From the viewpoint of action, a preprocessing step occurs

between the selected action and the actuators; this step may include the incorporation of

coordinated multi-actuator motions, fixed motion primitives, and heuristic goal pursuit

subroutines.

An action processing mechanism unique to BECCA is its two-step action selection

process: 1) Certain transitions, cause-effect pairs, are predicted (selected), and 2) an action is

selected from the predicted transitions if the effect of the transition with the highest expectation

relies on that action. These three components, cause, action, and effect, may be represented and

organized differently in other architectures. For example, in many other architectures such as

ACT-R and Soar (see its section below), a production rule is used to represent a condition-action

4
 A BECCA agent is not autonomous because its action decision is not driven by an agenda or

motivation inside but by artificial rewards created outside of the agent.

38

pair, corresponding to cause and action in BECCA; while in LIDA, all of three components are

encapsulated together: a data structure called a scheme includes context, action, and result,

corresponding to BECCAôs cause, action, and effect respectively.

Another issue is that the action execution process is outside the standard BECCA

architecture. The commands for controlling actuators are not generated by the BECCA agent, but

rather by the preprocessing of a world module. Also, the world module maintains the domain

knowledge; this allows the BECCA agent to remain unchanged between many different domains

(tasks). A similar strategy is implemented in Soar as well: its operator application doesnôt really

perform the action on actuators but an external program is always necessary to handle the final

execution (performance). In contrast, some architectures do involve the action execution process

in their architecture, such as ACT-R and LIDA.

CERA-CRANIUM

We cite a paper (Arrabales, Ledezma, & Sanchis, 2009) for this entire subsection of

CERA-CRANIUM. Other citations or quotations will be explicitly noted in the text.

The Conscious and Emotional Reasoning Architecture (CERA) is a cognitive architecture

structured in layers, providing a flexible framework with which to integrate different cognitive

models of consciousness. CERA offers a basic hypothesis that conscious contents emerge as a

result of competition and collaboration between specialized processors (functions). The

Cognitive Robotics Architecture Neurologically Inspired Underlying Manager (CRANIUM)

provides services through which CERA can execute thousands of asynchronous but coordinated

concurrent processes.

CERA is structured in four layers, which are as follows:

39

1) The sensory-motor services layer comprises a set of communication services that

provide a uniform access interface for the agentôs physical sensors and actuators.

2) The physical layer is responsible for the low-level representations and

preparations of the agentôs sensors and actuators. Actuator commands are finally regulated at this

level.

3) The mission-specific layer maintains complex perceptions and behaviors that are

combined from and decomposed to the single sensory-motor content. Complex behaviors

represent the agentôs missions; one mission typically involves several goals.

4) The core layer includes a set of modules that perform higher cognitive functions.

CERA is designed to allow customized core modules, such as attention, preconscious

management, memory management, and self-coordination.

A CRANIUM workspace implements a set of specialized processors and a shared access

working memory for the processors. Each of these processors is designed to perform a specific

function, cooperating and competing with other functions. A CERA agent has two hierarchically

arranged CRANIUM workspaces. The low-level workspace is located in the CERA physical

layer and the high-level is located in the CERA mission specific layer. Based on the two

CRANIUM workspaces, the perception flows are organized bottom-up in packages called single

percepts, complex percepts, and mission percepts. Meanwhile in the same workspaces, a top-

down action
5
 flow includes mission behaviors, simple behaviors, and single actions; behaviors

are iteratively decomposed until a sequence of atomic actions is obtained.

The core layerôs operations are problem domain dependent. The operations are directed

by the problemôs interests, meta-goals, instead of mission-specific goals coming from lower

5
The term ñactionò is an abstract concept; it refers to a class of action-kind concepts organized in

different levels, including mission behaviors, simple behaviors, and single actions.

40

layers. Meta-goals shape the overall resulting behaviors. At any given time, a number of possible

behaviors are generated in the CRANIUM workspaces; however, only those behaviors that are

directed to the same locations as the represented meta-goals are likely to be selected and finally

executed.

There are three types of processors related to the action process implemented in the

CRANIUM workspaces.

1) Action planners transform the input behavior into the corresponding sequence of

atomic actions that are submitted for eventual execution, so as to achieve the behaviorôs

missions.

2) Action preprocessors prepare the atomic actions generated from action planners.

Action preprocessors build so-called ñsingle action constructsò to provide specific contextual

data for actions. ñProprioceptive sensory data is also included in order to adapt actions to the

current position of the actuatorsò (Arrabales et al., 2009).

3) Reactive processors are typically located in the CERA physical layer. They

provide a quick response to stimuli that are considered harmful or highly undesired for the agent.

These processors build simple behaviors to diminish or prevent negative consequences when

unsafe or undesired situations are detected, without the participation of upper cognitive

processes.

In summary, the CERA-CRANIUM action process supports both action selectionðthe

selection between behaviors driven by the domain independent meta-goalsðand the action

executionðthe decomposition from a behavior to a sequence of atomic actions, implemented by

the action planners and the final execution preparation in the physical layer. CERA-CRANIUM

41

also establishes the interface between the agent and its environment in the sensory-motor

services layer, providing the agent with the necessary environmental specifications.

CLARION

CLARION stands for Connectionist Learning with Adaptive Rule Induction ON-line.

The purpose of this architecture is to capture all the essential cognitive processes within an

individual cognitive agent (Sun, 2003, 2006). CLARION consists of a number of subsystems,

including the action-centered subsystem (the ACS), the non-action-centered subsystem (the

NACS), the motivational subsystem (the MS), and the metacognitive subsystem (the MCS). The

ACS implements the action decision making of an individual cognitive agent (Sun, 2003). The

MS motivates an agent to choose its actions by means of the rewards or gains which the agent

seeks to maximize. The MS influences the working of the ACS by providing the context in

which the goal and the rewards of the ACS are set (Sun, 2006).

The ACS consists of two levels of representation: the top level for explicit and the bottom

level for implicit knowledge. The implicit knowledge generally does not have associated

semantic labels, and is less accessible. Accessibility refers to the direct and immediate

availability of mental content to the major operations that act on it. The bottom level is a direct

mapping from perceptual information to actions, implemented in backpropagation neural

networks
6
 involving distributed representations, whose representational units in the hidden layer

are capable of accomplishing tasks, but are generally not individually meaningful (Sun, 2003).

Furthermore, the ACS might be composed of multiple instances of the backpropagation neural

network, and a selection process is proposed to choose one of them. In contrast, the explicit

knowledge is more accessible, manipulable, and has conceptual meaning (Sun, 2006). At the top

6
 Learning of implicit knowledge (the backpropagation network) transpires at the bottom level. ñIn this

learning setting, there is no need for external teachers providing desired input/output mappings. This

(implicit) learning method may be cognitively justifiedò (Sun, 2006).

42

level, a number of explicit action rules are stored, which are usually in the following form:

current-state-condition Ą action (Sun, 2003). An agent can select an action in a given state by

choosing an applicable rule. The output of a rule is an action recommendation, which is similar

to the output from the bottom level (Sun, 2003).

The two levels implemented in CLARIONôs ACS operate independently: each of them

makes action decisions in parallel based on the current state. The action sent out from both top

and bottom levels are all performable. The final output action of the ACS is a combination of the

output actions from the top and bottom levels. On the other hand, CLARION also models an

interaction between the top and bottom levels, as well as between explicit and implicit

knowledge. The input state or the output action to the bottom level is structured using a number

of input or action dimensions; each of the dimensions has a number of possible values. At

CLARIONôs top level, an action ruleôs condition or action is represented as a high-level node

which is connected to all the specified dimensional values of the inputs or actions at the bottom

level (Sun, 2003).

The overall algorithm of CLARIONôs action decision making consists of a structure that

goes from perception to actions, and ties them together through the top and bottom levels of the

ACSôs cognitive processes as follows: ñObserving the current state of the world, the two levels

of processes within the ACS (implicit and explicit) make their separate decisions in accordance

with their own knowledge, and their outcomes are somehow ócombinedô. Thus, a final selection

of an action is made and the action is then performedò (Sun, 2003). This decision making

mechanism covers both action selection (preparation) and action execution. The top level of the

mechanism provides the agentôs internal goal for action execution, and the bottom level provides

real-time environmental information. In contrast, in LIDA , we hypothesize that the two facets of

43

action, understandable and executable, cannot coexist in one presentation of action: action

selection provides explicit desires of the action, and then action execution implicitly perform it.

Both explicit and implicit representations of action act linearly but not in parallel, and neither of

them can be both understandable and executable.

Note that the specifics of the agentôs actuators are not involved in the representation of

output actions (motor commands). This means the output performable actions of CLARION are

independent of the motors of the robotôs actuators; this is different than the executable motor

commands mentioned in the introduction.

Additionally, learning has been applied in CLARIONôs ACS in three distinct ways: 1) the

learning of implicit knowledge at the bottom level; 2) bottom-up learning, or learning explicit

knowledge at the top level by utilizing implicit knowledge acquired in the bottom level; and 3)

top-down learning, the assimilation at the bottom level of explicit knowledge from the top level

(which must have previously been established through bottom-up learning) (Sun, 2003).

EPIC

This review of EPIC mainly relies on an EPIC overview paper (Kieras & Meyer, 1997).

We cite the paper for this entire subsection, unless explicit citations or quotations are claimed in

the text.

Executive Process-Interactive Control (EPIC) is a cognitive architecture created for

modeling human task performance. EPIC has three processing modules: 1) sensory processors,

2) motor processors, and 3) a cognitive processor that represents a general procedure as a set of

production rules to perform a complex multimodal task. During the execution of a procedure,

EPIC specifies both the production-rule programming for the cognitive processor as well as the

relevant perceptual and motor processing parameters.

44

Specifically, there are visual and auditory processors that accept multimodal stimuli as

perceptual input. This input is stored in the corresponding working memory located in the

cognitive processor.

The motor processors produce a variety of simulated movements for the hands, eyes, and

vocal organs. From the cognitive processor, an actionôs command is sent to a motor processor

that consists of the movement type (name) and certain parameters.

There are two steps for a complete movement: a preparation and an execution. In the

preparation, the motor processor transforms the movement type (name) into a set of movement

features and generates them. ñThe time to generate the features depends on how many features

can be reused from the previous movements (repeated movements can be initiated sooner), and

how many features have been generated in advanceò (Kieras & Meyer, 1997). The ensuing

execution step begins with an initiation phase, followed by the actual physical movement. In

addition to reusing the features remaining from previously executed movements, the movement

features may be prepared in advance. ñIf the task permits the movement to be anticipated, the

cognitive processor can command the motor processor to prepare the movement in advance by

generating all of the required features and saving them in motor memoryò (Kieras & Meyer,

1997).

Rather than the voluntary movements produced by various motor processors, as

mentioned above, the oculomotor processor may produce the involuntary (reflexive) eye

movements, either saccades or small smooth adjustments in response to the visual situation.

In the cognitive processor, there is a set of production rules that specify which actions are

performed in certain situations to accomplish a task. The format for a rule is <rule-name> IF

<condition> THEN <action>. The rule condition will test the contents of the production system

45

working memory. The rule action will then add or remove information from the working

memory, or send a command to the motor processors. Motor working memory stores information

about the current state of the motor processors.

The cognitive processor operates cyclically. During each cycle, the contents of working

memory are first updated with the perceptual input information and the previous cycleôs

modifications; then the contents of the production system working memory are updated based on

the rules that fire, and the action commands of the firing rules are sent to the motor processors. A

unique feature of EPIC is that it will fire all rules in which conditions match the contents of

working memory, and will execute all of the corresponding actions; in other words, the EPIC

cognitive processor allows parallel cognitive processing.

The EPIC model builder should provide 1) the task environment, either physical or

simulated, which includes the characteristics of relevant objects external to an EPIC agent, 2) a

set of tasks which specify the environmental events, 3) task-specific sensory data encodings

(representations), and 4) the task procedures represented as production-rules.

In summary, regarding the action process in EPIC, action selection and action execution

have been implemented by production rules firing in the cognitive processor, and movement

preparation and execution in the motor processors separately.

GLAIR

We cite a paper (Shapiro & Bona, 2010) for this subsection, unless other citations or

quotations are explicitly mentioned in the text.

Grounded Layered Architecture with Integrated Reasoning (GLAIR) is a multi-layered

cognitive architecture for embodied agents. In GLAIR, the highest layer is the Knowledge Layer

(KL), which contains the agentôs beliefs, and performs reasoning and selects acts. The middle

46

layer is the Perceptuo-Motor Layer (PML), which grounds the KL symbols in perceptual

structures and primitive actions. The lowest layer is the Sensori-Actuator Layer (SAL), which

contains the controllers of the sensors and actuators of the hardware or software agent.

The KL contains the beliefs of the agent; with respect to action, it includes 1) plans for

carrying out complex acts and for achieving goals, 2) beliefs about the preconditions and effects

of acts, and 3) policies about when, and under what circumstances, acts should be performed.

The PML is responsible for the communication between the KL and the SAL by three

top-down sub layers: the PMLa, the PMLb, and the PMLc. The PMLa grounds the KL symbols,

providing primitive actions; the PMLc abstracts the sensors and actuators into basic behavioral

repertoire of the robot. The PMLb translates and communicates between the PMLa and the

PMLc.

GLAIR agents execute a sense-reason-act cycle. The original focus of the GLAIR design

is on reasoning, but not problem solving or goal-achievement such as ACT-R. Its basic driver is

based on reasoning: either thinking about some perceptual input, or answering some question. If

the input (typically a natural language utterance) is a statement or a question, the GLAIR agent

will output the proposition of the statement or the answer to the question respectively. A later

added acting component allows a GLAIR agent to obey a command, to perform an act and to

achieve a goal. When the input is a command, the agent will perform the indicated act,

implementing an action process that is the focus of this review.

An act consists of an action and one or more arguments. For an example, ñthe term find

(Bill) denotes the act of finding Bill (by looking around in a room for him), composed of the

action find and the object Billò (Shapiro & Bona, 2010). Acts may be classified as either

external, mental, or control. External acts affect the outside world. Mental acts affect the agentôs

47

beliefs and policies. Control acts are the control structures used to support ground computational

processes such as inference operations so as to maintain the GLAIR acting system.

GLAIR acts may also be classified as primitive, defined, or composite. Primitive acts are

the basic acts predefined in the PMLa. Composite acts consist of primitive acts. A defined act is

the abstracted identifier of a plan; if a GLAIR agent is to perform a defined act, it ñdeduces itò to

a plan and performs it. Such a plan is an act, which can be either a primitive, composite, or

defined. It is assumed that a plan is ñcloserò to primitive acts than a defined act. A defined act

may have different plans depending on circumstances. The use of conditional plans has allowed

a GLAIR agent to select among alternative procedures to perform.

The procedure for performing an act consists of several steps:

1) To attempt to achieve the preconditions of the act and, if it is a defined act, to

prepare a set of candidate plans that can be used to perform the act.

2) If the act is a defined act, only its most suitable plan is tried, after which the agent

will automatically consider it successful.

3) Effects of the act are derived before the act is performed; and after that, the agent

will consider all the effects of the act to hold.

In GLAIR, the act is represented in the same formalism as other declarative knowledge

such as the agentôs beliefs. However, the declarative knowledge and the act are maintained by

the KL and the PMLa layers separately. In this way, the declarative and procedure knowledge

are represented with the same formalism but operated in different levels.

The PMLa layer grounds the KL by providing primitive actions, transforming high-level

actions to low-level. Although the actions maintained in PMLa are primitive, they are

independent of the implementation of the agentôs body. It is the PMLc layer which directly

48

abstracts the actuators
7
 of the robot into the basic behavioral repertoire of the robot body. The

primitive actions in the PMLa are translated to these basic behavioral repertoiresðthe basic

execution units of GLAIRðthrough PMLb.

Two steps occur during the process of action execution: 1) actions are initially selected in

the KL driven by reasoning results and translated into their primitive format in the PMLa layer;

and 2) the primitive actions are translated to actuator-dependent basic behavioral repertoires in

PMLc through PMLb, and then those basic units are sent to SAL for execution.

ICARUS

We cite a paper (Pat Langley & Choi, 2006) for this entire subsection. Other citations or

quotations will be notated explicitly.

ICARUS is a cognitive architecture for physical agents that has been influenced by

results from cognitive psychology. ICARUSôs most basic mechanism, conceptual inference,

operates by matching long-term conceptual structures against short-term perceptual data and

beliefs. Based on the inference, ICARUS operates processes for goal selection and skill

execution.

In order to perceive the states of the external environment, ICARUS incorporates a

perceptual buffer (short-term memory) that describes aspects of the environment. The element

stored in this memory responds to a particular object, and characterizes the objectôs

specifications at the current time step. ICARUS also includes a conceptual memory, which

contains long-term structures that are the classifications of the environmental state. During each

cycle of conceptual inference, objects are perceived first into the perceptual buffer, where they

begin to match against long-term conceptual classifications. The system updates its belief

7

In the original paper (Shapiro & Bona, 2010), the authors use the term ñeffectorsò instead of

ñactuatorsò as we do here.

49

memory based on the results of this matching. The elements in the belief memory describe

relations among objects. ICARUS repeats this inference process, updating its beliefs about the

environment over time.

In order to take action in the environment, ICARUS has a performance mechanism that

concerns goals the agent wants to achieve, skills the agent can execute to reach them, and

intentions about which skills to pursue.

Specifically, ICARUS includes a goal memory that contains a list of the agentôs

objectives. The goal is a set of concept instances that the agent wants to achieve, and the goal

memory takes the same form as belief memory. An agent needs to select only one goal at a time

among multiple elements in goal memory. On each time, it chooses the goal with the highest

priority that is not yet achieved.

ICARUS has a long-term skill memory that contains skills it can execute in the

environment and use to accomplish goals. Each skill has a head and a body. The head states the

skillôs objective, and the body specifies the necessary perceptual data and beliefs of a skill.

Multiple skills may have the same head; they provide different ways to achieve the same goal

under different conditions. Once the agent has chosen a goal, it selects a skill to achieve the goal

based on a matching between the skill bodyôs specifications and the agentôs current perceptual

data and beliefs
8
.

The skills are organized hierarchically. ñPrimitive skillsò refers to actions that the agent

can execute directly in the environment, while non-primitive skills are goals/sub-goals that the

agent might seek to achieve. Primitive skills correspond to the executable motor commands

mentioned in the introduction. During the execution of a non-primitive skill, the agent must find

8
 In LIDA, a similar matching occurs in the process of recruiting schemes. Schemes are selected based

on a matching between the agentôs conscious contents, the most salient current situation, and the

schemeôs context and result contents.

50

a path downward from its goal to one or more terminal primitive skills in the hierarchy. Once the

agent has selected a skill path for execution, it invokes the actions referred to the primitive skill

or skills in the path.

If the applicable skill is not found, an impasse appears, and the agent invokes its problem

solver for achieving the goal. The agent decomposes the goal into sub-goals iteratively until find

the skills for achieving them. The skills applicable for all sub-goals are finally selected and then

executed to achieve the goal. A new skill is learned for the goal by structuring the applicable

skills for those sub-goals. The similar impasse resolving mechanism has been implemented in

Soar (see its section below) as well.

LIDA

For historical reasons LIDA stands for Learning Intelligent Distribution Agent. The

LIDA Model (Franklin et al., 2014) is a conceptual, systems level model of human mental

processes, used to develop biologically-inspired intelligent software agents and robots. It

implements and fleshes out a number of psychological and neuropsychological theories, but is

primarily based on Global Workspace Theory (Baars, 1988, 2002).

The LIDA Model is grounded in the LIDA cognitive cycle. Each cognitive cycle consists

of three phases: 1) the LIDA agent first senses the environment, recognizes objects, and builds

its understanding of the current situation; 2) by a competitive process, as specified by Global

Workspace Theory (Baars, 1988), it then decides what portion of the represented situation should

be attended to, and broadcast to the rest of the system; 3) finally, the broadcast portion of the

situation supplies information allowing the agent to choose an appropriate action to execute, and

modulates learning (Franklin et al., 2014). The simulated human mind can be viewed as

functioning via a continual, overlapping sequence of these cycles.

51

The dual aspects of action are represented in the LIDA Model as the distinct processes of

action selection and action execution. Specifically, the sensory data retrieved in LIDA influences

the action process at two ñlevelsò. At one level, sensory data is filtered through the

understanding and attention phases, and then helps recruit appropriate actions in the action

selection process; the selected result is used to initiate certain processes operating in the

concomitant action execution process, ultimately generating executable low-level actions. At the

other level, the sensory data is sent through a dorsal stream channel directly to the action

execution process for assisting the execution (See Figure 1).

The concept of scheme has been borrowed to implement LIDAôs action selection. A

scheme is a data structure representing the procedural knowledge stored in LIDAôs Procedural

Memory. It is composed of three components: a context, an action
9
, and a result. With some

reliability, the result is expected to occur when the action is taken in its context. In LIDAôs

action selection process, one or more schemes are recruited based on the most salient current

situation. And then, the schemesô context and result components are bound with additional

information from the current situation, so that the recruited schemes are instantiated into

behaviors. A behavior has a data structure similar to a scheme, but the components of context

and result have been instantiated with concrete values. Finally, a behavior is selected based on

the agentôs motivation and its understanding of the current situation.

The process of action execution has been recently added to LIDA, modeled by the

Sensory Motor System (SMS) (Dong & Franklin, 2014b). Two other LIDA modules, Action

Selection and Sensory Memory, provide relevant informationða selected behavior and the

sensory data through a dorsal stream channel, respectivelyïas inputs to the SMS. The SMS sends

9
 In this context, the term ñactionò refers to a component of a scheme. This differs from the general

usage, such as in the phrase ñaction executionò. In this document, we use ñactionò in the general sense,

while ñaction of a schemeò refers to a particular component of that scheme.

52

out motor commands to an agentôs actuators to execute its selected action in the environment.

Within the SMS, three data structure types have been proposedðthe motor command (MC), the

motor plan (MP), and the motor plan template (MPT)ðand three types of processes have been

modeled: online control, specification, and MPT selection.

A motor command (MC) is applied to an agentôs actuator. Every MC has two

components: a motor name, and a command value. The motor name indicates which motor of an

actuator the MC specifically controls, while the command value of a MC encodes the extent of

the command applied to the motor.

An MP acts like a MC generator that generates MCs based on the sensory data

transmitted via the dorsal stream. An MP is implemented based on the principles of the

subsumption architecture (Brooks, 1991), a reactive structure. In the subsumption architecture, 1)

the sensory data is linked to directly thus determining the selection of motor commands that

drive the actuators; 2) it decomposes a robotôs control architecture into a set of task-achieving

behaviors; and 3) it does not maintain any internal model of the world
10

, and is without any

explicit representations. The MP generates motor commands as the output of the SMS to the

environment (using actuators), while environmental data directly influence the generation

process through the dorsal stream channel from Sensory Memory. These cyclically occurring

processes are called the online control process of the SMS.

An MPT is an abstract MP that resides in an agentôs long-term memory (Sensory Motor

Memory in LIDA). It has a set of motor commands (MCs) that are not yet bound with the

command values, whereas after a specification process, the motor commands are bound with

specific values, instantiating the MPT into a concrete MP. Both sensory data from the dorsal

10

 Although no central world state is one of the essences of the subsumption architecture, implicit

understanding and expectation of the environment has been built into the architecture by its layered

structure.

53

stream and the selected behavior determine the specification process (Dong & Franklin, 2014b).

MPTs and MPs have very similar structures, so they are designed with nearly the same data

structure. Their major differences are 1) an MPT is persistently stored in a long-term memory,

while an MP is short-term, and created anew each time it is used; and 2) typically an MPôs

command values have been specified, while those of an MPT have not.

As the SMSôs initial process, A MPT selection acts to select and initiate a MPT by an

incoming selected behavior before the MPT is specified into a concrete motor plan. MPT

selection chooses one MPT from the set of those associated with the selected behavior. It

connects action selection to action execution. Currently this selection is built in by the agent

designer (Dong & Franklin, 2014b).

A sensory motor learning has been implemented in LIDAôs SMS. See the learning in

Chapter 6.

Soar

Soar is a cognitive architecture in pursuit of general intelligent agents (J. Laird, 2008).

ñThe design of Soar is based on the hypothesis that all deliberate goal-oriented behavior can be

cast as the selection and application of operators to a state. A state is a representation of the

current problem-solving situation; an operator transforms a state (makes changes to the

representation); and a goal is a desired outcome of the problem-solving activityò (J. E. Laird et

al., 2012).

Soar has separate memories for descriptions of its current situation and its long-term

knowledge. It represents the current situation in its working memory, which is Soarôs short-term

memory and maintains the sensory data, results of intermediate inferences, active goals, and

54

active operators (J. E. Laird et al., 2012). The long-term knowledge specifies how to respond to

different situations in the working memory so as to solve a specific problem.

All of Soarôs long-term knowledge is organized around the functions of operator

selection and operator application, which are organized as a processing cycle as described below

(J. Laird, 2008; J. E. Laird et al., 2012).

1) Elaboration. Knowledge with which to compute entailments of short-term

memory, creating new descriptions of the current situation that can affect operator selection and

application indirectly.

2) Operator Proposal. Knowledge with which to propose operators that are

appropriate to the current situation based on features of the situation tested in the condition of the

production rules.

3) Operator Comparison (Evaluation). Knowledge of how to compare candidate

operators, to create preferences for some proposed operators based on the current situation and

goal.

4) Operator Selection. Knowledge with which to select an operator based on the

comparisons. ñIf the preferences are insufficient for making a decision, an impasse arises and

Soar automatically creates a substate in which the goal is to resolve that impasse. é The

impasses and resulting substates provide a mechanism for Soar to deliberately perform any of the

functions (elaboration, proposal, evaluation, application) that are performed

automatically/reactively with rules.ò (J. Laird, 2008)

5) Operator Application. Knowledge of how the actions of an operator are performed

on the environment, to modify the state.

55

Four of the above functions require retrieving long-term knowledge that is relevant to the

current situation: Elaborating, Operator Proposal, Operator Comparison, and Operator

Application. These functions are driven by the knowledge represented as production rules (J. E.

Laird et al., 2012). A production rule has a set of conditions and a set of actions. The

productionôs actions are performed if its conditions match working memory; that is, the

production fires (J. E. Laird et al., 2012). The other function, Operator Selection, is performed by

Soar's decision procedure, which is a fixed procedure that makes a decision upon the knowledge

that has been retrieved (J. E. Laird et al., 2012).

An operator contains preconditions and actions; its action differs from a production ruleôs

action. The operator action is an output for the agent to its internal or external environment,

while actions of a production rule generally either create preferences for operator selection, or

create/remove working memory elements (J. E. Laird et al., 2012).

When Soar interacts with the environment, it must make use of a mechanism that allow it

to effect changes in that environment; the mechanism provided in Soar is called output functions

(J. E. Laird et al., 2012). During the operator application process, Soar productions could

respond to an operator by creating a structure on the output link, a substructure which represents

motor commands for manipulating output. Then, an output function would look for specific

motor command in this output link, and translate this into the format required by the external

program that controls the agentôs actuators (J. E. Laird et al., 2012). ñ[In the external program,]

functions that execute motor commands in the environment use the values on the output links to

determine when and how they should execute an actionò (J. E. Laird et al., 2012). This means

that it is Soarôs external program, not its output functions, that specifies how to execute the

action in detail (when and how).

56

In the case of Soarôs output, motor commands, which cannot be directly performed

(executed) on the external world, an external program is always necessary to handle the final

ñrealò execution (performance) for Soar. Soar does not cover the representation of environmental

information related to action. This allows it to maintain generality with a clear standard, without

the necessity of considering every possible domain that the Soar agent might live in. Note the

term ñmotor commandsò in Soar expresses completely different concepts than in other

architectures, such as LIDA, although it is used to represent the final output data in both cases. In

LIDA, motor commands are executable, while in Soar they are not. By saying that motor

commands are ñexecutableò, we mean that these commands 1) are able to be applied to the

agentôs actuators directly, and 2) are maintained in an order appropriate to both the agentôs

internal goal and the current environmentôs dynamics.

Conclusions

We realize that the action execution processes implemented in the cognitive architectures

described above have many similar representations and procedures though they use different

structures. We conclude with some general observations regarding the nature of these

representations and procedures, followed by a summary.

Inside Action Execution

Each cognitive architecture having a representation at an explicit level of knowledge,

typically also needs a process that transforms high-level knowledge into motor-level commands;

that is, action execution. For example, a task (sub task) is transformed into task commands in

4D/RCS, a production ruleôs action into movements in ACT-R and EPIC, a behavior into atomic

actions in CERA-CRANIUM, an act into basic behavioral repertoires (the basic execution units)

in GLAIR, a non-primitive skill into primitive skills in ICARUS, and a behavior into a sequence

57

of motor commands in LIDA. Some other architectures, such as BECCA and Soar, prepare the

actions for external programs to finish the action execution. These architectures accomplish only

the initial phase of the action execution process. CLARION has a unique action decision

mechanism in its two levels of representation. As we have discussed above, this mechanism

covers both action selection (preparation) and action execution (performance), though its action

performance does not maintain the specifics of the actuators within the representations of the

output actions.

The Cooperation between Action Selection and Execution

A goal-directed action resulting from action selection concomitantly initiates the initial

action execution process. This process may be implemented in two different ways. One

possibility is to decompose the selected goal-directed action into primitive actions, in which case

the actionôs data structure is gradually broken down from high-level to low-level without

qualitative changes, such as tasks in 4D/RCS, behaviors and atomic actions in CERA-

CRANIUM, actions in CLARION, skills in ICARUS, and operators in Soar. The other option is

to map the selected goal-directed action to another type of action representationðthe actionôs

data structure has been qualitatively changedðthat enables the generation of the ensuing low-

level actions, such as a production ruleôs action mapping to a movement style in ACT-R and

EPIC, a transition mapping to an action in BECCA, and a behavior mapping to a Motor Plan

Template (MPT) in LIDA. GLAIR combines the natures of these two options: it first

decomposes acts into primitive ones, and then translates them into actuator-dependent basic

behavioral repertoires.

58

Environmental Information for Action Execution

During the action execution process, additional environmental information is usually

supplied to specify and adjust the final command values for execution. For example, in both

ACT-R and EPIC, a preparation phase operates during the action execution process to build and

specify a list of ñfeaturesò; the features include the movementôs styleðthe name of a low-level

actionôs identifierðand the values of its parameters. In CERA-CRANIUMôs action execution,

action preprocessors provide specific contextual data for preparing atomic actions. In LIDA, the

sensory data sensed through its dorsal stream channel is sent directly to the action execution

process, so that a Motor Plan Template (MPT) is instantiated into a Motor Plan (MP) that

generates the final motor commands.

This additional information might be directly sensed from the environment through

sensory processes; in this case, a direct communication between the perceptual and motor

modules is implemented to assist the action execution. For example, in CLARIONôs bottom

level, perceptual information directly maps to actions, and in LIDA, sensory data may be sent to

the motor system directly through a dorsal stream channel. On the other hand, this environmental

information might come from high-level cognitive modules that store the current state of the

environment. For example in ACT-R, the data passed to the motor module comes from high-

level declarative or production memory.

Summary

Based on the above review, we can identify certain common characteristics for action

execution. It provides an elementary cognitive layer by which a cognitive architecture couples

the environment with its high-level cognitive modules, including action selection. Action

execution finalizes an agentôs intention, so that it generates a cognitive architectureôs output.

59

Action execution involves domain specificationsðincluding environmental specifications and

those of the agentôs actuatorsðsufficient to enable execution to be actuated in the environment.

However, it does not contain so much abstract knowledge, which is the province of high-level

cognitive modules.

On the other hand, action execution may vary in concrete implementations, with respect

to its representations, procedures, and the means of cooperation with high-level cognitive

modules. Also, action execution itself may or may not be considered a standard module of a

cognitive architecture, so that architectures may differ in their degree of completion.

60

4. A New Action Execution Module for LIDA: The Sensory Motor System

Introduction

I and Franklin have proposed two facets of action: ñwhat to doò and ñhow to do itò

(2014b). Following this hypothesis, the dual aspects of action are represented in the LIDA Model

as the distinct processes of action selection and action execution. Action selection has been

described in previous work (Franklin et al., 2014). Here we specify the action execution in the

form of the Sensory Motor System (SMS), a cognitive model for an action execution process in

LIDA. The SMS responds by transforming a desired understandable action, a selected behavior

in LIDA, into an executable low-level action sequence, a sequence of motor commands, and

executing them.

The next section describes the subsumption architecture (Brooks, 1986, 1991), which is

used as the SMSôs prototype. The following section introduces the SMS concepts and its high-

level designs. Two data structure types have been proposedðthe Motor Plan Template (MPT),

and the Motor Plan (MP)ðand three types of processes have been modeled: online control,

specification, and MPT selection. The next section introduces the simulation of a specific action

execution process, gripping. One aspect of grip, grip aperture, has been simulated and compared

to the human performance. Furthermore, we compare the SMS of LIDA with the action

(execution) process implemented in three other cognitive architectures: ACT-R, Soar, and

CLARION. We conclude with a discussion of the benefits of modeling a natural action execution

process with the SMS for LIDA, followed by a conclusion for SMS development.

The subsumption architecture

The subsumption architecture is a parallel and distributed computation formalism for

connecting sensors to actuators (Brooks, 1986, 1991), a type of reactive structure for controlling

a robot. In the subsumption architecture, specific behaviors are merged into a comprehensive

AFSM 1Sensory data 1 SI

AFSM 2Sensory data 2

AFSM 3Sensory data 3

Level 1

Level 2

Motor commands

61

classification, organized in multiple layers (levels), where the components in each layer are

Augmented Finite State Machines (AFSMs). Layers (levels) or AFSMs are connected by two

types of processes: inhibit or suppress, which are represented by encircled uppercase I or

uppercase S respectively. As shown in Figure 2, a signal coming into the high-level input of the

inhibit processðfrom AFSM 2 to the encircled uppercase Iðterminates the signal passing

through the low-level inputðfrom AFSM 1 to the encircled uppercase I. The suppress process,

encircled uppercase S, operates as does the inhibit process except that its high-level input signal

replaces (not terminates) the low-level one. Inside the architecture, there are no direct channels

between modules, nor is there any central forum for communication (Connell, 1989b); the

environment is used as the communication medium because ñ [t]he world is its own best modelò

(Brooks, 1990, p. 3).

The capabilities of the subsumption architecture match many required features of action

execution as we model it (see next Section). First, the subsumption architecture fulfills the

requirements for modeling online control of action execution. In this architecture, the sensor is

directly linked to the motor that drives the actuators. This kind of mechanism follows the

hypothesis that the executable action is driven by the content of bottom-up sensory information

coming through the dorsal stream.

Figure 2. The subsumption architecture example

 AFSM 1Sensory data 1 SI

AFSM 2Sensory data 2

AFSM 3Sensory data 3

Level 1

Level 2

Motor commands

62

Second, the subsumption architecture also satisfies the requirements of transforming an

understandable action, a selected behavior, into executable motor commands. Marc Jeannerod,

citing the work of Searle (Searle, 1983), built upon the concept that covert action representation

is followed by overt real executed action. In detail, ñthe conceptual content, when it exists (i.e.,

when an explicit desire to perform the action is formed), is present first. Then, at the time of

execution, a different mechanism comes into play where the representation loses its explicit

character and runs automatically to reach the desired goalò (Jeannerod, 2006, pp. 4-5). We

believe the concepts used in SMS are the same as Jeannerodôs, although our terminologies

differ.
1

In order to run automatically to reach the desired goal without ñits explicit characterò, a

general idea is to decompose an understandable action into low-level executable motor

commands, and the desired goal into separate sub-goals to be accomplished with low-level tasks.

The subsumption architecture supports this kind of mechanism. ñItôs a method of decomposing a

robotôs control architecture into a set of task-achieving behaviors or competencesò (Dawson,

n.d.). In other words, the architecture decomposes both the action and the desired goal into motor

commands and competences, respectively. A competence refers to a low-level task that could be

considered a link connecting a desired goal to executable motor commands. Although the

subsumption architecture is typically considered the classic example of a reactive structure, in

the present case, a competence actually works proactively as well because of its task-achieving

behavior. It achieves both the ñhow to doò and the ñfor what purposeò of an action though the

purposes it aims to achieve are very specific and low-level. In the subsumption architecture, a

1
 óAn explicit desire to perform the actionô refers to a selected behavior; óa different mechanismô is our

SMS; and óthe representation [that] loses its explicit characterô indicates executable motor commands.

63

competence conceptually plays a role like a watershed, dividing the desired understandable

actions and executable motor commands.

Furthermore, the subsumption architecture has no central control, and thus it develops a

piece of cognition that minimizes the role of representation (Brooks, 1991; De Vega, Glenberg,

& Graesser, 2008, p. 72). This fact is consistent with our design requirement, as Jeannerod

proposed above, for the absence of an understandable actionôs ñexplicit characterò in the action

execution process. This explains why action execution remains outside the awareness of the

agent, although it could become aware of the execution indirectly. We will discuss this later (See

below sections).

On the other hand, the subsumption architecture doesnôt interact with high-level goal-

directed actions, which is an essential requirement of the SMS. Also, the parameters designed in

the architecture are not changeable, so the motor commands it generated cannot be specified at

runtime. We have extended the subsumption architecture in the design of SMS to meet these

points: interaction with high-level actions and dynamically specifying parameters at runtime. The

SMSôs full definition is described in the next section.

Conceptual Design of the SMS

This section introduces the concepts relatively abstractly, so that it supports a high-level

design of SMS, filling the gap between the hypotheses regarding the human mental and

behavioral, and the detailed computational designs of SMS, such as its data structures and

algorithms. Working towards a biologically inspired understanding of the action execution

process, such as the action mentioned in the two visual systems, this section describes the

possible functional representations and processes in detail. In addition, this section describes

64

reliable implementation requirements, in order to implement the action execution process

computationally as we will see later (see next section).

The SMS must transform a selected behavior into a sequence of motor commands, and

execute them using the agentôs actuators. In this section, the emphasis is on the concept of

transformation, while task execution is introduced later in experimental parts (next section).

The motor plan and online control

The output of the SMS, a sequence of motor commands, is sent out in a certain order;

hence the agentôs movement is not chaotic but is chosen with the intent of reaching a certain

goal. However, this ñorderingò effect is not a plan working inside the SMS to determine when

each motor command will be sent out. The action execution process is running in a real world

with unlimited environmental data available, much of which heavily affects the order of the

motor commands. It is hard to anticipate such environmental situations fully enough to explicitly

prepare a specific sequence of motor commands before the execution begins.

Citing the work of Herbert Simon (1969), Rodney Brooks built upon the concept that

complex behavior need not necessarily be a product of an extremely complex control system;

rather, it may simply be the reflection of a complex environment (Brooks, 1986). Therefore, in

contrast to a fixed plan, a reactive structure is introduced to model the source of ordered motor

commands (Figure 3). Inside the SMS, first a set of motor commands are built in; each of them is

represented by a ©, which is independent of any timestamp. Next is a set of triggers, represented

by Tx; a trigger activates a specific command in order to send it out as a part of the SMS output

when the input sensory data matches one or more of the triggerôs conditions. The subscript x

stands for the number of conditions a trigger contains. Third, before sending out the commands,

a choice function chooses a command from possibly multiple candidates as the final output at

65

each moment. The choice strategy must be implemented when applying this high-level design to

a concrete action execution process. The set of motor commands, the triggers, and the choice

function are referred to as a Motor Plan (MP), which specifies what to do in a particular

situation, independently of time.

An environment located outside the SMS is shown in Figure 3 as well; it provides

environmental data to the SMS at the appropriate time through the dorsal stream (see Figure 1).

These sensory data are classified based on different modalities, such as visual, tactile, etc., and

sent to the triggers. The output of the SMS, a sequence of motor commands, executes using the

agentôs actuators, and thereby acts on the environment. These processes occur cyclically between

the environment and the SMS, which models the hypothesis regarding one of the dorsal streamôs

roles, online control.

As shown in Figure 3, the SMS resembles a wrapper for the MP, supporting pre-

processed sensory data, and passing the MPôs output to the agentôs actuators acting on the

Figure 3. SMS with a MP and online control diagram

choice

T1

T2

Χ

Tx

Visual

Tactile

Χ

Sensory Data
through the

dorsal stream

©

©
©

©

Χ

©

©

Motor Plan (MP)

Environment

Motor
commands

© © ©Χ

Χ

SMS
Online control

66

environment. On the other side, a MP acts like an independent component inside the SMS. It

involves static data structures: a set of motor commands, as well as the triggers, implemented as

small processes.

This online control mechanism designed in the SMS reflects the ideas of a reactive

structure: it allows the MP to generate motor commands based on the sensory data, adapting to

the current environmental situation. This is inspired by the principles of the subsumption

architecture. The grounding component inside the subsumption architecture is a type of Finite

State Machine (FSM); specifically, it could be an augmented FSM (Brooks, 1986) or a module

(Connell, 1989b). As shown in Figure 4, a set of states are contained in a FSM, and an internal

variable, Current State, maintains which state is the current one. Depending on the input data, the

current stateôs transition conditions may be met so as to change the current state into another one,

updating Current State in the process. Besides a transition, some states have another attribute, a

command; the command is sent out when the stateôs transition is activated. Compared to a FSM,

a MPôs trigger containing conditions corresponds to a FSM state plus its transition conditions,

and the trigger is capable of selecting the command based on the input data as well. The only

difference between a trigger and a FSM is that the FSM contains commands, while in a MP, a set

of motor commands is separately maintained outside of the triggers. Conceptually, a FSM equals

a trigger that points to motor commands. Representing a set of motor commands independently

from triggers provides a clearer classification between the data structure and the processes that

operate on it; also, it helps to clearly emphasize the temporal independency of the motor

commands.

67

The choice function is generalized from the inhibit and suppress operations of the

subsumption architecture, which connect many FSMs together based on a carefully designed

structure for certain task-achieving behaviors. The choosing criteria used in inhibit and suppress

are fixedly created in a hierarchical structureðbeing in a higher layer gives a motor command

higher priority for selection. We generalized the implementation of a criterion, and leave its

specification to the computational design, while, as in the case of inhibit and suppress, only one

motor command is permitted to be sent out at one time as a choice result.

Motor Commands

A motor command (MC) is applied to an actuator of an agent; therefore its format relies

on the configuration of that actuator, which, theoretically, is outside the SMSôs purview. On the

other hand, since MCs are the output of the SMS, a general MC format has been defined

according to the definitions that follow.

Every MC has two components: the motor name and a command value. The motor name

tells to which motor of an actuator the MC specifically applies. As an instance, if one joint of a

finger is considered a motor of the actuator hand, the jointôs name then can be the motor name of

a MC.

Figure 4. A FSM and its components

ΧInput data

FSM

State 1
Transition 1

State 2
Transition 2

State N

Transition N

Command

Current State

Command

68

The command value of a MC encodes the extent of the command applied to the motor.

As an example, the command value applied to a fingerôs joint could be positive five within a real

number domain. Here the unit of a command value is not specified, which means the type of the

command is unknown: is it force, velocity, or distance? Being agnostic to a commandôs type is

reasonable because 1) conceptually, the agent need not be aware of the type of the command in

the action execution process (although the agentôs designer must be); and 2) computationally,

since a MCôs command type is implicitly fixed by designðe.g., the type of a command applied

to a fingerôs joint is always the forceðthe command type need not be explicitly declared in a

MC.

The motor plan template and specification

A set of motor commands (MCs) is prepared inside a Motor Plan (MP) and bound with

fixed command values. In order to specify a MCôs command value before the execution

beginsðthus modeling one of the dorsal streamôs hypothesized roles, specificationða Motor

Plan Template (MPT) is proposed and a specification process is created in the SMS as depicted

in Figure 5.

A MPT is an abstract motor plan that resides in an agentôs long-term memory (Sensory

Motor Memory in LIDA). It has a set of motor commands that are not yet bound with the

command values; after a specification process, the motor commands inside the MPT are bound

with specific command values, instantiating the MPT into a concrete MP. MPTs and MPs have

very similar structures, so they will often be designed with nearly the same data structure. Their

major differences are 1) an MPT is persistently stored in a long-term memory, while an MP is

short-term, and created anew each time it is used; and 2) most of an MPôs command values have

been specified, while those of an MPT have not.

69

Both sensory data through the dorsal stream and the selected behavior determine the

specification process. As shown in Figure 5, two cylinders lie under the set of motor commands

(©s); they receive the sensed data and the context of a selected behavior separately, and provide

the specific command values to motor commands mainly through a specification process. Each

of these cylinders represents a set of associations; every association transforms relevant

environmental features into a command value. As an example, in a grasping task, ñthe hand pre-

shapes during reachingé. The pre-shaping of the hand includes the well-known phenomenon of

ómaximum grip apertureô (MGA), whereby the finger grip opens more than required by the size

of the object, but proportionally to itò (Jeannerod, 2006, p. 5). Thus, one corresponding

association implemented in the SMS is to transform an objectôs size to the distance between

gripping fingers.

The data sensed through the dorsal stream provides environmental featuresô true value,

such as a numeric value of positive five as an objectôs width, while the context of a selected

Figure 5. A MPT Ą MP, online control, and specification diagram

choice
©

©Χ

Motor
commands

© © ©Χ

Χ

SMS

T1

Χ

T2

Motor Plan Template (MPT) ĄMotor Plan (MP)

Χ

Χ

SpecificationUpdate

S

Sensory Data
through the

dorsal stream

A selected
behavior

Visual

Tactile

Χ

Context

Χ

Online control

Environment

70

behavior supports the semantic values ñlargeò or ñsmallò for the objectôs size. Usually, the

command values specified in the motor commands are only relying on the sensed data, although

the context affects the command values in a few conditions (Milner & Goodale, 2008). We have

simulated some of these conditions and replicated the effects on the command values from

variation of both the sensed data and the context. Accordingly, to implement the relationship of

the effects of sensed data and the context, a suppress operation is represented by an encircled

uppercase S in Figure 5: the command values associated with the sensed data usually suppress

the values associated with the context unless either 1) there is a delay on the sensed data, 2) the

association transforming the certain sensed data is not availableðunfamiliar action, or 3)

relevant objects ñneed to be analyzed for their semantic or material propertiesò (Milner &

Goodale, 2008, p. 780).

The specification process is supposed to specify a MPT into a MP before the execution

begins. The motor commands (MCs) inside a MPT are bound with specific command values

during the specification process. However, there are some types of MCs whose command values

are conceptually specified in the process of online control but not in the specification process. In

the example of gripping an object, the individual fingerôs force is manipulated, not before the

action execution begins, but in the course of the execution process (Grafton, 2010). To model

this situation in the SMS, the pertinent command values are set with a default value in the

specification process first, and are then updated in the online control. An update process is

represented in Figure 5, showing that the MCs command values are updated by the values

associated with the sensed data in executing the action. We will see a simulation illustrating this

case later.

71

The subsumption architecture sends out a command with a fixed built-in value, telling the

agent what to do in every moment. However, the subsumption architectureôs reactive behavior is

typically classified as a process to answer the ñhow to doò question of an action. This is due to

the fact that the commands the architecture sends out are low-level, the same as the elements of

environmental data, which cannot be directly recognized by humans, since they cannot describe

what the commands are, though they know a high-level process has been accomplished in some

way. Similarly, as shown in Figure 3, a MP outputs the motor command in each moment,

answering ñwhat to doò in a low-level way to the agentôs actuators, and ñhow to do itò at a high-

level responding for the goal-directed action initiated internally from the agent. Here the

specification process operating on a motor commandðbinding a specific value to itðaugments

the principle of the subsumption architecture by extending the motor command with a specified

valueðbesides ñto do whatò, answering a question of ñhow muchò. Therefore, we argue that the

SMS, a mechanism containing both online control and specification processes as shown in

Figure 5, answers the ñhow to doò of an action at both low and high levels.

Furthermore, the SMS is not merely a reactive structure, adapting to its environment, but

also a structure that responds to the intent of a goal-directed action. A selected behaviorôs context

also affects the specification process. The high-level understanding necessary for an actionôs

effectiveness in an external environment, such as the target object features of a grip action, can

indirectly affect a MPT by specifying the values of some variables. In this way, the SMS may

serve as a sub-module of LIDA, a systems level cognitive model that covers the whole cognitive

loop from perception to action. The SMS connects LIDAôs selected behavior to a MPT, thus

achieving the actionôs execution.

72

MPT Selection

A MPT awaits initiation by an incoming selected behavior before being specified into a

concrete motor plan. From a general engineering viewpoint, a special process called MPT

selection has been created. As depicted in Figure 6, MPT selection chooses one MPT from others

also based on the selected behavior.

The selected behavior and the dorsal stream

The design of the SMSôs concepts has been fully described above, and is summarized in

Figure 6. The three processes modeled inside the SMSðMPT selection, specification, and online

controlðare affected by the selected behavior and/or dorsal streams. Their detailed relationships

are shown in Table 1 below.

Figure 6. SMS with all of its components. See text for details.

Table 1. The selected behavior and dorsal stream affect the SMSôs processes

 MPT selection Specification Online control

The selected behavior Affect Affect Affect

Dorsal stream N/A Affect Affect

choiceSensory Data
through the

dorsal stream

©

©
Χ

Environment

Motor
commands

© © ©Χ

Χ

SMS

T1

Χ

A selected
behavior

Context

Χ

Specification
Update

MPTs
Χ

Χ

Χ

MPT selection

SΧ

Motor Plan Template (MPT) ĄMotor Plan (MP)

Online control

Visual

Χ

73

Note that the selected behavior affects the online control process because it conceptually

initiates the action execution, although it is not directly involved in the online control.

Implementation and Experiment

Different actions execute variously, due to vastly different actuators, goals, or action

execution contexts. In other words, each action needs a certain Motor Plan Template (MPT)

embedded in a Sensory Motor System (SMS) that allows the modeling of the actionôs distinctive

characteristics in the execution process.

We have implemented a MPT in a newly created SMS to model the execution of a grip

action inside a LIDA-based software agent. This MPTôs design is both guided by the Herbert

arm controller (Brooks, Connell, & Ning, 1988; Connell, 1989a), and biologically inspired by

some hypotheses regarding the execution of humanôs grip action. The simulated results are

compared with both robotic and human data.

The involved software agent (robot and its controller) and its experimental environment

are introduced in the first two subsections, followed by a description of the simulation of

Herbertôs arm controller and its biologically inspired modification. Finally, the SMS is linked to

LIDA where one experimentðregarding the awareness an agent to its action executionðhas

been done.

The LIDA Framework and Webots

The LIDA Framework is an underlying computational software framework. ñ[It] allows

the creation of new intelligent software agents and experiments based in [sic] the LIDA Model.

Its design and implementation aim to simplify this process and to permit the user to concentrate

in [sic] the specifics of the applicationò (Snaider, McCall, & Franklin, 2011, p. 141).

74

Webots is a mobile robot simulation software package. It offers a developmental

environment for rapid prototyping of 3D virtual worlds, an array of ready-made sensors and

actuators, and programmable controllers that control a robot living in that world

(www.cyberbotics.com). We use Webots as an experimental environment in which to create an

agent developed using the LIDA Framework for running our computational SMS. The technical

issue regarding the use of the Framework as a controller for a Webots robot has been addressed

with a customized environment module as an interface as shown in Figure 7. Traditionally, the

world, the robot and robotôs controller are developed inside Webots. We created a simple robot

controller inside Webots which responds to start a LIDA Framework as a real controller only.

Rather than a typical Webots controller, the Framework serves as a robot controller by way of its

customized environment.

The extended youBot

The youBot is a software robot bundled with the Webots installation. As shown in Figure

8 (a), its actuators are a mobile base, an arm, and two grippers; the end segment of the arm plays

the role of a hand and the grippers are attached to it. We chose this robot on the basis of its

Figure 7. The LIDA Framework controlling a Webots robot

Controller

Webots

The LIDA Framework

Sensory
Memory

Sensory Motor
System

Customized
Environment
(Interface)

ΧΧ

Delete

Add

World

Robot

75

similarity to Herbert, whose arm controller serves as the prototype of a Grip MPT inside our

newly created SMS.

The sensors

Following the configuration of sensors in Herbert, we extended the youBot sensors by

additionally simulating two infra-red (IR) beams detecting the area in front of the hand, one IR

beam between the grippers as their closing trigger, and a touch sensor on the tip of each gripper.

See Figure 8 (b) and (c) for details. The extended youBot sensors are introduced in detail in

Table 2.

Figure 8. (a) The extended youBot, (b) infra-red beams on the hand and between the

grippers, and (c) touch sensors (dark blue, bottom view).

(a)

(b) (c)

76

Short Name Description

Pos The arm segment positions, which can be accessed by the

Webots getPosition() method.

Tact (wrist) The force exerted on the wrist, the joint between

penultimate and last arm segments, which can be accessed

by the Webots getMotorForceFeedback() method.

Tact (touch) The data sensed through the touch sensors, which can be

accessed by the touch sensorôs getValue() method.

Beam The distance as measured by the infra-red beam between

the grippers. It is used to check whether an object is in

between, and is accessed by its getValue() method.

XIR The distances as measured by the two infra-red beams

from the hand to any object which is in the area in front of

the hand. It is used to check whether an object is in the

area, and can be accessed by the getValue() method.

The actuators

As shown in Figure 9 (a), the youBot arm comprises five segmentsðfrom arm0 to arm4,

which are linearly connected by five jointsðfrom joint0 to joint4. The jointsô angles can be

modified by the Webots setPosition() method. Of these five joints, only the middle threeðjoint1,

joint2, and joint3ðare changeable in our simulation of grip in a vertically oriented X-Y plane.

The first and distal joints donôt act in the same planeðthey rotate in X-Z plane; thus these two

Table 2. The extended youBot sensors

77

joints, joint0 and joint4, have not been used, but just being fixedly set to value of zero.

Accordingly, arm0 is considered part of the robot base, and arm4ðhand is considered part of

arm3. Because of the simplification, not all joints are explicitly shown in Figure 9 (b); the reader

might have to go back to see Figure 9 (a) for details when we are talking about some formula

based on Figure 9 (b) later.

One important gripping issue is that the hand must be vertical to the surface that a target

object stands on. This requirement follows from the fact that the XIR beams that detect the area

in front of the hand are at a fixed angle to the hand. This constitutes a considerable simplification

of the analogous human behavior. The human chiefly acts upright on land, however, a humanôs

trunk is usually not exactly vertical but slightly forward leaning during motion, such as running;

the line of sight adjusts dynamicallyðXIR does notðso that the human looks ahead constantly

while the trunkôs angle may vary from moment to moment.

Figure 9. An extended youBot controlling its arm during a grip action

(a) (b)

arm0

arm1

arm2

arm3

arm4
(hand)

joint0

joint1

joint2joint3

joint4
(wrist)

Distance

Base

1

2

3

arm2

arm3

Hand

XIR beams

arm1

arm0

Height

The surface a target
object stands on

The surface the robot
stands on

78

 As shown in Figure 9 (b), the hand position is controlled by the angles of joint1, joint2,

and joint3ð 1᷁, ᷁ 2, ᷁ 3; their sum must equal ˊ to satisfy the constraint of that the hand being

vertical to the surface
2
, as described by Eq. (1):

 ᷁ 1 + ᷁ 2 + ᷁ 3 = ́ (1)

The hand has four basic movements: lift , descend, extend, and back, each of which can

occur along one of two lines: up-down or back-forth. As shown in Figure 9 (b), regarding the up-

down line, the parallel distance between joint1 and joint3, hereafter referred to as Distance and

expressed by Eq. (2), must remain constant, where arm1L and arm2L represent the length of

arm1 and arm2 respectively.

Distance = arm1L * sin᷁ 1 + arm2L * sin᷁ 3 (2)

The constraint on Distance is expressed by Eq. (3), where 1᷁ô, and 3᷁ô represent the

measures of the updated angles after the execution of an up-down movement.

arm1L * sin᷁ 1ô + arm2L * sin3᷁ô = arm1L * sin1᷁ + arm2L * sin᷁ 3 (3)

Particularly for the movement of lift , it is apparent that ᷁3 must increase on the basis of

this constraint. We have chosen 0.04 radians as an increasing interval unit so that the movement

velocity is moderate, which process is expressed by Eq. (4).

3᷁ô = 3᷁ + 0.04 radians (4)

Now, only the value of ᷁1ô is unknown in Eq. (3), so it is able to be resolved. Finally, the

updated angle of joint2, ᷁2ô, is resolved based on Eq. (1); therefore the lift has been

computationally simulated. Similarly, based on Eq. (1), (3), and (5), 3᷁ decreases, the movement

of descend has been simulated.

3᷁ô = 3᷁ - 0.04 radians (5)

2
 A precondition has been satisfied that the surface a target object stands on, and the surface the robot

stands on are parallel.

79

Regarding the back-forth line, as shown in Figure 9 (b), the vertical distance between

joint1 and joint3, hereafter referred to as Height and expressed by Eq. (6), must remain constant.

The constraint on Height is expressed by Eq. (7). Similar to the up-down line, the back-forth

movements extend and back are simulated based on Eq. (1), (7), and (4) or (5) respectively.

Height = arm1L * cos᷁ 1 - arm2L * cos᷁ 3 (6)

arm1L * cos᷁ 1ô - arm2L * cos᷁ 3ô = arm1L * cos1᷁ - arm2L * cos᷁ 3 (7)

Complicated movements are simulated as well, which extend the basic ones. One of these

complicated movements is to move forward and slightly down; its simulation formula is

developed from the basic movement extend, but instead of being constant, Height needs to

slightly decrease as expressed by Eq. (8), where Heightô represents the measure of the updated

vertical distance between joint1 and joint3. The variable A represents the ratio between Height

and Heightô, set to be 0.95 in the simulation.

Heightô = A * Height (8)

The constraint on the change in Height is expressed by Eq. (9). Equations (1), (4), and (9)

computationally simulate moving forward and slightly down. Other complicated movements

have been simulated by the same strategy.

arm1L * cos᷁ 1ô - arm2L * cos᷁ 3ô = A * (arm1L * cos1᷁ - arm2L * cos᷁ 3) (9)

One special case is to carry the hand back to its home position when the target object is

held or the arm is stuck. Because the target position is already known, we just adjust the values

of 1᷁ and ᷁ 2 to approximate their target positions within a reasonable interval, such as 0.04

radians; and the value of ᷁3 is passively changed according to Eq. (1).

80

The simulation of Herbertôs arm controller

We have created a Motor Plan Template (MPT) in a new SMS to model a specific

execution for a grip action inside a LIDA-based software agent. As described in the above

section, this agent involves two types of actuators, the hand and the arm. The hand consists of

two grippers simulating the thumb and the index fingers separately, and the arm, multiple

segments being linearly connected by joints. The actionôs goal is to grip an object in the context

of the current environment. We borrowed the design principles of the arm controller of a robot,

Herbert (Connell, 1989b). Herbert ñé is a completely autonomous mobile robot with an onboard

parallel processor and special hardware support for the subsumption architecture éò(Brooks et

al., 1988, p. 1). Its arm controller drives the robot to pick a soda can up and bring it back to a

home location (Connell, 1989a).

Computational design

Three types of arm controller components have been modeled: the module (M), the

suppress node (S), and the wire (W). The module is conceptually similar to the Augmented

Finite State Machine (AFSM) used in a standard subsumption architecture (Brooks, 1986),

although they differ in details (Brooks, 1991; Connell, 1989b). Regarding subsumption

architectureôs two grounding processes, suppress and inhibit, only the suppress node was needed

for Herbertôs arm controller. Hardware wires are simulated as computational components to link

between modules and suppress nodes. In this way, a module or a suppress node doesnôt

necessarily have a fixed source or destination; it can be connected later during implementing the

execution for a concrete action. Therefore, these three components are not limited to the

simulation of Herbertôs arm controller; they can be used to implement other types of

subsumption architecture as well.

81

The three components shown in Figure 10 illustrate how they look and their constituent

parts. Each of them has a core routine and I/O methods. The core routine executes as an

independent task, which behaves according to different procedures (algorithms) among the three

different components. The module (M) core routine acts like an AFSM in the subsumption

architecture; it switches among multiple prepared states depending on the current state and the

input sensory data, sending out a motor command when it stays in a certain state. The core

routine in a suppress node (S) exactly simulates the suppress process in the subsumption

architecture; it copies the input data coming through the higher layer to the output if the data is

not empty, otherwise just copies the lower layerôs data. The wires (W) core routine simply

conveys a data copy from input to output.

These core routines are computationally implemented as LIDA-tasks (Snaider et al.,

2011) in the simulated Herbertôs arm controller. A LIDA-task encapsulates small processes, and

has implemented multithreading support, so that the core routines are able to operate in parallel

Figure 10. (A) An example of a module (M), where represents the core routine,

while and stand for I/O respectively. (B) A suppress node is boxed up by

dotted lines. is the core routine. The remaining parts stand for I/O: the lower and

higher inputs are represented by and respectively, and is the output. (C)

W1, W2, and W3 are simulated wires linking modules and suppress nodes. A wireôs

core routine copies the data from input to output.

M

M1

M2

S

A B

C

M1

M2

S
W1 W3

W2

82

and execute independently. On the other hand, the I/O methods of the components are

implemented by regular programming language methods rather than LIDA-tasks; therefore these

I/O methods need to be invoked by wire components so that the modules and suppress nodes are

linked (see Appendix A for their pseudo codes).

The design of the simulated Herbertôs arm controller is shown in Figure 11, redrawn from

the original Herbertôs subsumption diagrams (Connell, 1989b). Sensory data enter from the left;

output commands are sent out on the right. Modules, suppress nodes, and wires are structured

into multiple levels (layers), bottom-up ordered by their priorities. The module name briefly

indicates the associated behavior while in Figure (a), the claw module instructs the fingers to stay

wherever they happen to be, and in Figure (b), the egypt module freezes the arm in whatever

awkward angular configuration it happens to be in at the time (Connell, 1989b). A levelôs name

expresses a behavior-task, also called a competence, which is achieved according to the

combination of its modules and suppress nodesô behaviors.

A Grip Motor Plan Template (MPT) was created to maintain these modules, suppress

nodes, wires and their organizations, to simulate Herbertôs arm controller (see Appendix B for

the simulationôs software architecture). This Grip MPT is embedded into a newly created SMS

and stored in long-term memory. The SMS receives sensory data from LIDAôs Sensory Memory

into Grip MPTôs module components, and also passes the MPTôs output commands issued by

modules or suppress nodes to the outside, typically the environment in which the LIDA agent

finds itself. At the present time, the MPT implementation is simply based on a robotic Herbert

arm controller: the motor commands inside the MPT are fixedly bound by default values but not

specified at run time, so that the current Grip MPT is conceptually equivalent to a MP as well as

83

shown in Figure 3. In accordance with SMSôs biological inspiration, a specification process will

be added to the MPT in a later implementation, to be described in later.

Figure 11. Simulated Herbertôs arm controller consists of (a) hand and (b) arm systems,

redrawn from the original Herbertôs subsumption diagrams (Connell, 1989b). Compare to

the original diagrams, three changes in the simulation are as described below.

1) In (a), a cradle level was removed. Because the upper bound on force to the actuators

is configured into the simulated environment Webots, the cradle level is unnecessary.

2) In (b), a back module was removed. Since Herbertôs base controller is not modeled, it

is impossible to simulate an arm rotation to centralize the target object, and thus it is

not necessary to check whether there is a lateral offset between the hand and the

object (the purpose of the back module). We assume the target object is already

centered with respect to the hand.

3) In (b), an edge module was removed because its function was conceptually combined

within the hoist module.

(a) The hand system

claw S

grab

deposit

Sbeam

tact

HAND

Grip Level

(b) The arm system

S

engarde

S

pos

ARM

Local Level

extend

home

egypt SS

surface

diagonal

descend S

S

stop SS

over

uncrash

bounce

S

tact

XIR

beam

beam

XIR

tact

tact

Skim Level

S S

hoist

Park Level

Path Level

pos

pos

84

Experiments

This SMS has been implemented within a LIDA-based software agent. In this section,

two grip experiments from the original Herbert (Connell, 1989b) have been replicated,

investigating the controllerôs reliability and flexibility as shown in Figure 12 and Figure 13,

respectively. The simulation successfully replicates the online control of a grip execution driven

by the simulated Herbert arm controller, lending support to the idea of utilizing the subsumption

architecture as a prototype for an SMS model of the action execution process. Furthermore, we

have reviewed two additional grip experiments to verify the agentôs proper functioning in a range

of situations.

First, the results shown in Figure 12 speak to the reliability of simulated controllerôs

behaviors. The lines show the composite trajectories followed by the tips of grippers during 10

consecutive runs of the simulated arm controller. The sequences of gripper tips positions are

recorded by a Supervisor
3
 in Webots at the run time. During each trial, the hand descends from

point a, and then traverses points b, c, and d exploring for the object: first doing a small bounce

3
 The Webots Supervisor "is a privileged type of Robot that can execute operations that can normally

only be carried out by a human operator and not by a real robotò (www.cyberbotics.com). It is irrelevant

to the machine learning concept of supervised learning.

Figure 12. A composite of the grip trajectories produced by the

simulated arm controller on 10 consecutive runs

85

at point b when it touches the ground surface, and going forward and slightly downward to skim

the surface, then lifting above it and extending when it finds that the object is in front of it. The

grippers reach the object at point e and finally carry it back to point a by performing a óhoistô

task.

During these 10 runs, the agentôs position changes slightly due to reactive forces

produced by the grippersô contact with the ground, and the object; thus, the trajectories are not

exactly same between the runs since they are sensitive to initial conditions such as the agentôs

position. These differences between the trajectories were not expected in this experimentôs

design; whereas a realistic robot experiment involves physical noise, our software agentôs body

and its environment have been deterministically simulated. This unexpected result supports the

existence of an effect originating from within the agent itself, such as its action.

Second, the same controller is used in different environments to verify its flexibility.

Figure 13 (a) shows a trial in which the target object lies on a pedestal rather than directly on the

ground. The hand starts in the same way as in the previous experiment, finds the surface and

begins to skim along it. However, at point c, it detects an object (the pedestal) but fails to grip it.

This attempt results in a tactile input to the agentôs wrist, activating the task ñuncrashò.

ñUncrashò performs a function similar to ñbounceò but for a vertically oriented surface: the

grippers move away from the pedestal and lift (Connell, 1989b). After the grippers are above the

pedestal surface, it executes the remaining portion of the grip action as in the previous case.

Figure 13 (b) shows a case with the target object behind a barrier. Again, the hand

touches the top of the barrier first and then goes forward skimming it. The change of surface is

not noticed by the agent so it proceeds with the rest of the grip as before.

86

Besides the replications of the Herbert arm controller experiments, additional

experiments have been performed. Figure 14 (a) shows the same controller gripping a small

object; in this case the agent skims the surface more, but lifts and extends less than when

gripping the taller object (described previously). The skim is achieved by the combination of

multiple ñbounceò and ñsurfaceò tasks. In Figure 14 (b), no object is available for the hand to

grip. The grippers reach the ground first and then begin to skim along it as in the previous Figure

14 (a); however, no object has yet been found, so the whole arm is stuck at point c for a while,

and after that the grippers are retracted back to point a. The task ñhoistò does this retracting the

same as when it carries back a gripped object.

Figure 13. The simulated arm controller grips an object which is (a) on a

pedestal or (b) behind a barrier.

Figure 14. The simulated arm controller (a) grips a small object or (b) fails to grip.

87

Biologically Inspired modification

The simulated Herbert arm controller has been modified based on the SMS concept as

described above. Instead of default values, the motor commands inside a MP are bound with

specific command values through a newly created specification process before the action

execution begins, or a new update process at run time; thereby a new grip Motor Plan Template

(MPT) conceptually exists before its motor commands are bound. Two sets of associations are

created. In each of them, a single type of association is implemented, transforming the objectôs

width into a command valueðthe distance between the grippers, its aperture. Some human

experimental results regarding action execution have been compared with these simulated

results.

First, the grip action is executed using the unmodified arm controller as an experimental

control. As shown in Figure 15 (a), the agentôs grip aperture is sampled at unit intervals in

Webots virtual time during the grip execution. Whatever its starting value, the grip aperture

almost always reaches 0.0656m (the maximum grip aperture, or MGA) before the grip closes

around the target object. The grippers squeeze the target object, and thus the resulting grip

aperture is smaller than the original target object width.

Second, an association (the upper cylinder in Figure 5) has been implemented by

connecting the sensed objectôs width through the dorsal stream to the value of the grip aperture.

Its transformation formula is expressed by Eq. (10):

Grip aperture = Objectôs width * Magnification ï Grippersô gap (10)

The variable Objectôs width is a numeric value representing a true width directly sensed

through the dorsal stream from the environment. Magnification is used to set the grip aperture to

be slightly greater than the object width, set to a value of 1.2 in the simulation. A small gap

88

between closed grippers is available, which is substituted from the expected grip aperture

(Objectôs width * Magnification) to reach an actual grip aperture necessarily being sent to the

grippers. We are well aware that this formula can be improved in numerous ways, for an

example, using a more complicated formula to represent the Magnification instead of using a

variable only, or including additional parameters. As shown in the experimental results

introducing this section, this simple formula is effective, and we leave for future work the

discovery of various methods for improving it.

As shown in Figure 15 (b), the grip aperture typically reaches the specified value of

0.03m before the value falls as the grippers close (see below for an explanation of the two peaks

Figure 15. The agentôs grip aperture is sampled at unit intervals in Webots

virtual time during the grip execution.

89

in the aperture). Compared to the maximum grip aperture (MGA), which is a fixed aperture

value for Herbertôs grip, the value specified here is much closer to the target object width of

0.025m. This calibration results from the implementation of the association through the dorsal

stream. This simulated result supportsðand is qualitatively the same as sayingðthat ñthe dorsal

stream plays a central role in the programming of actions (i.e. the pre-specification of movement

parameters)ò (Milner & Goodale, 2008, p. 776), as supported by evidence from observations of

the patient D.F. (James et al., 2003; Milner et al., 1991). The specified value in the simulation is

larger than the object width: 0.03m > 0.025m, since experimentally, ñthe finger grip opens more

than required by the size of the objectò (Jeannerod, 1981, 2006). The first MGA peak is modeled

by setting a fixed MGA value to the grip aperture for a short while when the execution starts, in

keeping with the observed human behavior (Farnè, Pavani, Meneghello, & Làdavas, 2000;

Jeannerod, 2006). The second MGA peak occurs because the grippers touch the surface; the grip

aperture is set to become maximal in this situation so that its behavior can track the objectôs

width value as well as adapt to an unpredicted collision.

Third, another association has been implemented by connecting the object width

represented in the context component of a selected behavior to the value of the grip aperture

(Figure 5, bottom cylinder). Its formula is expressed by Eq. (10) as well, but the variable

Objectôs width has a different meaning here. Since the object width represented in the context is

a semantic value, such as ñlargeò or ñsmall,ò which are not precise, its value is designed to be

distributed in a range. We simulated this dispersion in the associationôs transformation according

to Eq. (11), where the approximate rate is a random value set to be in a range of 1.0 ~ 1.1 in the

simulation, so that the object width approximates its true value.

Objectôs width = Approximate rate * (True) objectôs width (11)

90

Instead of the data being sensed through the dorsal stream, the selected behaviorôs

context affects the relevant command values in several conditions (Milner & Goodale, 2008).

We simulated two of these conditions: 1) Deleting the association implemented above which

connects the sensed data to the grip aperture; in effect, it makes a skill unfamiliar to the agent, or

2) Terminating the relevant data sensed through the dorsal stream which simulates a delay in the

sensed data. Five executions produced a range of context-specified values rather than a precise

value as shown in Figure 15 (c). We argue that these imprecise movements result from an

association from the selected behaviorôs context to a command value. This interpretation of the

simulation results agrees with the conclusion we reached above that the dorsal stream plays a

central role in specification process. Additional evidence is found in patients suffering from

bilateral optic ataxia caused by damage to the dorsal streamðthese patients show deficits in

calibrating their grip aperture (Jakobson, Archibald, Carey, & Goodale, 1991; Jeannerod,

Decety, & Michel, 1994; Milner & Goodale, 2008).

Fourth, an update process is implemented to update the grip aperture values during the

execution. Its formula is expressed by Eq. (10) the same as the association which connects the

sensed object width through the dorsal stream to the grip aperture; however, instead of a constant

value, the Magnification here is set to be dynamically decreasing through the execution time. In

Figure 15 (d), the updated value comes closer to the object width than the specified value; it

follows that the sensed data provided through the update process are more precise than the

context of the specification process, because the situation becomes clearer to the agent as it

executes the action.

91

Linking the SMS to LIDA

As discussed above and shown in Table 1, both the data sensed through a dorsal stream

channel, and a selected behavior corresponding to a goal-directed action are input to the SMS,

and the SMSôs output is sent out to Environment. The grip MPT is mapped one-to-one onto the

action component of a selected grip behavior; this is a simple implementation of MPT selection

following the SMS concept introduced above.

These I/Os are implemented in the LIDA-based agent including the SMS as shown in

Figure 16. Only the related action selection and action execution modulesðthe latter being

implemented by SMSðare represented. The other LIDA modules are abstractly represented by

LIDAôs understanding and attention phases.

Additionally, in order to let the agent monitor the execution status, an expectation codelet

(Faghihi et al., 2012) is created when the grip behavior is selected in the action selection module;

this particular attention codeletða small and special purpose computational processðcontains

the expected result component of the currently selected behavior. It checks whether this result

has been reached (sensed and recognized by the agent) at run time. The checking result is sent to

Figure 16. The SMS is embedded into the LIDA Model

92

LIDAôs Global Workspace module, where it competes for the agentôs attention (Baars, 1988). In

this way, the agentôs awareness of its own action execution is indirectly achieved.

Four check-points have been set up in the expected result: with the grippers 1) in the

initial situation, 2) in the final situation, 3) holding the target object, and 4) in a stuck situation.

The checked result for these points comes to the attention of the agent if the result wins the

competition during executing the grip action. This means that the agent is aware of some

significant fragments of the action execution, although it has no idea what exactly it is doing in

each moment.

Comparison

We realize that the action process we have developed in LIDA, specifically the action

execution process implemented by the SMS, have the same general form as the action processes

implemented in some of the other architectures, although they use different structures. This

section compares action execution process deployment in three well-known cognitive

architecturesðtheir reviews have been given in Chapter 3 aboveðto that of LIDA. We argue

that each cognitive architecture having a representation at an explicit level of knowledge, also

needs a process that converts high-level knowledge to motor-level commands, as does the SMS.

ACT-R

Adaptive control of thought-rational (ACT-R) is a cognitive architecture, a theory for

simulating and understanding human cognition based on numerous facts derived from

psychology experiments (http://act-r.psy.cmu.edu/).

ACT-R doesnôt differ from LIDA very much with respect to action. First, both of their

action processes are conceptually designed with two steps: 1) the selection of a high-level action,

and 2) the execution of low-level actions. In LIDA, a behavior is selected in the action selection

93

process based on the agentôs motivation and its understanding of the current situation. Then in an

action execution processðmodeled by the Sensory Motor System (SMS), the behaviorôs action

component is transformed into low-level motor commands that are executed in the real world

through an environment module. Similarly in ACT-R, a production rule is selected and fired in

the production memory, and responds to the patterns of information in the declarative memory

buffers, after which the ruleôs actions request that movements be prepared and executed in the

motor memory. The executed movements then control the devices acting in the world by

utilizing a device module.

Second, the motor control systems of LIDA and ACT-R, the SMS and the motor module

respectively, are structured similarly. In the SMS, a Motor Plan Template (MPT) selection

process acts first, connecting a selected behavior from the action selection process to a MPT

inside the action execution process, and then the ensuing specification process specifies the

values of MPTôs variables, so that a Motor Plan is created for generating motor commands. In

ACT-Rôs motor module, the preparation process acts first to connect the preceding production

ruleôs action to a certain movement style, such as óPUNCHô mentioned above, and then to

specify the parameters necessary for the resulting movement execution.

Finally, the low-level actions are modeled with concrete examples of action in both cases:

a grip in LIDA, and the manipulation of virtual keyboard and mouse in ACT-R.

In contrast, there are also several differences between LIDA and ACT-Rôs action

processes. First, in LIDA the MPTs are prepared in advance in long-term memory; the operation

acting on the MPTs is the selection so as to reuse the selected MPT. However in ACT-R, a

movement is specified anew each time in the preparation process; the potential for reuse occurs

only if the movement repeats the previous movement.

94

Second, in LIDAôs SMS, an online control process is implemented, directly connecting

the sensory data to the action execution process during the execution. However in ACT-R, there

is typically no direct communication between the perceptual and motor modules
4
. The data

passed to the motor module always comes from the high-level declarative memory. This is

almost the only significant conceptual difference between LIDAôs SMS and ACT-Rôs motor

module.

Soar

Soar is a cognitive architecture in pursuit of general intelligent agents (J. Laird, 2008).

Here we discuss the similarities between the action processes in LIDA and Soar. LIDA has

action selection and action execution processes, while Soar has operator selection and operator

application. Specifically, first, the multiple schemes of LIDAôs Procedural Memory are recruited

based on the most salient current situation. This recruitment is similar to Soarôs operator

proposal, in that both provide candidates for the action selection step that follows.

Second, in LIDA, before the process of action selection, recruited schemes are

instantiated into behaviors. Additional information retrieved from the Current Situational Model

is bound to the schemesô context and result components, so that actions that are more concrete,

known as behaviors in LIDA, are created. Similarly, Soarôs elaboration updates the proposed

operators with additional detailed current situation information. Thus, in both cases the candidate

high-level actions undergo an instantiation or elaboration that ñpre-processesò them before the

selection process.

Third, the selected behaviorôs action component is executed in LIDAôs Sensory Motor

System (SMS) by a particular Motor Plan (MP); while in Soar, the actions of the selected

4
 There is only very limited direct connectivity between perceptual and motor modules. Spatial

information in particular is communicated directly.

95

operator are performed by production rules that match the current situation and the current

operator structure (J. E. Laird et al., 2012).

On the other hand, there are some differences between LIDAôs action execution and

Soarôs operator application. We conclude that in the case of Soarôs output, motor commands,

which cannot be directly performed (executed) on the external world, an external program is

always necessary to handle the final ñrealò execution (performance) for Soar. In LIDA, however,

its SMS responds by transforming the selected behavior into a sequence of executable motor

commands, presumably in the real world. Note the term ñmotor commandsò expresses

completely different concepts in Soar and LIDA, although it is used to represent the final output

data in both cases. In LIDA, motor commands are executable, while in Soar they are not.

Soar does not cover the representation of implicit environmental information related to

action. This allows it to maintain generality with a clear standard, without the necessity of

considering every possible domain that the Soar agent might live in. In contrast, LIDA

emphasizes the biological viewpoint that an action execution process, which involves the

consideration for domain details, is a reasonable part of an entire cognitive architecture, because

the process of generating executable motor commands are not only driven by the low-level

environmental implicit information but also initiated and affected by the agentôs high-level

explicit mental processes.

CLARION

CLARION stands for Connectionist Learning with Adaptive Rule Induction ON-line.

The purpose of this architecture is to capture all the essential cognitive processes within an

individual cognitive agent (Sun, 2003, 2006).

96

In CLARION, the action process introduced above has many concepts similar to that of

the LIDA Model, though their terminologies and computational representations differ. First, the

sensory data retrieved in LIDA influences the action process at two ñlevelsò. At one level,

sensory data is filtered through the understanding and attention phases, and then helps recruit

appropriate actions in the action selection process. At the other level, the data is sensed through a

dorsal stream channel, directly connecting from the Sensory Memory to the action execution

process implemented by the SMS. Similarly in CLARION, the action-centered subsystem (the

ACS) connects the perceptual current state to actions through both the top and bottom levels.

Second, a direct (implicit) mapping from sensory data to action output is modeled in both

LIDA and CLARION. In LIDAôs SMS, the direct sensory data affects the generation of low-

level actions. This process is implemented as a Motor Plan (MP) based on the principles of the

subsumption architecture, a reactive structure. One critical feature of the subsumption

architecture is that it doesnôt maintain any central world state inside
5
, and is without any explicit

representations. Similarly in CLARION, the ACSôs bottom level encodes implicit knowledge as

mentioned above, which may be implemented in backpropagation neural networks
6
, whose

representational units in the hidden layer are capable of accomplishing tasks, but are generally

not individually meaningful (Sun, 2003). Furthermore, the MPT in the SMS and the

backpropagation neural network in the ACS both have the potential for multiple instances, and a

selection process is proposed for both the MPT and the backpropagation neural network.

5
 Although no central world state is one of the essences of the subsumption architecture, implicit

understanding and expectation of the environment has been built into the architecture by its layered

structure.

6
 There is the learning of implicit knowledge (the backpropagation network) at the bottom level. ñIn this

learning setting, there is no need for external teachers providing desired input/output mappings. This

(implicit) learning method may be cognitively justifiedò (Sun, 2006).

97

Third, the interaction between the two levels is modeled in both LIDA and CLARION.

The output of LIDAôs action selection process, known as the selected behavior, is linked to a

MPT, mapping from a semantic action to concrete ones. In CLARION, the input state or the

output action to the bottom level is structured using a number of input or action dimensions; each

of the dimensions has a number of possible values. At CLARIONôs top level, an action ruleôs

condition or action is represented as a chunk node which is connected to all the specified

dimensional values of the inputs or actions at the bottom level (Sun, 2003). CLARION models

an interaction between the top and bottom levels, as well as between explicit and implicit

knowledge.

On the other hand, action processes modeled in LIDA and CLARION are also different.

The two levels of LIDAôs action processðaction selection and action executionðwork

interdependently, and operate linearly. A selected behavior, the output of LIDAôs action

selection, is not executable directly on the environment, but is used to initiate certain processes

operating in the concomitant action execution process, ultimately generating executable low-

level actions as a sequence of motor commands. However, the two levels implemented in

CLARIONôs ACS operate independently: each of them makes action decisions based on the

current state in parallel. The action sent out from both top and bottom levels are all performable.

The final output action of the ACS is the combination of the output actions from the top and

bottom levels.

Conclusion

Based on the LIDA Model, the subsumption architecture, the two visual systems, as well

certain other cognitive neuroscience hypotheses, the Sensory Motor System (SMS) proposes a

model of the human action execution process.

98

In the design of SMS, we have considered the subsumption architecture from a new

viewpoint, namely, that its capabilities fulfill the hypothesis regarding the online control role of

the dorsal stream. Second, we have modified the original subsumption architecture as inspired by

certain hypotheses of cognitive neuroscience so as to combine a reactive structure with a goal-

directed action. Finally, we have designed the SMS as a submodule of the systems level

cognitive model LIDA, thereby rendering it capable of communicating with other cognitive

modules naturally in a closed cognitive loop, from sensors to actions.

A computational SMS has been implemented for the execution of a grip behavior, and its

simulated results have been compared to human data. Also, the SMS of LIDA has been

compared to the action processes implemented in three of other cognitive architectures.

This biologically inspired design, together with a computational verification by the

comparison of model and human behaviors, supports the SMS as a qualitatively reasonable

cognitive model for action execution.

99

5. Estimating human movements

Introduction

The perceived visual world remains stable during ongoing eye and head movements. Yet

a relatively brief, small, but unexpected visual change in the world may attract our attention

explicitly. Jeannerod considers this stability a paradigm for the distinction between self-produced

and externally produced changes in the world (2006). He argues that ña displacement of the

visual scene is attributed to an external change, not to a self-produced eye movement.ò (2006, p.

18)

Jeannerod hypothesized that a functional model, the efference copy (Von Holst &

Mittelstaedt, 1950), disentangles the changes in the world produced by self-movement, from

externally produced changes (2006).

Von Holst and Mittelstaedt hypothesized that each time the motor centers generate an

outflow signal for producing a movement, a copy of this signal (the efference copy) is stored in a

short-term memory. Afterward the relevant reafferent inflow signalsðresulting from the

movement and sensed by the agent (Franklin & Graesser, 1997)ðare compared with the

efference copy (1950). Note that the comparison is actually between the sensed inflow data and

the desired estimate that is based on the relevant efference copy. If the two correspond, Von

Holst suggests that they would cancel each other out so that there is no inflow data perceived

(1954), a suitable situation for anticipating the sensory effects of a self-produced movement. On

the other hand, if the actual movement departs from the anticipated one, it is likely due to an

external cause (Jeannerod, 2006).

Wolpert and his colleagues (1995) have investigated a sensorimotor integration

mechanism by which people produce an estimate of the result of their movement. They have

hypothesized that the central nervous system (CNS) internally predicts the result of a self-

100

produced movement by simulating the dynamics of the environment
1
 using a so-called (forward)

internal model, which is driven by a copy of human motor commands, the efference copy. This

prediction is then combined with a reafferent sensory correction (1995). To test this hypothesis,

they have simulated this prediction and correction using the Kalman filter (Kalman, 1960). In

this way, they qualitatively replicated how humans estimate their hand movements in the dark.

The question of whether combining such an internal model with sensory correction is in

fact neurally implemented in humans, or is just a metaphor for what the human nervous system

does, remains open (Grafton, 2010). However, this model is useful for studying further

hypotheses, including Bayesian decision theory for sensorimotor control (Körding & Wolpert,

2006), optimal feedback control (Todorov & Jordan, 2002), and motor recognition (Jeannerod,

2006). Moreover, the Kalman filter itself has been applied in different domains in other fields,

together with its extended version: extended Kalman filter (EKF) (Auger et al., 2013).

Following the example set by neuroscience researchers (Körding & Wolpert, 2006;

Todorov & Jordan, 2002; Wolpert et al., 1995), we embed estimation into the Sensory Motor

System (SMS) (see Chapter 4 for details) by implementing a Kalman Filter (Kalman, 1960) as

the ñcore engineò of the forward modelôs estimation process.

In the Kalman Filter, there are two factors that balance the importance between predicted

results and sensory results: the inaccuracy in the knowledge of the dynamics of the environment,

and the noise in the sensory process.

We introduce a third balancing factor, changes in the environmental dynamics. Actually,

humans may experience, and then remember, such changes as a kind of error, the difference

between intended (predicted) results and actual (sensory) results. We propose that this new factor

is driven by memory of errors caused by changes in the dynamics. This idea is inspired by a

1
 The environment includes both the agentôs motor system (body) and the world the agent lives in.

101

recent study in sensorimotor learning (Herzfeld et al., 2014). Herzfeld and his colleagues

hypothesize that besides learning from errors, the brain may decide how much to learn from a

given error depending on its memory of errors. These historical errors help humans determine

whether the environment is steady or rapidly changing. Environmental stability thus controls

how much of a given error will be learned so as to affect the estimate of the upcoming

movement.

In the following section we describe and compare the studies of Wolpert et al. (1995) and

Herzfeld et al. (2014). We then introduce our new model, a modified Kalman filter, which

estimates human movements using memory of errors, and go on to describe a computational

experiment that simulates hand lifting action.

Previous Work

In this section we first review a study regarding how people estimate their hand

movements in the dark (Wolpert et al., 1995), and then introduce a recent study about how

memory of errors affects sensorimotor learning (Herzfeld et al., 2014). Finally, we compare the

two studies. In this way, we provide adequate background knowledge to prepare for the

introduction of our new model in the following section.

Simulating a Sensorimotor Integration Process Using the Kalman Filter

Wolpert and colleagues (1995) have argued for the existence of an internal model in the

central nervous system (CNS) that simulates the response of the motor system. They have carried

out a human experiment in which participants move one of their hands horizontally on a plane

either to the left or to the right along one dimension in the dark. In the absence of vision, their

sensory feedback consists only of proprioception during the movement. Participants are

instructed to continue moving until they hear a tone. The timing of the tone is controlled so as to

102

produce a uniform distribution in movement duration between 0 and 3 seconds. At the end of

each movement (trial), participants indicate (estimate) the unseen new location of their moved

hand. The difference (error) between participantsô real and estimated new hand locations is

recorded as a function of movement duration. In total, eight participants performed 300 trials

each. In this experiment, researchers found that on average, 1) participants overestimate their

hand locationsðthe estimated location is further than the actualðand 2) the error peaks after

one second and then decreases gradually.

As argued by Wolpert et al. (1995), ñthese experimental results can be fully accounted for

if we assume that the motor control system integrates the efferent outflow and the reafferent

sensory inflowò. To support this conclusion, they developed a computational internal model,

with the use of a reafferent sensory correction, to replicate human self-estimation of hand

movements in the dark using a Kalman filter.

The Kalman filter is a recursive algorithm that estimates the state of a discrete-time linear

stochastic system (Kalman, 1960; Maybeck, 1979). It first predicts the systemôs next state in the

timeline, based on its current state, on knowledge of the running systemôs dynamics, and

optionally on its current motor command. Then it corrects the prediction based on sensory data

that may have noise. This two-step routine operates iteratively online to estimate the systemôs

state. From a mathematical viewpoint, the Kalman Filter is a set of equations that provides an

efficient estimate for the state of a process, expressed by Eqs. (12) ~ (16).

 x
-
t = Ax t-1 + But (12)

 P
-
t = P t-1 + Q (13)

 Kt = P
-
t / (P

-
t + R) (14)

103

 xt = x
-
t + Kt(Czt - x

-
t) (15)

 Pt = (1 - Kt) P
-
t (16)

The Kalman Filterôs prediction process is represented by Eqs. (12) and (13), and its

correction process is represented by Eqs. (14) ~ (16). Variable x represents the state value.

Specifically, xt-1, x
-
t, and xt represent the immediately previous, intermediate predicted, and

current estimated state values respectively. Variable ut represents the value of input motor

commands, and zt the value of input sensory data. A, B, and C are the parameters for the above

variables. K acts as a gain that weights the new sensory data against the predicted result.

Parameters Q, R, and P represent the uncertainty of the prediction, the correction, and the entire

estimation respectively. For further details, (Kalman, 1960), (Maybeck, 1979), or (Welch &

Bishop, 2006) may be consulted. From one viewpoint, the Kalman filter is a kind of non-

Markovian extension (Thrun, Burgard, & Fox, 2005) because its estimation relies on its

historical data, while optimality is not of concern, and so is not guaranteed in our new model.

Based on the simulated results, Wolpert et al. (1995) have shown that the Kalman filter is

able to qualitatively reproduce the propagation of the error of the estimated hand location as a

function of movement duration.

A Memory of Errors

In the study of sensorimotor learning, Herzfeld and colleagues (2014) have hypothesized

that the brain not only learns from individual errors that it has experienced before, but also

accumulates the errors into a memory; this memory of errors makes it possible for the brain to

control how much it will learn from a given current error.

104

Herzfeld et al. (2014) have done human experiments to explore the effect of memory of

errors in human hand-reaching movements. The experimental setup is as follows. (1) A

participant sits down in front of a table, and holds the handle of a robotic arm; the arm is attached

on the table, and its handle can be moved because of several moveable joints in the arm. The

participant is asked to repeatedly make out-and-back reaching movements; the goal for a trial is

to reach a target location from an initial location. (2) The participantôs hand is occluded by an

opaque horizontal screen that is located above the plane of the forearm; thus the participant

cannot see his hand. (3) An overhead projector displays information on the screen about the

actual hand location, the initial location, and the intended target location of the reach. This

information is visually available to the participants. (4) During a reaching movement (only on

the outward reach), the participantôs hand may be perturbed by the robotic arm through its handle

with a force perpendicular to the reaching direction. The perturbation produces an error during

the reaching movement, the difference between the intended hand location and the actual hand

location upon arriving. (5) The magnitude of the perturbing force is constant, and the direction

may be either to the left or to the right. Thus the force may create two types of errors.

Using this experiment, Herzfeld et al. examine the relationship between memory of

errors, and the amount that is learned from a given error. They hypothesize as follows:

ñ[Consider] an environment in which the perturbations persist from trial to trial, and another

environment in which the perturbations switch é In a slowly switching environment, the brain

should learn from error because the perturbations are likely to persist (learning from error in one

trial will improve performance on the subsequent trial). However, in a rapidly switching

environment, the brain should suppress learning from error because any learning will be

detrimental to performance on subsequent trialsò (Herzfeld et al., 2014).

105

In the experiment, participants are randomly divided by environmental stability into three

groups (9 per group): they first performed 30 trials of reaching in either a slowly, medium-speed,

or rapidly switching environmentðthe direction of the perturbing force switches. And then all

participants experience a pure reaching movement without any perturbation for 10 trials
2
; in this

way, the effects of the perturbation are removed. Finally, all participants experience one reaching

trial with the same perturbation.

The researchers measured the change in the force applied by participants before and after

the final perturbation. By considering the force produced by a participant, a proxy for the

participantôs estimate of the perturbing force, they can indirectly measure how much the

participantôs estimate of the perturbing force has been updated after experiencing a perturbation.

They found that the responses of participants to the same perturbation are different between

groups. A participant gives larger responsesðcorresponding to a higher estimate of the forceð

in the slowly switching environment and smaller responsesðindicating a lower estimate of the

forceðin the rapidly switching environment. This phenomenon supports their hypothesis quoted

above.

Note that in this experiment, although the memory of perturbation has been removed

using 10 trials of pure reaching movements before measuring the effect of the final perturbation,

a more abstract attribute of the environment, corresponding to a level of persistence of the

environmentðenvironmental stability, is still available in the memory, and thus influences the

effect of the final perturbation. A term ñsavingò names the influence of this available abstract

attribute.

2
 This pure reaching movement is known as a ñwashoutò (Herzfeld, Vaswani et al. 2014).

106

Comparisons between the Two Studies

In this subsection, we compare the two studies reviewed above. To conserve words, we

cite the two papers (Herzfeld et al., 2014; Wolpert et al., 1995) for the two studies respectively in

the whole subsection here, and at times below we simply refer to the study of Wolpert et al.

(1995) as the first study and to the study of Herzfeld et al. (2014) as the second study.

First, in both studies, researchers investigate the process by which humans produce an

estimate of their movement. Wolpert and colleagues simulate how people estimate, using the

Kalman filter, how their hand moves in the dark, and Herzfeld and colleagues propose a causal

relationship from memory of errors to the knowledge of the environmental dynamics, which

knowledge affects the estimation of upcoming movements.

However, the estimation processes examined in the two studies are at different levels.

Wolpert and colleagues study the estimated hand location within a single movement trial. They

calculated the propagation of estimation error on average for one movement, while they did not

concern themselves with the relationships between multiple movement trials. On the other hand,

Herzfeld and colleagues study the estimated hand location between trials. They proposed the

hypothesis regarding the effect of historical movements on the estimation of the current

movement. But we still consider these two studies comparable, because in fact, they are

qualitatively studying the same thing, how humans estimate their movements. From this

viewpoint, it is reasonable to borrow ideas from the second study to modify the simulation

implemented in the first study.

Second, in both studies, an update process relying on an errorðthe difference between

predicted (intended) results and sensory (actual) resultsðis used in the process of producing the

estimate of movements. In the first study, the predicted result is corrected using sensory results.

107

A parameter K is used to weight the effect of the error in this correction (see Eq. (15)). The value

of K depends on both the inaccuracy of the knowledge of the environmental dynamics, and the

noise in the sensory process (see Eq. (14)). In the second study, a memory of errors controls

(weights) how much the current error will be used for updating the newly estimated result, the

magnitude of a type of learning rate. Here we see that in the first study, there are two factorsð

the inaccuracy and the noiseðthat weight the error, and in the second study, a third factorð

memory of errorsðis used.

A Model That Estimates Human Movements Using Memory of Errors

In this section, we first propose an operational definition for a learning rate ɖ that

determines how memory of errors functionally controls the extent to which errors will be

learned. This definition is conceptually inspired by the work of Herzfeld et al. (2014). Then we

introduce a modified Kalman filter, in which we add a new factorðmemory of errorsðto

balance the importance between predicted results and sensory results. The effect of this new

factor is represented by the magnitude of the learning rate ɖ. In this way, we achieve a new

model that is able to reflect its knowledge of memory of errorsða feature of the environmental

dynamicsðinto the process of producing movement estimates. Finally, we add this estimation

model, which is implemented by the modified Kalman filter, to the Sensory Motor System

(SMS).

The Learning Rate ɖ

The magnitude of the learning rate (ɖ) is controlled by memory of errors. The specific

formula for this control is represented as a sigmoid function expressed by Eq. (17), and which is

assisted by Eq. (18). The learning rate ranges from 0.5 to 1.5 with a default value of 1.0.

ʂ

πȢυ (17)

108

t = 1.0 ï if n Í 0, and t = 0 if n = 0 (18)

Specifically in Eq. (17), the variable t represents the status of the memory of errors,

which is calculated according to Eq. (18). It ranges from -1.0 to 1.0. The parameter ɗ tunes the

effect of t, and is set to 6.0 by default. In Eq. (18), the variable n represents how many errors

have been experienced by the brain, and thus stored in the memory. Variable n is an integer

starting from zero.

As mentioned in above, the forces of perturbations used in the study of Herzfeld et al.

(2014) have the same magnitude with directions either to the left or to the right. Similarly, we set

only two types of errors in our model: the same magnitude with either positive or negative sign.

Variable s represents how many times the error type has switched within the memory of errors.

Variable s is an integer starting from zero.

Here we explain the behavior of the above formula with examples. If the brain has

experienced many errors and most of them have the same sign, the value of n is large and the

value of s is small; therefore, the value of t is large, close to 1, so that the value of ɗt is close to

6.0 and ɖ is close to 1.5. This means a slowly switching environment results in a high learning

rateðlearning more from the current error. On the other hand, if there are many errors in

memory and they have switched signs very often, the values of both s and n are large, so t is

negative with a large absolute value; thus the value of ɖ is close to 0.5. This means a rapidly

switching environment leads to a low learning rateðlearning less from the current error. These

simulated behaviors qualitatively agree with the hypothesis proposed by Herzfeld et al. (2014).

Note that when there is no error in the memory yet, the value of t is 0 because n is 0, so the value

of ɖ is 1.0, which is considered the default value of ɖ.

109

A Modified Kalman Filter

Compared to the original Kalman filter expressed by Eqs. (12) ~ (16), we modified Eq.

(15) by adding a new variable ɖ, which is defined in above sections, as expressed by Eq. (19).

The newly modified Kalman filter is expressed by Eqs. (12)~(14), (16), and (19).

xt = x
-
t + ɖKt(Czt - x

-
t) (19)

The added variable ɖ represents a new factor that balances the importance between

predicted results and sensory results, occurring together with the parameter K.

Two questions need answering regarding this modified Kalman filter: does this

modification make sense, and what is its benefit? For the first question, as we have discussed

above, both of the studies (Herzfeld et al., 2014; Wolpert et al., 1995) introduce a process that

updates the movement estimate using a given error, the difference between predicted and sensory

results. Although the two updating processes are in different granularity: to update the estimate

within one movement trial or between trials, they conceptually produce the same thing. A

parameter has been used to weight the error in each of the updating processes: a Kalman gain K

in the Kalman filter, and a learning rate ɖ described above. Because ɖ has a nature that K does

not haveðthe representation of the effect of memory of errorsðit is reasonable to add ɖ into the

Kalman filter to weight the error together with K.

Second, the major benefit of adding the parameter ɖ is to handle more casesðallowing us

to simulate more human behaviors using memory of errors; the original Kalman filter uses only

the previous estimate to make the current estimate. The modified Kalman filter has both

inherited the capabilities of the original Kalman filter (Wolpert et al., 1995) that simulates the

estimation process within a single trial of movement, and obtained a new way to weight the error

for updating the estimate of movements (Herzfeld et al., 2014), so as to simulate the estimation

110

between movement trials. In the following section, we examine the capabilities of the modified

Kalman filter by implementing it into a simulated lifting movement.

Adding an Estimation Process into the SMS

As shown in Figure 17, the original SMS generates low-level motor commands to

actuators within the environment. It is driven by 1) a high-level goal-directed action provided by

LIDAôs Action Selection module, and 2) the sensory data perceived from LIDAôs Sensory

Memory. We added an estimation process into the SMS of LIDA to implement our modified

Kalman filter. The inputs to this estimation process comprise a copy of motor commands (the

efference copy) together with real sensory data. The newly added estimation process in the SMS

provides estimated sensory data to the SMSôs original ñmotor command generationò component.

Inside this new process, we implement two sub-modules, an internal model and a correction

process, which accomplish the prediction and correction steps of the modified Kalman filter

respectively. The above Eqs. (12)~(14), (16), and (19) explain detailed computational

expressions of the prediction and correction steps.

Sensory
Memory

Motor commands

Stimulus

Environment

Internal
Model

Sensed data*

ΧΧ

Motor Command
Generation

SMS

Predicted
state

A new
estimation
process

Action
Selection

A goal directed
action* The sensed data has noise

Correction

Estimated
state

Figure 17. An estimation process in the Sensory Motor

System (SMS) of LIDA

111

We have observed that the motor commands sent out to the actuators need time to be

executed, which means that at a given time, the motor commands and the sensory data input into

the estimation process may not be consistent. To deal with this, we have created a FIFO (First In

First Out) queue for storage of the input motor commands in the internal model and set the

queueôs length to one. Thus, there is a one-step delay between the motor commands and the

current sensory data used for the estimation.

Experiments

In this section, we test the performance of the estimation process of our newly proposed

model in a simulated hand lifting action, by comparing its estimation process with human

behaviors reported from two previous studies (Herzfeld et al., 2014; Wolpert et al., 1995). The

comparison results support our new modelôs ability to simulate the estimation process not only

within one trial of the movement but also between trials using memory of errors.

Experimental Setup

From recent reviews of the study of human hand-lifting movement (Johansson &

Flanagan, 2009; Wolpert et al., 2011), we see that some researchers (Berner, Schönfeldt-

Lecuona, & Nowak, 2007; Flanagan, Bittner, & Johansson, 2008; Jenmalm, Schmitz, Forssberg,

& Ehrsson, 2006) have supported the existence of a (forward) internal model occurring during

lifting. They hypothesize that people predict their lifting movements based on a system that

simulates the behavior of their body and their environment (Wolpert et al., 2011), and ñthe CNS

signals the sensory discrepancy between the predicted and actual sensory consequences of

actionò (Jenmalm et al., 2006). These hypotheses have led us to choose lifting as a reasonable

target movement to which to apply our model to simulate the human movement estimation

112

process, because the hypotheses support the primary mechanism of our model, a modified

Kalman filter.

We use a software robot simulation (youBot), a robot controller (the LIDA Framework

(Snaider et al., 2011)), and a virtual experimental environment (Webots (www.cyberbotics.com))

to simulate a lifting movement. We consider this robotic simulation to be a LIDA-based software

agent. The LIDA Framework, youBot, and Webots have been introduced in detail in sections

4.4.1 and 4.4.2 above. Here we present only a screenshot of the LIDA-based agent lifting an

object (Figure 18), so as to give an intuitive feel for the agent and its action. Specifically, in our

experiment lifting refers to an action in which the agent grips an object, and moves it upwards.

The gripper tip locations serve as the hand locations.

We implement our new model into the Sensory Motor System (SMS) of LIDA. In the

LIDA Frameworkôs Environment module (see Figure 1), we have added noise to joints 1 ~ 3 (see

Figure 8) by randomly setting their angles with a normal distribution: the mean is the actual

measure of the angle, and the STD is 0.1 degrees. In this way, uncertain sensory data is sent to

the estimation process. We use the added process to estimate the youBotôs finger positions

during executing an action in the above uncertain situation.

Figure 18. A screen shot of a LIDA-based agent lifting an object

113

Implementation of the Learning Rate ɖ

As defined above, the value of ɖ depends on both the number of historical errors and the

switching time between these errors. Computationally, we created three variables stored in long-

term memory: (1) the number of errors n, (2) the number of switches s, and (3) the current error

type c. The first two variables n and s have been introduced in above sections. Variable c is used

to determine whether the current error and the upcoming error have different types. If the two

errors have different types, one instance of error-switching will be accumulated to variable s;

otherwise the value of s does not change.

In the experiment, these three variables are retrieved once when the agent initializes a

lifting movement; thus, the value of ɖ is calculated before the start of the movement and is

constant within one trial. Then, at the end of every lifting trial, the three variables are updated

based on the error between the estimated hand location and the actual hand location. In this way,

the value of ɖ may change between trials.

Estimation without Memory of Errors

We prepare a computational experiment that is configured similarly to the human

experiment reported earlier (Wolpert et al., 1995), which studies the estimation process within a

single movement trial without being concerned about memory of errors.

As we have reviewed above, in the study of Wolpert and colleagues (1995), human

participants are asked to move their hand in dark, and they stop moving and report an estimated

hand location when they hear a tone. In our simulation, the agent does not have visual sensors

but senses the angles of its armôs joints; this configuration conforms to the situation in the human

experiment, namely, that participants are without vision, and guided solely by proprioception.

Also, we created a program that sends a stop command to the agent, instructing it to stop lifting.

114

This program plays the role of ñthe experimentersò who control the timing of the tone in the

human experiment. In the human case, a pair of real and estimated hand locations was collected

at the end of each movement trial. So in total, 2400 data pairs were collected (eight participants

with 300 trials each). In our simulation, the ñexperimenterò program generates one stop

command at a different virtual time
3
 during each lifting trial. Stop commands are generated so as

to give a range of lift durations from 6 to 65 units over 60 lifting trials. We consider the process

during the first 5 time units to be the systemôs initiation process, and did not collect data during

this interval. We performed 40 repetitions of the above trial block (60 lifting trials with different

durations) for a total of 2400 data pairs of estimated hand location and actual location, in order to

achieve parity with the data collected during the human experiment.

On the agentôs side, first it senses the stop command from its environment as an input to

its Sensory Memory; and then this command is sent to the Current Situational Model (CSM) as

part of the agentôs current understanding of the environment. The command is represented as a

stop node in the CSM. A special Attention Codelet is implemented to attend to this stop node,

and form it into a special data structure, a coalition (Baars, 2002; Franklin et al., 2014), sending

the coalition then to the Global Workspace (GW). In the GW, the coalition containing the stop

node might win a competition among different coalitions, and thus be broadcast to the rest of the

system as the conscious content. There are multiple schemes stored in Procedural Memory (PM),

which are able to be instantiated to behaviors. We prepared a special scheme that (1) will be

recruited by the arrival of the stop node in the conscious content, and (2) contains an action

component for executing a stop command. Then when the stop node comes through the

conscious content to PM, this scheme is chosen and instantiated into a behavior that has an

3
 The agent executes at unit intervals in Webots virtual time.

115

action component for stop. Finally when this behavior arrives at the Sensory Motor System

(SMS), the currently running lifting movement is stopped.

In our simulation, the differences (errors) between real and estimated hand locations are

recorded as a function of the duration of the hand lifting movement. The average error for each

moment (virtual time unit) is calculated, and is shown in Figure 19; movement duration is

represented as a number of virtual time units. These simulated results are qualitatively similar to

the human data (Wolpert et al., 1995): Overall, 1) the hand location is overestimated, and 2) the

error peaks in the first part of the movement (at virtual time 23), and then goes down.

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Virtual time units

E
rr

o
rs

 (
c
m

)

(a)

(b)

(c)

(d)

(e)

0 10 20 30 40 50 60 70

0

0.2

0.4

0.6

0.8

1

1.2

Virtual time units

E
rr

o
rs

 (
c
m

)

Figure 19. Simulated estimation errors

of hand lifting action on average

without memory of errors

Figure 20. Different propagation of

simulated estimation errors of hand

lifting action on average. The

propagation of errors (a) through (e) are

when experiencing different

environments that have the error

switching rates of 90%, 70%, 50%,

30%, and 10% respectively

116

Estimation with Different Memory of Errors

In this sub-section, we describe a computational experiment to examine the effect of

memory of errors on the estimation process of an agent. This effect has been examined in, and

supported by, human experiments (Herzfeld et al., 2014).

In our experiment, the agent may lift three types of objects, which have different weights:

0.1kg, 0.2kg, or 0.3kg. We consider 0.2kg to be the default weight, and 0.1kg to be lighter and

0.3kg to be heavier. To artificially create errors as those that were introduced in the human

experiments (Herzfeld et al., 2014), we first configure the agentôs knowledge of the objectôs

weight to a default value (0.2kg), and then let the agent lift either a lighter (0.1kg) or a heavier

object (0.3kg). In this way, the difference (error) occurs between the estimated hand location and

the actual one, and two types of errors, positive or negative, are made by using lighter or heavier

objects respectively.

Based on the fact that the sequence of errors stored in memory may switch between

positive and negative, we prepare five types of environment that the agent can experience: error

switching rates of 10%, 30%, 50%, 70%, or 90% respectively.

To observe the effect of memory of errors, we first let the agent perform 30 lifting trials,

using either lighter or heavier objects, to create its memory of errors, and then we let it do one

lifting trial using a heavier object. We analyze the propagation of simulated estimation errors

during the last lifting trial when the agent has experienced a certain type of environment. In

detail, we let the agent perform the above 31 trials 25 times for each type of environment, and

calculated the estimation errors on average during the 31st trial, as shown in Figure 20. Within

every 31 trials, the value of ɖ changes (see Sections 5.3.1 and 5.4.2), and its value is initialized to

zero when the agent starts a new sequence of 31 trials. The approach we are using here to

117

explore the effect of memory of errors is based on the design of previous human experiments

(Herzfeld et al., 2014).

As shown in Figure 20, the simulated estimation errors are different in different

environments. In detail, the errors are smaller when the environment the agent has experienced

has a lower switching rate of errorsðpropagation (a) is largest and (e) is smallest; that is, the

error propagation peak is lower, and the decline after the peak is more rapid. This difference

demonstrates that when the environment is more stableðhaving lower error switching rateðthe

estimated hand location is closer to the actual because the agent learns more from a given error

created using a heavier object. This effect of the environment (memory of errors) matches the

phenomenon found in the human experiment (Herzfeld et al., 2014). In more detail, the value of

ɖ is different while generating propagations of simulated estimation errors ((a) ~ (e)). For

example, in situation (a), the agent experiences a rapidly changing environment (switching rate

of 90%), so in Eq. (18) variable s is close to n, and then together with Eq. (17) the value of ɖ

nearly reaches its minimum, 0.5. On the other hand, in situation (e), because the agent

experiences a very steady environment (switching rate of 10%), we can infer that the value of ɖ

nearly reaches its maximum, 1.5. Similar computational inferences can be done for situations (b)

~ (d) as well. These inferences match the interpretation of Herzfeld and his colleagues for the

human results (2014). Therefore, we argue that we have simulated both the phenomenon and

causal factors present in certain human experiments (Herzfeld et al., 2014).

Furthermore, for most propagations of simulated estimation errors shown in Figure 20,

from (b) through (e), their behaviors are similar to study results of human behavior (Wolpert et

al., 1995): 1) the hand location is overestimated, and 2) the error peaks in the first part of the

movement, and then goes down. The only exception is the propagation (a) in Figure 20, which

118

does not exactly follow the human experimental result (Wolpert et al., 1995): although it shows

the overestimation of the hand location, its error simply goes up but does not have an ensuing

decline. We think this exception may be due to the fact that the 90% switching rate is an extreme

situation that is outside the scope of the hypothesis (Wolpert et al., 1995) describing usual human

behavior. In this situation, the agent has experienced a very rapidly changing environment, so it

almost does not believe the current sensed dataðthe agentôs knowledge dominates the

estimation. That is why the decline does not appear after the peak, and the decline is the result of

a trade-off between the agentôs knowledge of the dynamics of the environment and its sensory

data.

In summary, together with the experimental results shown above, we have shown that an

agent embedded with our newly proposed model is able to simulate both (1) human estimation of

its lifting movement within one trial (Wolpert et al., 1995), and (2) human estimation between

lifting trials driven by memory of errors (Herzfeld et al., 2014).

5.5 Conclusion

We have presented a new model that estimates human movements using memory of

errors. Furthermore, we have computationally embedded this model into a cognitive model,

LIDA (Franklin et al., 2014), to simulate human self-estimation of their movements.

119

6. Modeling Sensorimotor Learning in LIDA

Introduction

We studied the term ñsensorimotorò from the concept of cognitive development proposed

by Jean Piaget (Piaget, Brown, & Thampy, 1985; Pulaski, 1980). As he reported, when an infant

was in his first two years of life, within the so-called ñsensorimotor stage,ò the infant builds a

mental mechanism for its overall interaction with the environment. This building process results

from several inherited elements, as well as his experience interacting with the environment over

time. In our view, we consider this mental mechanism the infantôs initial mind, and we think

there is a kind of sensory motor system acting in the mind for the control of such behavioral

interactions. As the infant progresses to the higher cognitive developmental stages, more

complex mental processes and representations emerge, and the sensory motor system integrates

with them while continuing to handle the interaction with the environment. In a mature humanôs

mind, the sensory motor system cooperates with other parts of mind, and directly interacts with

the environment.

In a recent review in neuroscience (Wolpert et al., 2011), the authors argued that there are

different task components necessary for motor learning, including relevant information

gathering, selection of strategies, and both predictive and reactive (motor) control mechanisms.

Furthermore, different learning processes are necessary to be applied on these components.

These necessities have been conceptually fulfilled in a cognitive architecture, LIDA.

We present a new model of sensorimotor learning in LIDA using the concept of

reinforcement learning. This is the second implementation of learning in LIDA, the first being

the modeling of attentional learning by Faghihi and colleagues (2012). The new model stores and

updates the rewards of pairs of data, motor commands and their contexts, using the concept of

reinforcement learning; thus the agent is able to generate (output) effective commands in certain

120

contexts based on its reward history. Following Global Workspace Theory, the primary basis of

LIDA, the process of updating rewards in sensorimotor learning is cued by the agentôs conscious

content, the most salient portion of the agentôs understanding of the current situation, issued by

the Global Workspace module of LIDA.

Furthermore, researchers in neuroscience have recently proposed that the brain maintains

a memory of errors in sensorimotor learning, and they found that during a motor task, ñthe brain

controls how much it is willing to learn from the current error through a principled mechanism

that depends on the history of past errorsò (Herzfeld et al., 2014). Here the error is the difference

between the brainôs predicted result and the sensory result. These researchers proposed a

concept, called error sensitivity (Herzfeld et al., 2014) or learning rate (Gonzalez Castro,

Hadjiosif, Hemphill, & Smith, 2014), to represent the percentage of error that will be added to

the predicted results during its updating.

The researchers found that the brain controls this error sensitivity depending on the

errorôs history (Herzfeld et al., 2014). The brain learns more from the errorsðerror sensitivity

becomes highðwhen their histories are likely to persist, and it learns lessðerror sensitivity

becomes lowðwhen the histories were likely to change. ñPersistent errorsò refers to those

historical errors that have the same sign, either both positive or both negative. Another relevant

work has been reported for the dynamic regulation of reinforcement learning parameters as well

(Khamassi, Enel, Dominey, & Procyk, 2013). In their work, the learning rate is dynamically

tuned as a function of the environment's volatility. In our view, the environmentôs volatility

(uncertainty) is similar to the error sensitivity introduced above, a kind of environmentôs

stability. Inspired by these hypotheses, we introduce the effect of memory of errors into the

newly added learning mechanism, so as to implement a dynamic learning rate.

121

In the next section, we introduce the work of modeling sensorimotor learning in LIDA.

Then in the following section, we describe an addition of a dynamic learning rate into this

learning mechanism. Following that, we provide current experimental results. Finally, we

conclude the work and propose some directions for further research.

Modeling Sensorimotor Learning in LIDA

Practically it is easy to study this modeling work by using an example that includes

concrete motor commands. Therefore, we simulated an autonomous agent (Franklin & Graesser,

1997) to implement our model of sensorimotor learning. The agent consists of a simulated robot

body and a controller implemented using the computational LIDA framework (Snaider et al.,

2011). This agent is designed to learn how to push a box properly.

Below we introduce the robot, the cooperation between the Sensory Motor System (SMS)

and some of LIDAôs other modules, the development of the new SMS, and the implementation

of other relevant LIDA modules.

A Box Pushing Robot

We reuse a two-wheeled robot provided by Webots, as shown in Figure 21. Its simulated

height is 0.08m and its radius is 0.045m. The motor commands of the robot are limited to going

forward, and turning left or right either by approximately 13 or 22 degrees.

Figure 21: A two-wheeled box pushing robot

122

The robot has eight distance sensors. Each of these sensors has a field of view of about 15

degrees, and can detect objects within 0.3m. We simplified the sensors to detect objects in two

distance ranges, one from 0m to 0.15m (NEAR) and the other from 0.15m to 0.25m (FAR).

These sensors are arranged in an orthogonal pattern, with four on the front and two on each side.

In addition, a touch sensor is placed on the robotôs front to detect a bump, and another sensor

built inside the robotôs body detects when the robot becomes stuckðthe sensor senses the

agentôs location and rotation; it is activated when the agentôs location and rotation are the same

during two consecutive sensory cycles.

The Cooperation between the SMS and Some Other LIDA Modules

There are two LIDA modules, Action Selection and Sensory Memory (see Figure 1), that

provide relevant information as separate inputs to the SMS. The SMS sends out motor

commands as its output to the environment. The output of the SMS also modulates other parts of

LIDA. The LIDA-based agent is an autonomous agent that senses the effects of its own previous

output (motor commands), which influence other modules in LIDA.

We implemented a broadcasting channel from LIDAôs Global Workspace (GW) to the

SMS (Sensory Motor Memory in Figure 1), sending the agentôs conscious content to the SMS.

The arrival of this content cues (initializes) the update of the rewards to motor commands in the

SMS so as to assign credit to effective commands. Note that the conscious content does not

directly provide the rewards, but it leads to the process of making and then updating the rewards.

This is in keeping with GWT, in which the conscious content broadcast from the GW modulates

learning in the rest of the system.

123

The Development of the SMS

The SMS is the key module that was augmented when we implemented a model of

sensorimotor learning into LIDA. Prior this addition, motor commands were built into a

mechanism (subsumption architecture style) implemented in the SMS, and could not be changed

at runtime. Now, the sensorimotor learning implemented into LIDA leads to a dynamic selection

of motor commands at runtime based on the newly experienced rewards to the commands. Our

computational design is inspired by Mahadevan and Connellôs previous work (1992). They

added a learning aspect into the traditional subsumption architecture using the idea of

reinforcement learning (Kaelbling, Littman, & Moore, 1996). We improved theirs in two primary

ways: 1) we imbued the original learning with a more biologically inspired interpretation by

bringing it into LIDA to implement sensorimotor learningðbasically in LIDA, the arrival of new

conscious content issued from the Global Workspace module cues the creating and updating of

rewards in the SMS, and 2) we implemented a new mechanism to control the rate of learning

(see this in the below section later).

Figure 22: The design of a new SMS

Finder S

Pusher

Unwedger

S

Command
Generation

SM

Environment

SMS

Rewards DB
Rewards DB

Rewards DB

GW

SMM
New rewards

Commands

Current state

Motor commands

Rewards DB
Rewards DB

Errors DB

New errors

9ǊǊƻǊΩǎ
history

Action
selection

Reward
updating

Box pushing

Conscious
content

A selected
behavior

124

The design of the new SMS is shown in Figure 22. Compared to its previous version, we

have added three new components: (1) a set of reward updating processes, (2) a set of rewards

databases, and (3) a set of errors databases. We introduce the first two components and the SMS

for modeling sensorimotor learning below, and leave the introduction of the errors databases for

adding a dynamic learning rate to the following section. In brief, the rewards database maintains

the reward values, while the errors database stores the history of reward prediction errors. Note

that in our work, the term error does not mean a ñpunishmentò, the opposite of a reward; rather

an error here refers to the difference between the currently stored rewards and newly generated

rewards.

In Figure 22, the SMS contains a (motor) command generation module depicted in the

upper part of the diagram and a long-term memory, Sensory Motor Memory (SMM), depicted in

the bottom part. The command generation module responds to the execution of a selected

behavior. That behavior results from the preceding Action Selection Module on the right, and

acts to specify a desired action in LIDA. General details about the behavior data structure can be

found in (Franklin et al., 2014). In our case, the selected behavior is pushing a box. On the left

side of this module, a reactive motor control mechanismða kind of subsumption architectureð

is built in. The structure of the mechanism implements a priority network that imposes an order

on the three sub-tasks of box pushing. The unwedgerôs behavior suppresses the pusherôs, and

both of these suppress the finderôs. A suppression operation is represented by an encircled

uppercase S in the network diagram. Briefly, the agent begins by finding and closing a box, it

then continuously pushes the box, and finally the agent can ñunwedgeò itself if it becomes stuck.

These subtasks are implemented by finite state machines (FSMs), which are driven by the

125

current state of the environment sensed through the Sensory Memory (SM), and which may in

certain states send out motor commands to the environment.

Because of the implemented sensorimotor learning, the motor commands sent out from

the FSM can now be dynamically chosen at runtime based on their rewards. Each FSM has its

own rewards database maintained in SMM. Another part of learning is a set of reward updating

processes, which are depicted on the right side of the command generation module. These

processes are driven by the conscious content broadcast from LIDAôs Global Workspace (GW),

and each of them one-to-one updates the reward values stored in a rewards database for a certain

FSM.

The algorithm of the reward updating process is inspired by Q-Learning (Watkins, 1989);

this updating helps the agent propagate rewards in the time line. The reward update formula (see

Eq. (20)) uses a reward function Q(x, m) across states (x) and motor commands (m). This reward

function is defined by Q(x, m) = r + ◓E(y), where r is the immediate reward, and E(y) is the

expected reward of the state y resulting from the command. E(y) is the maximum Q(y, m) over

all commands m. ʝ is a discount parameter that is set to 0.9, which determines the importance of

future rewards. Its current value 0.9 is supported by Mahadevan and Connellôs experimental

results (1992).

Q(x, m) ă Q(x, m) + ɓ(r + ◓E(y) ï Q(x, m)) (20)

During updating, since the current stored reward Q(y, m) has not yet converged to the

updated valueðr + ◓E(y)ðthe difference between them then provides the reward error in the

current stored rewards. This error is used to update the stored rewards using a learning rate ɓ.

Currently, the value of ɓ is set to 0.5 as supported by Mahadevan and Connellôs experimental

results (1992); but we will replace it using a dynamic learning rate mechanism described below.

126

In Eq. (20), immediate rewards (r) are calculated differently depending on the FSMsô

behavior (see Figure 22). First, for finding a box, the agent is rewarded by +3 if it detects an

object in its front NEAR zone during forward movement, or it is punished by -1 if no object is

there. The default reward is 0 if the agent is not moving forward. Second, for pushing a box, the

agent is rewarded by +1 if it is touching an object during its forward motion, or it is punished by

-3 if not touching. The default reward is 0 as before. Finally, for getting unwedged, the agent is

punished by -3 if it is wedged while moving forward, or it is rewarded by +1 if no wedging

occurs. The default reward is 0 if the agent is neither wedged nor moving forward.

When a FSM chooses its current command, in 90% of the time, given the same current

state, the motor command that has maximum reward values is chosen. In the remaining 10% of

cases, a motor command is randomly chosen. Choosing commands only based on their rewards

will never allow the exploration of new commands or new states. Sometimes, a random

command is chosen to ensure that all states in the state space will eventually be explored.

Suggested by Mahadevan and Connell (1992), 10% is a good compromise between exploratory

and goal-directed activity, in line with their experimental results.

Implementation of Other Relevant LIDA Modules

We implemented several other relevant LIDA modules appropriate for the specification

of learning a box pushing task using sensorimotor learning. We list the implementation of each

module below, ordered according to the three phases of the LIDA cognitive cycle:

understanding, attention, and action/learning. Figure 1 gives an intuitive feel for the relationship

of these modules. Details of these modules can be found in (Franklin et al., 2014).

Sensory Memory (SM)

127

SM gets sensory data from environment, structured as an array of Boolean bits,

representing the data status sensed from each of the sensors, either active or inactive. SM

provides the SMS with the current data.

Feature detectors (FDs) and Perceptual Associative Memory (PAM)

PAM stores a set of nodes, each of them representing a specific aspect of an

environmental state of concern to the agent. In our work, these nodes are distance nodes

including NEAR and FAR, a bumping node, and a stuck node. FDs constantly obtain the current

state from the SM, activating relevant nodes in PAM.

The Current Situational Model (CSM) and structure building codelets (SBCs)

The CSM receives currently activated nodes from PAM, and builds the agentôs

understanding of the current situation. SBCs reorganize data in the CSM, combining sets of

nodes and links into node/link structures. They build an agentôs higher level understanding of the

current situation.

Attention codelets and the Global Workspace (GW)

We added an attention codelet concerned for the entire current situation in the CSM, and

bringing it into the GW. In the GW, the current situation may win the competition to produce the

agentôs conscious content. A channel from the GW to the SMSðnewly implemented this timeð

broadcasts the conscious content to other modules including the SMS.

Procedural Memory (PM)

Following the broadcast of conscious content from the GW, a box pushing scheme is

recruited in the PM, and then a relevant behavior is instantiated that is selected by the Action

Selection module and sent to SMS, which initiates a motor command generation mechanism for

executing the box pushing in the SMS.

128

A Dynamic Learning Rate in Sensorimotor Learning

In a study of sensorimotor learning, Herzfeld and colleagues (2014) have hypothesized

that the brain not only learns from individual errors that it has experienced before, but also

accumulates the errors into a memory; this memory of errors makes it possible for the brain to

control how much it will learn from a given current error. These historical errors help humans

determine whether the environment is steady or rapidly changing. Environmental stability thus

controls how much of a given error will be learned so as to affect the prediction of the upcoming

movement. This study has been described in detail in the previous sections.

We interpret the above hypothesis as a computational mechanism. In the mechanism,

memory of errors controls the value of a ñlearning rateò, which weights the amount of an errorð

typically the difference between sensory (actual) result and predicted (intended) resultðthat will

be used in an update process of the predicted result.

In the work of modeling sensorimotor learning as described above, one step in updating

the reward of motor commands is to learn from the reward error as expressed by Eq. (20). We

consider this reward updating process to be similar to the update process mentioned in the above

mechanism. Therefore, here we revise Eq. (20) by changing the quality of its parameter ɓ from a

constant value to a dynamic value. Now the value of parameter ɓ will be controlled by memory

of errors as introduced above (Herzfeld et al., 2014).

Note that the reward of motor commands manipulated in our development of

sensorimotor learning is different than the execution result (the movement) of motor commands

discussed by those neuroscience researchers in sensorimotor learning (Herzfeld et al., 2014). In

our sensorimotor learning, reward of motor commands is maintained inside an agent as the

judgment provided by the agentôs mind. In contrast, those neuroscience researchers assume that

129

the movement of motor commands occurs outside of the agent as the feedback ñprovidedò by the

environment. We consider the reward and the movement to be the two indicators for the

evaluation of a motor command. We note that both of them are used to indicate aspects of motor

commands, and it seems they also have some similar principles, such as the way to update their

indications of motor commandsðthey both use a type of learning rate to weight the updating of

the old knowledge of the motor command by the new. Thus, we have integrated the idea of

memory of errors from Herzfeld and colleagues (2014) into our work for updating the reward of

motor commands. We consider this a kind of indirect biological inspiration for our approach.

Next we provide the way in which memory of errors dynamically controls the value of

the parameter ɓ. (This parameter ɓ is a similar concept to that of the learning rate ɖ previously

introduced, both of them are inspired by the concept of memory of errors (Herzfeld et al., 2014);

but their computational implementations are slightly different.)

First, a (reward) error is classified as either positive or negative, depending on the sign of

subtracting the old (stored) reward from the new reward. Then when our agent has performed its

task (pushing a box) for a while, having experienced a sequence of errors, the type of these errors

may switch differently, switching from slowly to rapidly; here we mean switching between

positive and negative reward errors, and the switches occurs either frequently (i.e. "rapidly") or

sporadically (i.e. "slowly"). Therefore, we have different types of memory of errors from the

viewpoint of their stability, based on the rate of switching. We represent the number of errors the

agent has experienced by a variable n, and the number of switches between these errors by a

variable s. These variables are integers starting from zero. Based on these two variables, we

represent the status of the memory of errors by a variable t as expressed by Eq. (21), and then

calculate the value of ɓ using a sigmoid function assisted by the variable t as expressed by Eq.

130

(22). The parameter ɗ tunes the effect of t, and is set to 1.0 by default. ɓ ranges from 0.0 to 1.0

with a default value of 0.5.

t = n ï 2 * s (21)

ɼ
 ᶻ

 (22)

Here we illustrate the behavior of ɓ with examples. If the agent has experienced many

errors that rarely switch, the value of n is large and the value of s is small; therefore, the value of

t and therefore ɗt are large; so ɓ is close to 1.0. This means that a slowly switching environment

results in a high learning rate. On the other hand, if there are errors in memory but they have

switched signs very often, the values of both s and n are large, so t is negative with a large

absolute value; thus the value of ɓ is close to 0.0. This means a rapidly switching environment

leads to a low learning rate. These simulated behaviors qualitatively agree with the hypothesis

proposed by Herzfeld et al.(2014). Note that when there is no error in the memory yet, the value

of t is 0 because n and s are 0, so the value of ɓ is 0.5, which is the same as the default value of ɓ.

Finally, we add error databases to store the history of variables n and variable s. These

databases are maintained in the SMM as shown in Figure 22. They interact with reward

processes to (1) update memory of errors based on the arrival of new errors, and (2) provide

current errorôs history to dynamically control the value of ɓ.

Experimental Results

This section describes an experimental study to evaluate this modeled sensorimotor

learning and its dynamic learning rate. Figure 23 shows a birdôs eye view of the experimental

environment and the agent in their initial configuration. The agent stands in a field containing

three movable boxes. They are surrounded by walls, a kind of obstacle that cannot be moved.

131

We are interested in the following questions: 1) How well will the action of pushing a

box be executed with sensorimotor learning; and 2) What is the effect of implementing the

dynamic learning rate into the learning?

We evaluate the performance of the box pushing using two criteria: 1) the average value

of the reward obtained so far by the pusher FSM (see Figure 22) inside the agentðwe consider

pushing to be the core part of the box pushing taskðand 2) the distance that the boxes have been

moved in the environment.

We compare the box pushing performance across six different agent conditions: 1)

randomly chosen motor commands; 2) handcoded motor commands; 3-5) sensorimotor learning

with constant learning rates of 0.1, 0.5, and 0.9 respectively; and 6) learning with a dynamic

learning rate. Under the handcoded condition, the expected ñbestò commands are chosen when

the agent is in certain given states: the finder module chooses forward motion if an object has

been detected to be near the front; the pusher chooses forward if a bump event is detected; and

the unwedger module randomly chooses a command to turn left or right if the agent is stuck. In

other states, commands are randomly chosen.

In each condition, we perform 10 consecutive trials. A new trial begins from the initial

configuration of the environment and the agent, but the rewards of the motor commands and the

Figure 23: A birdôs eye view of the experimental environment and the agent

132

reward errors are remembered throughout the trials. During each trial the agent runs 500

simulation steps, so under each condition, the agent runs 5000 steps. In our case, each step is

simulated with 50 virtual time unitsðthe agent executes at unit intervals in Webotsô virtual time.

We collected the first criterion of average value of the reward every 50 steps of the

agentôs run, so 100 average values were collected during the total of 5000 steps. Figure 24 plots

the average values under the six conditions. The plotted curves illustrate that 1) with

sensorimotor learning added, the pusher module obtains more rewards than the random agent

does, 2) the pusher obtains the most rewards under the dynamic learning rate condition (except

during the initial steps), and 3) the handcoded agent outperforms the agents with the three

constant learning rates.

Regarding the second criterion, the sums of the distances that the boxes have been moved

during 10 trials under each of the six conditions are displayed in Table 3. These show that 1) the

Figure 24: The average values of rewards obtained by the pusher over 5000 steps. The

vertical axis represents the sum of all rewards obtained by the pusher divided by the

number of steps the agent has run so far, and the horizontal axis represents the

completed proportion of the 5000 steps. For learning vs. random, p < 10
-5

; for dynamic

vs. hand-coded, p < 10
-7

; for hand-coded vs. constant learning rates, p < 10
-11

.

0 10 20 30 40 50 60 70 80 90 100
-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

Dynamic

Handcoded

Constant (0.5)

Constant (0.9)

Constant (0.1)

Random

Completed proportion of the 5000 steps (percent)

A
v
e

ra
g

e
 r

e
w

a
rd

 o
b
ta

in
e

d

133

agents with sensorimotor learning at the three constant rates have pushed the boxes farther than

the random agent, 2) using the dynamic learning rate yields the greatest box pushing distance,

and 3) the handcoded agent yields the second greatest distance.

The results reported above support the assertion that sensorimotor learning improves the

performance of box pushing to a certain extent, and that adding the dynamic learning rate clearly

increases that extent. This increased improvement supports that memory of errorsðthe agentôs

knowledge of the environmentôs stabilityðhelps the agent interact with its environment more

effectively.

On the other hand, we think more evidence is needed to support the causality between

using a dynamic learning rate and the learning performance. Our motivation for modeling this

dynamic learning rate is the replication of some recently proposed hypotheses from neuroscience

regarding the effect of memory of errors (Herzfeld et al., 2014). In brief, the hypotheses suggest

that a dynamic learning rate helps an agent achieve a better adaptation to its environment based

on its memory of errors, but can that adaptation always be translated into improved

performance? We leave this as an issue for future work.

Table 3: The sums of the distances that the boxes have

been moved during 10 trials

Learning Rate Distance

(m)

Dynamic 1.6002

Handcoded 1.2023

Constant (0.5) 0.9521

Constant (0.9) 0.6357

Constant (0.1) 0.3223

Random 0.2338

134

We did not compare our results with the results obtained by Mahadevan and Connell

(1992) because they have different experimental motivations, and thus a different types of

results. They are interested in determining 1) the effect of decomposing the overall task into a set

of subsumption modules for learning, and 2) the performances of different learning algorithms,

while we are interested in the biologically inspired implementation of sensorimotor learning, and

adding a learning rate control mechanism inspired by the idea of memory of errors (Herzfeld et

al., 2014).

Conclusions

In this chapter, we implemented sensorimotor learning in LIDA (Franklin et al., 2014).

This implementation follows the ideas of Global Workspace Theory, and uses reinforcement

learning. Furthermore, we added a dynamic learning rate into the learning, which is controlled by

a history of errors. Actually the approach to a variable learning rate has been explored before,

such as the principle of ñWin or Learn Fastò (WoFL) (Bowling & Veloso, 2001), while in our

work the design distinctly relates to recent results on error memory from neuroscience. Our

preliminary experimental results suggest that sensorimotor learning using a dynamic learning

rate improves the performance of action execution: the generated motor commands are more

effective. But as we have mentioned above, we think this conclusion needs more supporting

evidence.

One major limitation in the current project is that the motor commands of the robot are

very simple and the execution of each of these commands typically can be done within one step

of the agentôs run. That means the agent can predict the execution result of a motor command

very wellðits predicted result will very often be approximately the same as the sensory result.

Under this condition, it is hard to model, and so then study, the motor command error, the

135

difference between the predicted and the sensory result. We plan to apply the currently

implemented LIDA-based controller to another robot that provides more complicated motor

commands, which we expect, will produce more obvious (larger) motor errors.

136

7. Modeling Motor Priming in LIDA

Introduction

In the field of science, we propose a hypothesis about our study target, one particular

aspect of the world, and then constantly refine the hypothesis. Basically, a hypothesis is refined

based on the observations of our study target and the relevant inferences from them. We design

and perform experiments about the study target, so as to observe it more deeply and broadly.

 In a study of human movement (T. Schmidt, 2002), the author reported that the

participantsô movements were affected by earlier sensory data, suggesting that priming occurs in

motor control. However, our current SMS can neither explain nor replicate the priming effect

Schmidt reported, so we improved the LIDA Model by extending its SMS to model motor

priming in LIDA.

The next section introduces the details of the priming experiment with humans.

Following that, I introduce our design of the extended SMS. And then the simulated finger

movement is introduced. Finally I give the summary, the limitation, and the future work of the

model of the extended SMS.

Previous work

In psychology, priming refers to an effect in which exposure to one stimulus influences

the response to a later stimulus. For example, if a person sees a picture of a fish and soon

thereafter reads the word ñbankò, then he is more likely to interpret the word as the bank a river,

as opposed to a financial institution. In general, priming can affect task decisions people make,

for object identification, motor control, and many others.

This experiment (T. Schmidt, 2002) was designed to measure priming effects for human

movement. Participants were required to view a white dot in the center of a dark background

screen, and put their right index finger on the dot. Then, they were asked to respond to the

137

appearance of a target with a pre-specified color (red) by moving the right index finger onto the

target. In detail, an experimental trial consisted of four phases: fixation, primes, blank, and

masks (See Figure 25). In the fixation phase, a white stimulus, the fixation point, was shown in

the center of the screen, and the participant was required to initiate the experiment by placing his

right index finger there. The fixation point remained on the screen throughout all four phases.

During the primes phase (10 ms in length), two disk stimuli (one red and one green), the

primes, were shown in opposite quadrants of the display, on a rising diagonal (see Figure 25).

Then the blank phase began, consisting of a specified delay from 0 to 50 ms at 10 ms intervals,

during which the primes disappeared, leaving only the dark background and the fixation point.

Finally in the masks phase, two annular stimuli (one red and one green), the masks, were shown

at the same positions as the primes; they remained on the screen until the participantôs finger

reached the target. Mask colors were either switched (inconsistent) with respect to prime colors

or not switched (consistent).

The participantsô finger movement trajectories were recorded and analyzed (T. Schmidt,

2002). When primes and masks were consistent, the finger moved directly toward the target (red)

mask stimulus. However, when primes and masks were inconsistent, the movement initially

red

green

red

green

red

green red

green

Consistent

Inconsistent

Fixation Primes Blank Masks

Figure 25: Four phases in the priming experiment

138

started in the direction of the non-target (green) mask stimulus but then was corrected and moved

to the target (red) one.

Schmidt explained why the ñwrongò finger movement was observed in the above

inconsistent situation, where the participants first moved toward the non-target mask stimulus,

though the goal was moving to the target one (2002). He hypothesized that the previously

perceived sensory data, the target (red) prime, affects the later movement in the masks phase.

Since in the inconsistent situation, the target (red) prime stimulus and the non-target (green)

mask stimulus were displayed at the same locations, participants were affected to move toward

the non-target (green) mask stimulus in the beginning of the masks phase. This is a typical

priming effect occurring in motor control that we would like to replicate.

Furthermore, Schmidt found that in the inconsistent situation, the magnitude of the

priming effect, that ñwrongò direction moving, increases with the stimulus onset asynchrony

(SOA) of prime and mask (2002). SOA refers to the time between the primes onset and the

masks onset. Since the blank phase is specified between 0 ~ 50 ms, SOA is between 10 ~ 60 ms.

The average finger movement trajectories are shown in Figure 26
1
. Regarding the inconsistent

trajectories, their maximum amplitude represents the magnitude of the priming effect, which

increases with the SOA. This is another important feature of the priming effect that we wish to

replicate.

In Figure 26, each movement trajectory average is calculated based on about 1,000 trials.

The movement is considered to have arrived when the distance to target is shorter than 10 mm.

More details of the experiment can be consulted in its original report (T. Schmidt, 2002).

1
 Figure 26 is reused from (T. Schmidt, 2002) with permission.

139

The experimental results reported above (T. Schmidt, 2002) have been cited in the study

of visual priming (F. Schmidt, Weber, & Schmidt, 2014; Tafazoli, Di Filippo, & Zoccolan,

2012), unconscious responses to primes (Deplancke, Madelain, Gorea, & Coello, 2013), and the

channel for non-conscious vision (Breitmeyer, 2014). In addition, the further studies have

pursued in different directions, including the studies of two sequential primes (Grainger,

Scharnowski, Schmidt, & Herzog, 2013) and different stimuli (chromatic vs. achromatic stimuli)

used in updating target location (Kane, Wade, & Ma-Wyatt, 2011).

The design of the extended SMS

In the design of the original SMS, sensory data perceived before the start action, the

prime, would not have been involved in the process of action execution. Thus the priming effect

Figure 26: Time course of the euclidean distance between finger and target (red) mask during

the finger movements. Trajectories are aligned on prime onset to show that the early phases

of the movements were similar in all conditions. Vertical lines indicate onsets of primes

(solid) and masks (dotted). Standard errors (between trials) at the sample times of maximum

amplitude and arrival are shown. SOA = stimulus onset asynchrony of prime and mask.

This is the figure taken from Schmidt, T. (2002). The finger in flight: Real-time motor

control by visually masked color stimuli. Psychological Science, 13(2), 112-118.

