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Abstract

Dagi Dong. Ph.D The University of MemphAugusf2016. Action Execution, Its
Estimation and Learning for a Systems Level Cognitive Architecture. Major Professor: Stanley
P. Franklin.

An agent or robot achievés goals by interacting with its environment, cyclically
choosing and executing suitable actions. Cognitive architectures are considered the control
structures of the agent, helping it decide what to do next, while the designs resemble how minds
work, bethey human, animal, or artificial.

An action execution process is a critical part of an entire cognitive architecture, because
the process of generating executable motor commands is not only driven-ley&w
environmental information, butis alsoiaitt ed and af f ect-klnmeyal t he age
processes. | give a review of the cognitive models of the action execution process as
implemented in a set of popular cognitive architectures, and conclude with some general
observations regarding the niawf action execution.

Next, | present a cognitive modethe Sensory Motor System (SMSjor an action
execution process, as a new module of the LID
systemdevel cognitive model. A sensorimotor system dediyrom the subsumption
architecture has been implemented into the SMS; and several cognitive neuroscience hypotheses
have been incorporated as well.

Inspired by the hypothesis that humans estimate their movements based on their
knowledge of the dynamicg the environment, and on actual sensory @&talpert,

Ghahramani, & Jordan, 1995l create a model of the estimation process of action érecu

using SMS in LIDA. Also, based on a recent study in neuroscigiezfeld, Vaswani, Marko,



& Shadmehr, 2014 | introduce a new factdérmemory of errord into this model of estimation.
The historical errors help humans determine the stability of the environment, so as tahe#ecide
degree to whiclknowledge of the environment may affect the estimation.
Learningis significant for for allowingan agent to act more intelligently. | present a new
model of sensorimotor learning in LIDApe thathelps an agent properly interact with its
environment using past experiences. Following Global Workspace Theopyirttey basis of
LI DA, this |l earning is cued by the agentods co
agentdéds understanding of the current situatio
control the extent to which newly arriving consgaontent may affect the learning.
Finally, I introduce an extensiaof the SMS This extensiorallows, and explains, the use
of the sensory dataéhe prime, perceived before a participant starts his or her moverngnie
SMS during action executiofurthermore, thigxtensiorallows the replicatiotry a LIDA-
based agent,feaome human experimer(f. Schmidt, 200pstudying the priming process in

motor control
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1. Introduction

Humans seem very curious about their bodies, their minds, and especially their
intelligence. In the field of artificial intelligence (Al), the original aim was to reproduce human
level intelligence. In robotics, people would like to create huhka&mrobos. In addition tothe
hardware bodies, a robot does need a controller determining what to do next. Aleuahan
controller allows the robot to be humbike.

| consider the robot that owns both the body and the conttolleran agent.

Furthermore, Fequire the agent to be autonomous. An autonomous agemaependentiyn

its environment with an agenda, and over time its astinayaffect what it senses in the future
(Franklin & Graesser, 1997 A gener al question motivating my
minds work, be they human, animal, or artifi@giaFollowing the LIDA Model,l define a mind

as a control straare for an autonomous agdrtr ank |l i n, Mad]| , DhMel | o, &
my work, cognitive architectures are used as a concrete tool to explore cognitive representations

and processes of minds, from ferspectiveof computer science, the data structures and

algorithms of control structures.

Action and action execution

Action plays an essential role in creating a huifilemagent: The agent interacts with its
environment byactingto achieve its goals. But how doeathnaction happen? For example,
when | am doing my daily driving, | know | am driving but | do not know exactly what | am
doing at every moment. How about the force applied by my fingers to the steering wheel, the
oxygenlevel in my blood, or my mentatates? | am not aware of much of that either during the
driving or afterwards. | only remembsomefiscreen shotsof the drivingafterl have arrived. It

is interestingo seethat humans do not know much about how their actions have beenrdone
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the cass of driving, swimming, or even gripping a cup, while they do krbatthey can do
these thingaind, at a relatively abstract level, what they are doing.

From different fields of study such as psychology, neuroscience, and cognitive science,
researchers have provided evidence and formulated hypotheses to explain how human action
works. Marc Jeannerod, citing the work of Seét@83, built upon the concept that covert
action representation is followed by overt, r
content, when it exists (i.e., when an explicit desire to perform the action is formed), is present
first. Then, at the time of execution, a different mechanism comes into play where the
representation loses its explicit character and runs automaticallgta c h t he desired
(Jeannerod?006, pp. 45). Jeannerod suggests that action representation (preparation) and action
execution are two different processes. A similar idea of distinguishing action execution from
action preparation (selection) is proposed by Milner and Goodale asmihléir work on the
two visual systemgl992 2008, they proposed two cortical systems, the ventral and dorsal
streams, providing Avision for percepghei ono an
roles of the two streams in the guidance of action, the perceptual mechanism in the ventral
stream identifies a goal object, and helps to select an appropriate course of action, while the
dorsal stream fAis criti c dihecdntoolofthelcenstident ai | ed s
movements t ha t(Miheo & Goodale, 200& . 7JbAaditional studies regarding
human action, especially certain neuroscientific evidence, can be found in a set of review papers
(Castiello, 2005Grafton, 201QWolpert, Diedrichsen, &lanagan, 2011

Dr. Stan Franklirand Ihave proposed as well that human action presents two aspects:
Awhat t o wdlotoo €Dbdh.iGbhbde one handctioni s dr i ven by the ag

intention. This means the agent selects the agteomternal motivatioras a result of mental
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processes, rather than generating a simple reflex in response to a stimulus. Thus, the agent
understands what it will do before the action execution begins. However, this understanding of
the action is not executable in the real world, because the nesdézl/el environmental
information is not yet involved; executing an action in the real world requires us to conceive of
an agentos action as o(eranklim & Graegser, vi9970Om theothert s env
hand, the actionbs execution may not be wunder
elements involved are lo¥evel raw data without explicit meaning, while that which is
undestandable must have some form of meaning for the agent. As an example, the agent does
not directly understand the raw stimulus data retrieved by its sensors from the environment.
Rather, the data must be transformed into higher level meaning by a pergeptess; that is,
the transformation produces an understandable representation of the sensed data. Action
execution performs a transformation similar to that of perception, but in reverse: converts an
understandable action into leevel movements.

We have further proposed and computationally implemented a new mod&enisery
MotorSy st em ( SMS), for how a human ma{Dang&i ns one
Franklin, 2015 The SMS is a cognitive model of the action execution process. Action
execution refers to a situation in which an age@cutes a selected gahiected action in the
real world so as to produce pertinent movement. The SMS transforms the selected action into an
executable lowevel action sequence, a sequence of motor commands, and executes them
through appropriate usebfh e agent 6 s actuators in the envir
assisted by the sensory data perceived online.

One important data structure used in the SMS is the motor plan. A set of motor

commands is prepared inside a motor plan, and the plan gemecttescommands in an order
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driven by the arrival of sensory data. Our motor plan is implemented based on the subsumption
architecturgBrooks, 19861991), which behaves like a reactive structure that passively
produces output upon the arrival of input. The subsumption architecture fulfills the required
features of action execution as we model it, including (1) the batmsensory datdirectly
driving the executable action, (2) the decomposition from an understandable action to executable
mot or commands, and (3) the absence of an und
mentioned by Jeannerod above. But on the other hand,lifersption architecture does not
reflect the process of specification for the movement parameters nor does it interact with high
level goaldirected actions. We have implemented these in our SMS, an important extension of
the subsumption architecture. Inotiuce the details of the subsumption architecitse
extensionand the fundamental concepts of the SMS in Chapter 4.
Action execution for cognitive architectures

For the last several decades, due to the difficfligchieving human level intelligence
the majority of Al researchers have focused o
system is highly constrained to specific tasks. But recently, a movement in Al research called
artificial general intelligence (AGI) has been initia{@bertzel & Pennachin, 200Wang,
Goertzel, & Franklin, 2008 It aims to returro the original goal of Al, to construct computer
systems with humatike general intelligene. AGI research treats intelligence as a whole; it
carries out the engineering practice according to an outlinsystamcomparable to the human
mind in a certain sense. A parallel movement appeared a little later under the rubric of BICA
(Biologically Inspired Cognitive Architectures) as well. BICA focuses on the integration of

various research efforts from different disciplines to address the challenge of creating a
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computational equivalent of the human mind. Both AGI and BICA address their Al drgams b
approaching things at a systems level, and proceeding to model the human mind.

Actually, the use of systems level cognitive architectures has been championed by several
researchers in the past as well. Artificial intelligence pioneer Allen Newell sgrengported
the need fosystemd evel theories and architectures, cl a
wi t h nat u(l9g3. bangtky, laird) and Rogef2009 arguedas followsfil nst ead of
carrying out micrestudies that address only one issue at a time, we should attempt to unify many
fi ndings into a single theoretical framewor k,
are calling for a broalased, systesdevel architecture.

Cognitive architectures are designed to be the basis for creating autonomous agents that
can solve avide variety of problems using a wide range of knowledge; they define and organize
fithe primitive computational structures that store, retrieve, and process knavtieggesue the
agent 6(& Lagdo2012sA collection of cognitive architectures has been reviewed in recent
studiesg(Duch, Oenteyo, & Pasquier, 20Q850ertzel et al., 2010 Langley et al., 2009
Regarding actions and their execution processiesef summay has been made in the
following lines:

A cognitive architecture mustsa be able to execute skills and actions in
the environment. In some frameworks, this happens in a completely
reactive manner, with the agent selecting one or more primitive actions on
each decision cycle, executing them, and repeating the process axtthe n
cycle. This approach is associated with clelegh strategies for

execution, since the agent can also sense the environment on each time
step. The utilization of more complex skills supports elp@p execution,

in which the agent calls upon a stoprdcedure across many cycles

without checking the environment. However, a flexible architecture should
support the entire continuum from fully reactive, clotsap behavior to
automatized, opeloop behavior, as can humagB.Langley et al., 2009
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| give a review regarding the action execution process implemented in different cognitive
architectures in Chapter 3.

In our work, not onlydo wemodel action execution itself, we have also addressed the
relationship between action execution and other cognitive processes. We have developed the
SensoryMotor System (SMS) as a new module for a systems level cognitive architecture,

LIDA . LIDA is a conceptual, systems level model of human mental processes. It had integrated
perception, attention, and action (selection) previo(lslgnklin et al., 2014 and now we have

added the SMS to fulfill its action execution pd@bng & Franklin, 2015 In the current

LIDA, its Sensory Memory provides sensory data to drive the process of action execution
implemented by the SMS, while| D AAdtisn Selection module provides the selected -goal
directed action (the selected behavior in LIDA) to the SM&éz@te. Idescribehe details of

LIDA in Chapter 2.

Furthermore, we have implementestimationandlearningof action execution in LIDA
(Dong & Franklin, 2015aDong, Franklin, & Agrawal, 2005

Humans estimate their movements based on both their knowledge of the dynamics of the
environment and actual sensory d#olpert & Ghahramani, 200@olpert et al., 1996
Wolpert and colleagues have incorporated this understanding into a model that simulates this
estimation using the Kalman filt@Kalman, 1960. Inspired by their work, we have modeled the
estination process embedded within action execution in LID®Ng et al., 2016 An internal
model has been added int@t8MS and the Kalman Filter has been extended using the idea of
memory of errorgHerzfeld et al., 201¢for estimating action effectsintroduce this estimation

work in Chapter 5.

! For historical reasons LIDA stands for Learning Intelligent Distribution Agent.
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In LIDA, by thecompetitive process specifigd Global Workspace Theoi§Baars,

1988 2002, a LIDA-based agent decides what portion of the perceived present situation should

be attended to and broadcast to the rest of the system to modulate |@amammkgn et al., 2014

Particularly, this attended pe# situation, called the current conscious content, is broadcast to

the SMS to assist its sensory motor learfdgng & Franklin, 2015pa | introduce learning in
SMS in Chapter 6.

We have created different LIDBased agents using different software robots, such as
youBot and a twavheel robot, to implement our SMS. A software envment, Webots, is used
in our experiments as well. These computational implementations and expehaents
previouslyverified and improved the capabilities of the models we have created hessiew
them inChapter 4

Finally, we haveestedthe LIDA Modelto explain and predi@n unconscious priming
effect on motor control as reported from a human experi(fef@chmidt, 2002 The model
failed in both the explanation and theedictionbefore our improvementherefore, we
improved (refined) the LIDA Modddy extending its Sensory Motor System (SM8)as to
model, and thereby explain the empirical dAtgoftware agent was created using this improved
model, which allowed theeplication of the empirical data concerning motor primingtroduce
ourdesign of the extended SMS and the relevant computasonalationsn Chapter 7

Contributions of this work

An agent achieves its goals by interacting with its environment, cyclically choosing and

executing suitable actions. An action execution process is a reasonable and critical part of an

entire cognitive architecture, because the process of generatingadtecnbtor commands is
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not only driven by lowlevel environmental information, but is also initiated and affected by the
a g e nt desel nmenta processes.
Many cognitive architectures exist, though none, as yet, at hewahintelligence
(Samsonovich, 2@). Especially, not very many cognitive architectures consider action
execution a standard component: In an online Comparative TalohplegimentedCognitive
Architectures®, from more than two dozen posted architectures, we find that less than half of
themhaveimplemented action executiam a relatively complete forfDong & Franklin,
20143.
Evenof thosecognitive architectures in which action execution has been implemented,
none has fully addressed the features of action execution discussed above. For example, in the
AdaptiveControl of ThoughtRational (ACTR) architecturd ACT-R 6.0 Tutorial] 2019, it her e
is typically no direct communication between the perceptual and motor m3didesdata
passed to the motor module always comes from thelhighv e | dec!| a(Dorigikve memo
Franklin, 2015 And in Soar(J. Laird, 20082012, al t hough it wuses the t
¢ o mma n desadibdts final output data, treecommands cannot be directly exeslin the
external world. Soar only transforms selected Heyel actions into general lelevel actions,
and an external program is always necessary to handié then al fAr eal 0 executi o
detailed discussion regarding action execution implementéidferent cognitive architectures
in Chapter 3.
In our work, we have designed tBensoryMotor System (SMS) as a sub module of the
systems level cognitive model LIDA, thereby rendering it capable of communicating with other

cognitive modules naturalip a closed cognitive loop, from sensors to actions. The design of

%t is available ahttp://bicasociety.org/cogarch/
® There is only very limited direct connectivity between perceptual and motor modules. Spatial
information in particular is communicated directly.
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LIDA is biologically inspired, aiming to model humdevel minds, and the SMS follows

LI DAGs design phil os op hjyeyelgotion exacutionglrhetfdateresmfo d e |
action eecution introduced above have been well coverenir addition othe SMS into

LIDA. Furthermore, many new hypotheses and understandings regarding human minds and
action execution have been involved.

Here we provide a way to explore a specific cognithazlule, action execution, and its
relationship with other relevant cognitive modules. This allows us to further explore how a mind
works, especially regarding its action execution part.

Specifically in the design of SMS, we have considered the subsunaptioitecture from
a new viewpoint, namely, that its capabilities fulfill the hypothesis regarding the online control
role of the dorsal stream. Also, we have modified the original subsumption architecture as
inspired by certain hypotheses from cognitieairoscience so as to combine a reactive structure
with a goaldirected action.

We have modeletivo distinctcognitive processes occurring in action execution,
estimationandlearning This makes the SMS behave in a manner closer to hiewalhaction
exeation. Alsqg the concept of memory of errors has been borrowed from recent studies in
neurosciencéHerzfeld et al., 2014and applied into our models to improve their similarities to
certain human behaviors and their computational performance. | give full descriptions of the
estimation, learning, and memory of errors in Chapters 5 and 6.

We have published our work in pegewed journals. Some of the papers are

incorporated in the literature review (Chapter 3) and the three Chap®&¥se@orting results

“In all publications, Dong proposed the original ideagtenithe draft of paper, designed the experiment,
developed the software, and analyzed the data. Ideas provided by Franklin and Agrawal were reflected
into the final version by Dong after the discussion with thesautioors. All publications were supervise
by Franklin.
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Also, we havesubmitteda new papethat isincorporated in Chapter list these papers and
their summarized conbutionsjustbelow, presented as a summary of my research contributions

to Computer Science and Cognitive Modeling:

1 Chapter 3: Dong, D., & Franklin, S. (2014). The Action Execution Process
Implemented in Different Cognitive Architectures: A Review. Jouoh@rtificial General
Intelligence, 5(1), 466.

Contributions: (1) A review of the action execution process as implemented in different
cognitive architectures. The common characteristics of action execution were identified, and its

comprehensive repras@tions and functional procedures were summarized.

1 Chapterd: Dong, D., & Franklin, S. (2015). A New Action Execution Module for
the Learning Intelligent Distribution Agent (LIDA): The Sensory Motor System. Cognitive
Computation, 7(5), 55868.

Contribuions: (2) The completion of a systems level cognitive architecture, LIDA, by
fulfilling its action execution part, particularly by newly designing and implementing the
SensoryMotor System (SMS). The design is both biologically inspired and computatyonall
implementable. (3) The subsumption architecture has been newly applied in cognitive modeling,
and has been extendetth variables dynamicallgpecifiableat runtime. (4) The execution of a
grip action has been implemented using a Libesed agenhcorporatingthe SMS. A software
robot, youBot, and a simulated environment, Webots, were configured and involved as well. This

grip implementatiorallows experimental verifications of the models.

®|n this paper, Dong provided the design of the extended SMS, developed its software simulation, and
wrote the relevant sections. Agrawal prepared the experimental environments, replicated the human
experimental results using the extended SMS, and wroteshef the paper. All work was supervised by
Franklin.
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1 Chapter 5: Dong, D., Franklin, S., & Agrawal, P. (20 Estimating Human
Movements Using Memory of Errors. Procedia Computer Science; I, 1

Contributions: (5) An internal model has been implemented in the SMS to produce an
estimation of the effect of action execution. The estimated n@aslietermined byomparing it
with experimental results of humans. (6) The original implementation of the internal model
(Wolpert & Ghahramani, 200®Volpert et al., 1996wasnovelly extendedvith the concept of
memory of errorgHerzfeld et al., 2014 resulting inimprovedsimilarity to humasin our

model.

1 Chapter 6: DondD., & Franklin, S. (2015). Modeling Sensorimotor Learning in
LIDA Using a Dynamic Learning Rate. Biologically Inspired Cognitive Architectures,-84, 1

Contributions: (7) Sensory motor learning has been implemented in LIDA following
global Workspace Theyp (Baars, 19882002. This is the second implementation of learning in
LIDA, the first being the modeling oftantional learning by Faghihi and colleag(2812. (8)
A dynamic learning rate has been added into the rewaddting process of the learning. We
have setp a software simulated experiment, where a Lia%ed agent looks ftwoxesand
pusheghemaround. Betteexecutionof the pushactionhas been obtained by using sensory
motor learning with the dynamic learning rate.

1 Chapter7: Agrawal, P, Dong, D., & Franklin, S. (subntédin 2016. Modeling
Motor Priming ina Systems Level Cognitive architectu@mgnitive Science

Contributions: (8 Empirical data concerning unconscious motor printiag been

explained by an extensiontiee LIDA Model. In particularL | DAds Sensory Motor
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(SMS) has beemxtendedso as to model, and thereby explain the datsoftware agent is
created basednothe improved LIDANncorporatinghe extended SMSvhich allowed the

replication of the empirical data concerning motor priming

Structure of this work

The rest of this dissertation is organized as follows: Chapter 2 introduces the context of
our work and the LIDAVodel, especially its action part. Chapter 3 presents a review regarding a
set of cognitive architectures that have implemented the actiontexeprocess. The
fundamental concept of tf&nsoryMotor System (SMS) of LIDAamodel of action execution
for a systems level cognitive architecture, is introduced in Chapter 4. | introduce the foodels
estimation and learning of action executiosing the SMS in LIDA, separately in Chapter 5 and
6. In Chapter 7| describe the modaeif priming of action execution. Chapter 8 discusses the

conclusionsand outlines directions for future research.
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2. Background and Context

We are working orcognitive modeling of human mental processes and relevant
behaviors. This area of computer science also has interdisciplinary ramifications, including
implications for psychology, neuroscience, cognitive science, and others.

The simulation of realvorld human behavior provides an opportunity to create robots
that mimic different classes of movement, as well as the relationship between human movement
and the physical world. Physics offers rich empirical studies regarding these motions. The
simulation of thhuman mind, modeling the various internal processes and representations of
human cognition, naturally directs us to the field of psychology. An emphasis on the modeling of
human action execution hybridizes two complementary perspectives. From one pant, of
humans execute actions using actuators that produce physical movement of body parts; from
another, the action is an output of human mental activities initiated internally. This leads us to
the field of cognitive neuroscience.

Our approaches resembtese of traditional computer science. We have certain
requirements to satisfy and specific computational problems to resolve; we design and
implement appropriate data structures and algorithms (architectures); we test oufroesults
different levels ad viewpoints as when releasing a software product. However, distinctly, since
the similarity between the subjects of study and their simulations is an important criterion for the
evaluation of a model, we borrow hypotheses from other disciplines regayditegn
requirements, as well as replicate the experiments of such stgthg®ur cognitive models
and compare simulated results to human data as a means of model verification.

Although we neither study nor experiment on humans directly, a cognitivel miithe
human mind more specifically, a computational implementafioprovides many potential

supports for human activities such as education, health care, or entertainmairnilarso
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computational simulations of physical or social phenomenans$teince, meteorological,
cosmological or economic models.
The LIDA Model

The LIDA Model is a systems level cognitive mo@etanklin et al., 2016 It
implements and fleshes out a number of psychological and neuropsychological theories, but is
primarily based on Global Workspace The@waars, 19882002. The model is grounded in the
LIDA cognitive cycle (see Figure 1). The simulated human mind can be viewed as functioning
via a continual, overlapping sequence of these cycles. Each cognitive cycle consists of three
phases: 1) the LIDA agent first sendas €énvironment, recognizes objects, and builds its
understanding of the current situation; 2) by a competitive process, as specified by Global
Workspace TheorgBaars, 198820032, it then decides what portion of the represented situation
should be attended to and broadcasted to the rest of the system; 3) finally, the broadcasted
portion of the situation supplies orimation allowing the agent to choose an appropriate action

to execute, and modulates learning.
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Figure 1 LIDA Cognitive Cycle Diagram
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Figure 1 gives an intuitive feel for the relationship among different modules. These LIDA
modules are intragted below ordered according to the three phases of the LIDA cognitive
cycle: understanding, attention, and action/learning. | describe them in a linear way in order to
make the process more easily understood. But actually, each LIDA module acts indéypenden
and asynchronously with other modules in LIDA. | introduce more about action execution part in
action/learningphase while the details of other modules can be fou(franklin et al., 2016
Understanding phase

The incoming stimuli are sensed by the age
environmentSensory Memory (SM) gets these sensory ddtan(li) and a set of lovievel
features of the stimuli are made out of them. Theseldowl features are passed to Perceptual
Associative Memory (PAM) where hightsvel features, such as objects, events, categories
actions, feelingsetc. are recognized. Thageognized entiismake uphe percept that passes
to the Workspace, where the agetheCusentper cei ved
Situational Model (CSM). The percept serves as a cGpdtalMemory, TransientEpisodic
Memory, andeclarativeMemory, torecallthe remembered contents from these memory
systems that were associated with the elements of the cue.

Structure building codelets build higéavel and more abstract understanding of the
current situation. These codelets are small, special purpogeap®, each of which has some
particular type of structure it is designed to build. The Conscious Contents Queue stores a few
past conscious contents that helps the agent to update its understanding of current situation as

well.
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Attention phase

Attention Codelets aralsospecial purpose programs tla@éeconcermed withcertain
portions of the content maintained in CShd form them into coalitions. The codelets bring
these coalitions inttheGl obal Wor kspace (GW) tatengoo.mpepet e t o
winner of the competition, the most salient coalitioasits content becomthe so-called
contents of the consciousnéBaars, 1988 to which the agent selectively attendghe current
cognitive cycleThe contergof consciousness issued by G\Aébroadcast to the rest of the
system
Action/Learning phase

The broadcastonsciousontens helps (1) agent decide what to do next and (2) for
modulating differenmodes ofearning.

Procedural Memory storeshemesthetemplates of possible actions including their
contexts and expected resy¥escher, 1991 It also stores an activation value that attempts to
measure, for each susbhhemethe likelihood that an action taken within its context produces
the expected result. Tkehemesvhose contexts and results match the broadcast conscious
content well are instantiated into behaviors, which are the instances of the temjfatbsir
variables instantiated to the current situation.

Thesebehaviors are passed to the Action SeledfMdaes, 1988 where a single
behavior, the selected action in LID&selected to execute.

Ideas concerning action execution have been briefly proposed inDAeModel,
mainly expressed by two modules: Sensory Motor Memory and Motor Plan Execution depicted
in the bottom left corner of Figure 1. However, the complete concept of action execution and its

computational implementation have not yet been specifiedviivie on this here.
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The original Sensory Motor Memory and Motor Plan Execution modules have been
implemented by the SMS in detail (See Chapter 4). Two of other LIDA modules, Action
Selection and Sensory Memory, provide relevant informétiarselected behar and the
sensory data through a dorsal stream chaiaeinputs to the SMS. The selected behavior is a
data structure resulting from the preceding Action Selection in the LIDA Model. It is comprised
of three components: a context, an adiamd aresult. With some reliability, the result is
expected to occur when the action is taken in its context. The SMS sends out motor commands to
agentdéds actuators to generate its output in t
Different types of learning are modeled in LIDA, in &ig 1 the learnirgare illustrated
using the channel arrows starting from Global Workspace (GW) to different modules. The global
broadcast of the contents of the consciousness assists the learning. Particularly in our work, we
have implementedensory mair learning which isrepresented by the channel fr@WV to the

Sensory Motor Memory (See Chapter 6).

YIn LIDA, the dorsal stream channel directly passes sensdioymation, some interpretation of
sensorydatg from the sensory memory to the action execution process.

’l'n this contekxonothef eémrs mt éaa component of a be
usage, such as in the phrase fiaction executiono.
while fiaction of a behavioro rerfers to a particul
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3. The Action Execution Process Implemented in Different Cognitive Architectures: A
Review

Introduction

This review focuses on cognitive ohes of action, or more specifically, of the action
execution process, as implementedeneralpopular cognitive architectures. We examine the
representations and procedures inside the action execution process, as well as the cooperation
between action execution and other kigbel cognitive modules. We finally conclude with
some general observatis regarding the nature of action execution. This work has been
published in 2014Dong & Franklir).

Cognitive architectures are designed to be the basis for creating general, autonomous
agents that can solve a wide variety of problems using a wide range of knowledge; theey defin
and organizéthe primitive computational structures that store, retrieve, and process knawledge
to pursue t @.daird @ Hete sveexpmiaelsich cognitive models of actions,
and especially of the action execution process as it is implemented in different cognitive
architectures. The emphasis is placed on three questions: 1) What are the comprehensive
representations and functional pedares of action execution? 2) How do action
preparation/selection and action execution cooperate? and 3) What kind of specific designs are
useful for generati ng a ogbalsamnchexecutehappropriatelytusinga c hi e
actuators in therevironment?

The cognitive model of action in different cognitive architectures might be implemented
variously because of the model 6s tasks. For e
match could be an abstract move, such as moving a piesgoaee to the left, or the lelevel
actions i mplemented in a simulated tennis mat

muscles (actuators) during the game. A chess
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is not affected by thenvironmental situatiah except the abstract representation of the position
of the pieced nor does it require the maintenance of specifications for its actuators. On the other
hand, actions in tennis are gengoaaasevellanthe t he
present environmental situation. Tennis, unlike chess, requires an action execution process that
enables the agent to act in an uncertain and dynamic envirdnifleataction execution process
is the focus of this review.
Even for thecognitive architectures in which action execution has been considered, the
architecture may or may not completely implement it as a standard component. Some
architectures implement a complete action execution process, such & @CAnderson,
2007 and LIDA (Franklin et al., 2014 other architectures only transform prepared/selected
high-level actions into general Iolevel actions, and leave the action execution process to a
domainrdependent external program, such as $bdraird, 2012 We review both types of
architecturesdé action execution models bel ow.
The next section describes a set of popular cognitive architectures with models for action
execution. For each of these architectures, we first give a brief introduction and overview of the
architectureds maj or ¢ omp o0 n especifc implantentdtienmfc t i on s
action execution; specifically, we may compare its action execution part to that of THeA.
following section concludes with a comparative summary of the action execution processes

reviewedherein

! A task environment is uncertain if 1) the agent sensors do not detect all aspects that are relevant to the
choice of action, or 2) the next state is unable to be determined by the current state and the executed
action; and the environment is dynanfié ican change while an agent is deliberaijRgssell & Norvig,

2009.
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Action Execution Processesf Cognitive Architectures

In this section, we revietheaction executiomprocesses different cognitive
architecturesn the ensuing subsections. In each of the subsections, after an introduction to the
architecture, we examine the representatamsprocedures inside the action execution process,
as well as the cooperation between action execution and othdeh&ltognitive modules.
4D/RCS

The review content of 4D/RCS mentioned here is mainly in response to a paper by Albus
and Barberg2005. We cite the paper for this whole subsection, unless other explicit citations or
guotations are mentioned.

Realttime Control System (RCS) is a cognitive architeetdesigned to enable multiple
levels of intelligent behaviors, achieved by a mialjiered hierarchy of sensemteractive
intelligent control process nodes. The most recent version, 4D/RCS, embed3 #pprbach
(Dickmanns, 19922000, a machine vision technology, within the RCS control architecture.

Each node in the architecture contains sensory processing (SP), world modeling (WM),
value judgment (VJ), behavior generation (BG), and a knowledge databas@\(KIDy &
Barbera, 200b A SP process receives input from sensors; SP and WM processes cooperate to
filter, attribute, and classify the input data as a perception prot#gdgrocesses create and
update the recognized states of the world in the KD; a BG process accepts tasks and plans, and
executes behaviors to accomplish those tasks; a VJ process evaluates the results of tentative
plans, and saves evaluation results inkBe

Process nodes act hierarchically. The BG processes form a command tree: each input task
is decomposed into a plan consisting of subtasks for subordinate BG processes. Information

maintained in the KD is shared between WM processes in nodes above,delmt the same
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level within the same sub tree. Sensory data flow up the SP hierarchy typically forms a graph;
and these data are populated by the WM in the KD at each level.

A WM predicts what will change in the world as the result of an action, aatiwith
stay the same, giving its solution to the frame problem. Specifically, the location and direction of
motion of objects in the world are represented in an image or map, and a simple comparison
between one frame and the next distinguishes what chérage what does not in a dynamic
environment.

A BG process receives tasks from a supervising BG process as input. The receiving BG
process has a planner that decomposes each task into a set of coordinated plans for subordinate
BG processes. During thigpod, tentative plans are proposed by the BG planner; the VJ
evaluates the probable results of those plans as predicted by the WM; and a plan selector in the
BG planner wil |l choose the plan with the grea
subordinag there is an executor that issues commands, monitors progress, and compensates for
errors between desired plans and observed results. The Executors use feedback to react quickly
to emergency conditions with reflexive actions. Predictive capabilitiesqad\y the WM may
enable the executors to generategnap t i v e (Blieub & Baibera, 2006

In each node, the content of the selected current planvedrfrom the planner into an
Afexecutor plan buffero that initiates and gui
interface between the planner and executor processes, and also the interface between deliberative
and reactive processes.

Atthetopl# el of the architecture, the task is
established typically by a human operator outside of the agent. At each successive level in the

hierarchy, tasks from the level above are decomposed into subtasks that are sent to the
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subordinate levels below. Finally at the bottom level, decomposed task commands are sent to
actuators to generate movements.

In each node of 4D/RCS, the execution is driven by a selected plan so as to reflect the
requirements of tomapfasigoa thdt i8 acty®tathe sensoryanpub o t t
Thus, at the lower levels of the architecture, the process nodes generatieepbadl reactive
behaviors, while at the higher levels, the process nodes enable detiioy. 4D/RCS has
implemented bit the action preparation/selection and the action execution processes
hierarchcally, it all ows a more gradual, and thus s mo
motivations, represented by a {gvel task, to lowlevel actions that are directly applisgthe
agentdéds actuators.

ACT-R

Adaptive Control of ThoughRational (ACTFR) is a cognitive architecture, a theory for
simulating and understanding human cognition based on numerous facts derived from
psychological experimen{Budiu, 2013. ACT-R consists of two types of modules: memory
modules and perceptualotor modules. Action preparation (selection) and action execution are
implemented in ACIRbyushng t hese two types of modul es sep
achieved by choosing a proper action in memory modules, and the action is appropriately
executed in the motor modules.

There are two types of memory modules in ARTdeclarative memory amqutoduction
memory. Declarative memory, represented in structures called chunks, maintains knowledge that
people are aware of, and can share with others through a set of buffers. Procedural memory,
encoded in production rules, represents knowledge oudbitieir awareness that is expressed in

their behavior ruleACT-R 6.0 Tutorial, 2012 A production rule is a conditieaction pair.
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The condition specifies a pattern of chunks t
production to apply; a production fires if its condition matcheschunks in the buffers. The

action specifies some actions, all of which are to be taken when the productigadiief 6.0

Tutorial, 2013. A [ A] cr i t tRasaohe inovhichlthe buffers hadldd@epresentations
determined by the external world and internal modules, patterns in théses lawé recognized,

a production fires, and t he IQJuR Andersenebal.,e t hen
2009).

ACT-R O s p e-1mot@ madules provide an elementary cognitive layer by which to
couple the environment with the hifgrvel cognition layer, including declarative memory and
production memoryByrne & Anderson, 2001 Perceptuamotor modules embedded in AR
6.0 was heavily infl uenced(199§. Their reaoraddferemae s Me y e
that, only one production rule fires each time in AR;Twhile EPIC allows multiple rules fire, a
parallel cognitive processing.

The motor module i nACR 6. 0 i s developed based on EPI
(module). It is designed for modeling a simulated hand to operate a virtual keyboard and mouse
(Bothellbnd). The motor modul e fAreceives commands fr
movement style (e.g., PUNCH, as in punch a key) and the parameters necessary to execute that
movement (e.g., LEFT (Bhreed dndersord 200LNIBeEndverndntrisg e r ) O
generated through three phases: preparation, initiation, and exeB8giow.we describe each
phase in turn.

I n the preparation phase, the motor modul e
actual movement; the features include the mov

the movementofi punch the key bel ow t heofPUNCH,LEFhndex f i
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and INDEX are involved in the preparati¢Byrne & Anderson, 2001 The amount of time that
preparation takes dependstbe number of features that need to be pre@athd more that
need to be prepared, the longer it takes.
The motor module maintains a history of the last set of features that it prepared. The
actual number of features that need to be prepared dependsvopbimgs: the complexity of
the movement to be made and the difference between that movement and the previous
movement. On one end of the scale, the motor module is simply repeating the previous
movement, then all the relevant features will alreadyrbpgred and do not require preparation.
On the other end, a request could specify a movement that requires the preparation of full
featureswhich have not been made in previous movements.
By default, the first 50ms after the preparation is movementtioiigBothell, n.d).
After that, the movement may be executed if the motor module is not already executing a
movemen{Byrne & Anderson, 2001 A | f  atis cuorentypeeng executed, then the
newly prepared movement will be queued and will not be executed until the current movement
and all ot her movement s ([Byme&Angerspry200le have bee
INACT-R, #A[t] he world with which a model 1inte
defines the operations which the perceptual modules can use for gathering information and the
operators available to the mot(BothelmaddThé es f or m
executed movement sent out from the AR™otor module is passed to the related device
module in order to carry out the execution in the real world.
There is typically no direct commuation between the perceptual and motor modules in
ACT-R. There is only very limited direct connectivity between perceptual and motor mbdules

The data passed to the motor module always comes from thé&ehajldeclarative or production

2 Spatial information in particular is communicated directly.
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memory. Thisis | most the only significant conceptual
ACT-R0s motor modul e.
BECCA

This subsection heavily relies on a paper by Rof2@t2. We cite it for the whole
subsection unless we explicitly cite or quote otherwise.

A Brain-Emulating Cognition and Control Architecture (BECCA) is developed to address
the problem of natural world interaction (NWI). NWI is the set of all tasks by which an agent
pursues its goal in an unstructured physical environment. BECCA consists of an mutomat
feature creator and a mod®sed reinforcement learner to capture structure in the envirgnment
and to maximize rewards respectively. BECCA issues action commands to a world, module
receives back a reward signal and observations in the formsirganput and basic features.
The world module is not the part of the standard BECCA architecture. Rather, it maintains
simulations of the world, agent embodiment, actuators, and so on (see details later in this
section).

The feature creator identifiestgerns in the input. Sensory inputs are formed into groups
based on how often they are-active, and patterns within each group are identified as features
and added to a feature space. The creator also maps the input into that feature space at each time
step; the strongest feature voted by the projected input is activated. Features can be built
hierarchically into highelevel features. Lowevel features progressively activate higliel
features, and the final set of activated features is passed &rtferaement learner as a feature

simulation.
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In the reinforcement learner, a feature activity vector maintains the recent incoming
feature simulations. A salience filter selects a single feature from the vector for aftentibn
the working memory maiatns a brief history of attended features.

The reinforcement learner forms a model of the world and uses that model to select
actions that wild/l maxi mi ze the amoundgpacef r ewa
transitions in the form of causdfect pairs, each with an associated count and reward value. At
each time step, the previous working memory is compared to the list of causes and the attended
feature is compared to the list of effects. If a similar pair exists within the model, its€ount
incremented, and its reward valwue is adjusted
sufficiently similar pair, the previous working memory and attended feature are added as a new
causee f f e c (Rohperm 20tR2dn this way, the modelis formedandp d at ed. @A The c o
associated with each transition establishes its frequency of observation, and the reward value
represents the expected rewar(Rohrars261gci at ed wi t

In the feature space, a transition represents a path setragnvhen linked to other
segments, may take a BECCA agent to its desired state from the current one. To predict the
likely effect of a transition, the agent ranks the expected transition by 1) the matching strength
between the current state and theseaof the transition, and 2) the count of the transition, and
selects the transition with the highest rank.

Many effects are conditional on the actions selected by the agent. If an expected
transition has both high similarity to the current state andthighwar d, and i nvol ves

action on it, that action will be selected and executed.

*)From the viewpoint of LIDA, this selection acts
most salient feature is the content of consciousness.
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There are two types of action selection in BECCA, deliberative and reactive. Their major
difference regards the content of the current state that is used in thetipneali transitions and
in the action selection. In deliberative action selection, only the working memory (the recently
attended features) is used to seed predictions and action selections from the model, while the
entire feature activity vector is usgdreactive action selection. The final selected action results
from a nonlinear sum of the actions selected by the two selection modes. The deliberative action
is also fed back to the working memor yhe so t
previous working memory content when the model is trained on the following time step.

A world module maintains 1) the environmérthe simulation of the real world with
which humans interact; 2) the physical embodiment of the &gémetvirtual actuatorand
sensors of the hardware and the mechanisms that couple them; 3) preprocessing between
sensors/actuators and the BECCA agent; and 4) a reward calculator providing reward value to
the model of reinforcement learfieFrom the viewpoint of action, a pregessing step occurs
between the selected action and the actuators; this step may include the incorporation of
coordinated multactuator motions, fixed motion primitives, and heuristic goal pursuit
subroutines.

An action processing mechanism unique to BRGJs its twastep action selection
process: 1) Certain transitions, cae$tect pairs, are predicted (selected), and 2) an action is
selected from the predicted transitions if the effect of the transition with the highest expectation
relies on that actim These three components, cause, action, and effect, may be represented and
organized differently in other architectar&or example, in many other architectures such as

ACT-R and Soar (seés sectiorbelow), a production rule is used to represent adt@mn-action

“ A BECCA agent is not autonomous besa its action decision is not driven by an agenda or
motivation inside but by artificial rewards created outside of the agent.
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pair, corresponding to cause and action in BECCA; while in LIDA, all of three components are
encapsulated together: a data structure called a scheme includes context, action, and result,
corresponding to BECCAOaeactivelause, action, and e

Another issue is that the action execution process is outside the standard BECCA
architecture. The commands for controlling actuators are not generated by the BECCA agent, but
rather by the preprocessing of a world module. Also, the world modailetains the domain
knowledge; this allows the BECCA agent to remain unchanged between many different domains
(tasks). A similar strategy is implemented in
perform the action on actuators but an exdepnogram is always necessary to handle the final
execution (performance). In contrast, some architectures do involve the action execution process
in their architecture, such as AdX and LIDA.
CERA-CRANIUM

We cite a papefArrabales, Ledezma, & 8ahis, 2009for this entire subsection of
CERA-CRANIUM. Other citations or quotations will be explicitly noted in the text.

The Conscious and Emotional Reasoning Architecture (CERA) is a cognitive architecture
structured in layers, providing a flexidi@mework with which to integrate different cognitive
models of consciousness. CERA offers a basic hypothesis that conscious contents emerge as a
result of competition and collaboration between specialized processors (functions). The
Cognitive Robotics Achitecture Neurologically Inspired Underlying Manager (CRANIUM)
provides services through which CERA can execute thousands of asynchronous but coordinated
concurrent processes.

CERA is structured in four layers, which are as follows:
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1) The sensorymotor serices layer comprises a set of communication services that
provide a uniform access interface for the ag

2) The physical layer is responsible for the {@vel representations and
preparations of t hators.AAgiatortc@amsnansiseare dirally segukateddat tiaisc t
level.

3) The missiorspecific layer maintains complex perceptions and behaviors that are
combined from and decomposed to the single sefmeotgr content. Complex behaviors
represent t hsonangssionttypically mvolves sepenal goals.

4) The core layer includes a set of modules that perform higher cognitive functions.
CERA is designed to allow customized core modules, such as attention, preconscious
management, memory management, andcselfdination.

A CRANIUM workspace implements a set of specialized processors and a shared access
working memory for the processors. Each of these processors is designed to perform a specific
function, cooperating and competing with other functions. A CER#&lgas two hierarchically
arranged CRANIUM workspaces. The ldewel workspace is located in the CERA physical
layer and the higlevel is located in the CERA mission specific layer. Based on the two
CRANIUM workspaces, the perception flows are organizattomup in packages called single
percepts, complex percepts, and mission percepts. Meanwhile in the same workspaces, a top
down action flow includes mission behaviors, simple behaviors, and single actions; behaviors
are iteratively decomposed until @ggience of atomic actions is obtained.

The core | ayerds operations are problem do

by the pr obl e-qgdals, instead oé mississpesific goade doraing from lower

>The term fAactiond is an abst r-gindtconaemsorgarizedin it r
different levels, includig mission behaviors, simple behaviors, and single actions.
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layers. Metagoals shape the overallstdting behaviors. At any given time, a number of possible
behaviors are generated in the CRANIUM workspaces; however, only those behaviors that are
directed to the same locations as the representedgoaks are likely to be selected and finally
executed

There are three types of processors related to the action process implemented in the
CRANIUM workspaces.

1) Action planners transform the input behavior into the corresponding sequence of
atomic actions that are submitted for eventual execution, soasfoecve t he behavi or
missions.

2) Action preprocessors prepare the atomic actions generated from action planners.
Action preprocessors buildspal | ed fisi ngl e action constructso
data for actions. hH Risominxludedircoedprtoiadapt actionntstoer y d at
current posit i(Ambalesfetat, BO§9 act uat or so

3) Reactive processors are typically located in the CERA physical layer. They
provide a quick response to stimuli that are considered harmful or highly tathiesithe agent.

These processors build simple behaviors to diminish or prevent negative consequences when
unsafe or undesired situations are detected, without the participation of upper cognitive
processes.

In summary, the CERARANIUM action process gyports both action selectiérnthe
selection between behaviors driven by the domain independengoat@d and the action
executio® the decomposition from a behavior to a sequence of atomic actions, implemented by

the action planners and the final execufoeparation in the physical layer. CEFORANIUM

40



also establishes the interface between the agent and its environment in thers@tsory
services layer, providing the agent with the necessary environmental specifications.
CLARION

CLARION stands for Conngionist Learning with Adaptive Rule Induction Glive.
The purpose of this architecture is to capture all the essential cognitive processes within an
individual cognitive agentSun, 20032006. CLARION consists of a number of systems,
including the actiorcentered subsystem (the ACS), the-aationcentered subsystem (the
NACS), the motivational subsystem (the MS), and the metacognitive subsystem (the MCS). The
ACS implements the action decision making of an individual cagn&gen{Sun, 2003 The
MS motivates an agent to choatseactionsby means othe rewards or gains whitheagent
seekgo maximize. The MS influences the working of the ACS by providing the context in
which the goal and the rewards of the ACS aréSen, 2008

The ACS consists of two levels of representation: the top level for explicit and the bottom
level for implicit knowledge. The implicit knowtige generally does not have associated
semantic labels, and is less accessible. Accessibility refers to the direct and immediate
availability of mental content to the major operations that act on it. The bottom level is a direct
mapping from perceptual iofmation to actions, implemented in backpropagation neural
network$ involving distributed representations, whose representational units in the hidden layer
are capable of accomplishing tasks, but are generally not individually mear{Bigfi, 12003
Furthermorethe ACS might be composed of multiple instancethefoackpropaden neural
network, and a selection process is propdsezhoosene ofthem In contrast, the explicit

knowledge is more accessible, manipulable, and has conceptual m&mng0o0. At the top

®Learning of implicit knowledge (the backpropagat
learning setting, there is no need for external teachers providing desired input/outputgsiappis
(implicit) Il earning met(Bud®lOfhay be cognitively jus
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level, a number of explicit action rules are stored, which are usually in the following form:
currentstateconditionA action(Sun, 2003 An agent can select an action in a given state by
choosing an applicable rul&he output of a rule is an action recommendation, which is similar
to the output from the bottom ley@un, 2003

The two | evels i mplemented in CLARI ONOGs
makes action decisioms parallelbased on the current state. The action sent out from both top
and bottom levels are all performabléne final output action of the ACS is a combination of the
output actions from the top and bottom levels. On the other hand, CLARION also models an
interaction between the top and bottom levels, as well as between explicit and implicit
knowledge. The infdustate or the output action to the bottom level is structured using a number

of input or action dimensions; each of the dimensions has a number of possible values. At

CLARI ONOGs top |l evel, an action r ullegednedec ond i

which is connected to all the specified dimensional values of the inputs or actions at the bottom
level (Sun, 2003

The overall algorithm of CLARI ONOGs acti

goes from perception to actions, and ties them together through the top and bottom levels of the

AC

ti

on

ACS6s cognitive processes as ¢éwolld tbetveolevelsOb s er v

of processes within the ACS (implicit and explicit) make their separate decisions in accordance

with their own knowledge, and their outcomes

of an action is made and the actionisthea r f o (Sume2003 This decision making

mechanism covers both actioglection (preparation) and action execution. The top level of the

mechani sm provides the agentds internal goal

reattime environmental informatiomn contrastin LIDA, we hypothesize that the two facefs
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action, understandable and executable, cannot coexist in one presentation of action: action
selection provides explicit desires of the actemdthenaction execution implicitly perform it.
Both explicit and implicit representations of action actdinly but not in parallel, and neither of

them can be both understandable and executable.

Note that the specifics of the agentodos act
output actions (motor commands). This means the output performable a¢t@DARION are
independent of the motors of the robotds actu
commands mentioned in the introduction.

Additionally, |l earning has been applied in
learning of implcit knowledge at the bottom level; 2) bottam learning, or learning explicit
knowledge at the top level by utilizing implicit knowledge acquired in the bottom level; and 3)
top-down learning, the assimilation at the bottom level of explicit knowledge tihe top level
(which must have previously been established through batftearningSun, 2003
EPIC

This review of EPIC mainly relies on an EPIC overview pgferas & Meyer, 199Y.

We cite the paper for this entire subsection, unless explicit citations or quotations are claimed in
the text.

Executive Proceskteractive Control (EPIC) is a cognitive architecture created for
modeling humanask performance. EPIC has three processing modules: 1) sensory processors,

2) motor processors, and 3) a cognitive processor that represents a general procedure as a set of
production rules to perform a complex multimodal task. During the execution ofedurre,
EPIC specifies both the productioanle programming for the cognitive processor as well as the

relevant perceptual and motor processing parameters.
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Specifically, there are visual and auditory processors that accept multimodal stimuli as
perceptualnput. This input is stored in the corresponding working memory located in the
cognitive processor.

The motor processors produce a variety of simulated movements for the hands, eyes, and
vocal organs. From t he ¢ ognisentte@morpmoeessersor , a
that consists of the movement type (name) and certain parameters.

There are two steps for a complete movement: a preparation and an execution. In the
preparation, the motor processor transforms the movement type (name) inbb meetment
features and generates them. AThe time to gen
can be reused from the previous movements (repeated movements can be initiated sooner), and
how many featur es hav dKiebag &Meyeg @)eTheenseing i n adv a
execution step begins with an initiation phase, followed by the actual physigament. In
addition to reusing the features remaining from previously executed movements, the movement
features may be prepared in advance. dlf the
cognitive processor can command the motor processwepare the movement in advance by
generating all of the required(Keraa&Meyees and s
1997.

Rather than the voluntary movements produced by various motor processors, as
mentioned above, the oculomotor processor may produce the involuntary (reflexive) eye

movements, either saccades or small smooth adjustments in regptresgisual situation.

In the cognitive processor, there is a set of production rules that specify which actions are
performed in certain situations to accomplish a task. The format for a rule isnarak> IF

<condition> THEN <action>. The rule conidm will test the contents of the production system
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working memory. The rule action will then add or remove information from the working
memory, or send a command to the motor processors. Motor working memory stores information
about the current state dfet motor processors.

The cognitive processor operates cyclically. During each cycle, the contents of working
memory are first updated with the perceptual
modifications; then the contents of the production systemnking memory are updated based on
the rules that fire, and the action commands of the firing rules are sent to the motor processors. A
unique feature of EPIC is that it will fire all rules in which conditions match the contents of
working memoryand will execute all of the corresponding actions; in other words, the EPIC
cognitive processor allows parallel cognitive processing.

The EPIC model builder should provide 1) the task environment, either physical or
simulated, which includes the characteristiceatévant objects external to an EPIC agent, 2) a
set of tasks which specify the environmental events, 3)gaskific sensory data encodings
(representations), and 4) the task procedures represented as preduetion

In summary, regarding the actioropess in EPIC, action selection and action execution
have been implemented by production rules firing in the cognitive processor, and movement
preparation and execution in the motor processors separately.

GLAIR

We cite a papefShapiro & Bona, 200)or this subsection, unless other citations or
guotations are explicitly mentioned in the text.

Grounded Layered Architecture with Integrateca&ming (GLAIR) is a mukiayered

cognitive architecture for embodied agents. In GLAIR, the highest layer is the Knowledge Layer

(KL), which contains the agentdos beliefs, and
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layer is the Perceptudotor Layer (PML), which grounds the KL symbols in perceptual
structures and primitive actions. The lowest layer is the SeAstrator Layer (SAL), which
contains the controllers of the sensors and actuators of the hardware or software agent.

The KL contains théeliefs of the agent; with respect to action, it includes 1) plans for
carrying out complex acts and for achieving goals, 2) beliefs about the preconditions and effects
of acts, and 3) policies about when, and under what circumstances, acts shouldrbeegerf

The PML is responsible for the communication between the KL and the SAL by three
top-down sub layers: the PMLa, the PMLb, and the PMLc. The PMLa grounds the KL symbols,
providing primitive actions; the PMLc abstracts the sensors and actuatorasicdbhavioral
repertoire of the robot. The PMLD translates and communicates between the PMLa and the
PMLc.

GLAIR agents execute a seasasonact cycle. The original focus of the GLAIR design
is on reasoning, but not problem solving or gaethievemensuch as ACTR. Its basic driver is
based on reasoning: either thinking about some perceptual input, or answering some question. If
the input (typically a natural language utterance) is a statement or a question, the GLAIR agent
will output the propositiof the statement or the answer to the question respectively. A later
added acting component allows a GLAIR agent to obey a command, to perform an act and to
achieve a goal. When the input is a command, the agent will perform the indicated act,
implementingan action process that is the focus of this review.

An act consists of an action and one or mo
(Bill) denotes the act of finding Bill (by looking around in a room for him), composed of the
action find and the gbe c t (SlBapiro & Bona, 2010 Acts may be classified as either

external, mental, or control. External acts affect the outside worldaMentact s af f ect t
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beliefs and policies. Control acts are the control structures used to support ground computational
processes such as inference operations so as to maintain the GLAIR acting system.

GLAIR acts may also be classified as primitidefined, or composite. Primitive acts are
the basic acts predefined in the PMLa. Composite acts consist of primitive acts. A defined act is
the abstracted identifier of a plan; 1 f a GLA
a plan and péorms it. Such a plan is an act, which can be either a primitive, composite, or
defined. It i s assumed that a plan is fAcl oser
may have different plans depending on circumstances. The use of condilamsahas allowed
a GLAIR agent to select among alternative procedures to perform.

The procedure for performing an act consists of several steps:

1) To attempt to achieve the preconditions of the act and, if it is a defined act, to
prepare a set of candidatiaps that can be used to perform the act.

2) If the act is a defined act, only its most suitable plan is tried, after which the agent
will automatically consider it successful.

3) Effects of the act are derived before the act is performed; and after thatetie ag
will consider all the effects of the act to hold.

In GLAIR, the act is represented in the same formalism as other declarative knowledge
such as the agentodés beliefs. However, the dec
the KL and the PMLa lgers separately. In this way, the declarative and procedure knowledge
are represented with the same formalism but operated in different levels.

The PMLa layer grounds the KL by providing primitive actions, transforming-leigsl
actions to lowlevel. Although the actions maintained in PMLa are primitive, they are

independent of the I mplementation of the agen
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abstracts the actuatdrsf the robot into the basic behavioral repertoire of the robot body. The
primitive actions in the PMLa are translated to these basic behavioral repértbedsasic
execution units of GLAIR through PMLb.

Two stepccurduring the process of action execution: 1) actions are initially selected in
the KL driven by reasoning results amanslated into their primitive format in the PMLa layer
and 2) the primitive actions are translated to acted@pendent basic behavioral repertoires in
PMLc through PMLD, and thathosebasic units are sent to SAL for execution.

ICARUS

We cite a papeiPat Langley & Choi, 2006or this entire subsection. Other citations or
guotations will be notated explicitly.

ICARUS is a cognitive architecture for physical agents that has been irdthbgc
results from cognitive psychology. | CARUSOG s
operates by matching losigrm conceptual structures against stemnn perceptual data and
beliefs. Based on the inference, ICARUS operates processes forlgoabeeand skill
execution.

In order to perceive the states of the external environment, ICARUS incorporates a
perceptual buffer (sheterm memory) that describes aspects of the environment. The element
stored in this memory responds to a particular object, and characterizesetlee bl s
specifications at the current time step. ICARUS also includes a conceptual memory, which
contains longerm structures that are the classifications of the environmental state. During each
cycle of conceptual inference, objects are perceived firstin® perceptual buffer, where they

begin to match against loigrm conceptual classifications. The system updates its belief

"In the original pape(Shapiro & Bona, 201 the authors use thé e r effectéir® instead of
flactuatoré as we ddere.

48



memory based on the results of this matching. The elements in the belief memory describe
relations among objects. ICARUS repetis inference process, updating its beliefs about the
environment over time.

In order to take action in the environment, ICARUS has a performance mechanism that
concerns goals the agent wants to achieve, skills the agent can execute to reach them, and
intentions about which skills to pursue.

Specifically, ICARUS includes a goal memory that contains alidiedd g e nt 0 s
objectives. The goal is a set of concept instances that the agent wants to achieve, and the goal
memory takes the same form as belief mgmAn agent needs to select only one goal at a time
among multiple elements in goal memory. On each time, it chooses the goal with the highest
priority that is not yet achieved.

ICARUS has a longerm skill memory that contains skills it can execute & th
environment and use to accomplish goals. Each skill has a head and a body. The head states the
skill 6s objective, and the body specifies the
Multiple skills may have the same head; they provide diffasgys to achieve the same goal
under different conditions. Once the agent has chosen a goal, it selects a skill to achieve the goal
based on a matching between the skildl bodyods
data and beliefs

The skillsare organized hierarchicall§iPrimitive skillsd refersto actions that the agent
can execute directly in the environment, while qpoimitive skills aregoals/sukgoals that the
agent might seek to achieRrimitive skills correspond to thexecutable mir commands

mentionedn the introductionDuring the execution of a neprimitive skill, the agent must find

®In LIDA, a similar matching occurs in the process of recruiting schemes. Schemes are selected based
on a matching between the agentdés conscious con
schemeds context and result contents.
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a path downward from its goal to one or more terminal primitive skills in the hierarchy. Once the
agent has selected a skill path for execuitonyokes the actions referred to the primitive skill
or skills in the path.

If the applicable skill is not found, an impasse appears, and the agent invokes its problem
solver for achieving the goal. The agent decomposes the goal intmalghiterativef until find
the skills for achieving them. The skills applicable for all-gohls are finally selected and then
executed to achieve the goal. A new skill is learned for the goal by structuring the applicable
skills for those sulgoals. The similar impasgesolving mechanism has been implemented in
Soar gee its section belgvas well.

LIDA

For historical reasons LIDA stands for Learning Intelligent Distribution Agent. The
LIDA Model (Franklin et al., 201Jis a conceptual, systertessel model of human mental
processes, used to develop biologicatigpired intelligent software agents and robots. It
implements and fleshes out a number of psychological and neuropsychological theories, but is
primarily based on Global Workspace The(@®gaars, 19832002.

The LIDA Model is grounded in the LIDA cognitive cycle. Each cognitive cycle consists
of three phases: 1) the LIDA agent first senses the environment, recognizes objects, and builds
its understanding of the current situation; 2) by a competitive process, as specified by Global
Workspace TheorgBaars, 1988 it then decides what portion of the represented situation should
be attended to, and broadcast to the rest of the system; 3),fthallyroadcast portion of the
situation supplies information allowing the agent to choose an appropriate action to execute, and
modulates learnin@fFranklin et al., 2014 The simulated human mind can be viewed as

functioning via a continual, overlapping seqguoe of these cycles.
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The dual aspects of action are represented in the LIDA Model as the distinct processes of
action selection and action execution. Specifically, the sensory data retrieved in LIDA influences
the action pr oces s elasénsotywaia isifikeed teroughdthe At one | e
understanding and attention phases, and then helps recruit appropriate actions in the action
selection process; the selected result is used to initiate certain processes operating in the
concomitant action executigurocess, ultimately generating executable-lewel actions. At the
other level, the sensory data is sent through a dorsal stream channel directly to the action
execution process for assisting the execui®ee Figure 1)

The concept of scheme has beenrbr owed t o I mpl ement LI DAOGsS ¢
scheme is a data structure representingptbeedualk n owl edge stored in LI D/
Memory. It iscomposeaf three components: a context, an actiamd a result. With some
reliability, the resulis expected to occur when the action is taken initscaritext L1 DAG s
action selection process, one or more schemes are recruited based on the most salient current
situationAndt hen, the schemesdéd context and result c
informationfrom the current situation, so that the recruited schemes are instantiated into
behaviors. A behavior has a data structure similar to a scheme, but the components of context
and result have been instantiated with concrete values. Finallyasitweis selected based on
the agentdéds motivation and its understanding

The process of action execution has been recently added to LIDA, modeled by the
Sensory Motor System (SM8)ong & Franklin, 2014 Two other LIDA modules, Action
Selection and Sensory Memory, provide relevant informétiarselected behavior and the

sensory data through a dorsal stream channel, respettisehputs to the SMS. The SMS sends

°Inthiscontextt he term fAactiond refers to a component (
usage, such as in the pdbcuneeste whea cutsieo nfi aecxt e countoi 0inno .t
whil e fiaction of a schemeodo sceemers to a particul ar
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outmotorc o mmands to an agentdds actuators to execu
Within the SMS, three data structure types have been prapdaksedotor command (MC), the

motor plan (MP), and thenotor plantemplate (MPT9 and three types of processesédaeen

modeled: online control, specification, and MPT selection.

A motor command (MC) is applied to an agen
components: a motor name, and a command value. The motor name indicates which motor of an
actuator the MC specifitlg controls, while the command value of a MC encodes the extent of
the command applied to the motor.

An MP acts like a MC generator that generates MCs based on the sensory data
transmitted viahe dorsal stream. An MP is implemented based on the pria@ptbe
subsumption architectu(®rooks, 199}, a reactive structure. In the subsumption architecture, 1)
the sensory data imked to directly thus determining the selection of motor commands that
drive the actuators; 2) it decompoxteesinga robot
behaviors; and 3) it does not maintain any internal model of the Waatttl is witlout any
explicit representations. The MP generates motor commands as the output of the SMS to the
environment (using actuators), while environmental data directly influence the generation
process through the dorsal stream channel from Sensory Memory.ciobsally occurring
processes are called the online control process of the SMS.

An MPT is an abstract Mernmnemady (SeeseryMotois i n a
Memory in LIDA). It has a set of motor commands (MCs) that are not yet bound with the
command values, whereas after a specification process, the motor commands are bound with

specific values, instantiating the MPT into a concrete MP. Both sensorfyatatthe dorsal

1% Although no central world state is one of the essences of the subsumption architecture, implicit
understanding and expectation of the environment has been built into the architecture by its layered
structure.
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stream and the selected behavior determine the specification pfdoegs& Franklin, 2014p
MPTs and MPs have very similar structures, so they are designed with nearly the same data
structure Their major differences are 1) an MPT is persistently stored in atésngmemory,
whilean MPisshost er m; and created anew each time it
command values have been specified, while those of an MPT have not.

As the SMSO6s initial process, A MPT select
incoming selected behavior before the MPT is specified into a concrete motor plan. MPT
selection chooses one MPT frdhe set of thosassociated with the selected behavior. It
connects action selection to action execution. Currently this selection isndwyithe agent
designel(Dong & Franklin, 2014p

A sensory motor | earning has been i mpl emen
Chapter 6.
Soar

Soar is a cognitive architecture in pursuit of gahartelligent agent§J. Laird, 2008.
AThe design of Soar i s bas ed-orentedbdnhaviorltagnpeot hesi
cast as the selection and application of operators to a state. A state isantepimn of the
current problensolving situation; an operator transforms a state (makes changes to the
representation); and a goal is a desired outcome of the preblerh v i n g (J.&claiideti t y 0
al., 2012.

Soar has separate memories for descriptions of its current situation and-iesrfong
knowl edge. It represents the current -terimtuati o

memory and maintains the sensory data, results of intermediate inferaciree goals, and
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active operatorgl. E. Laird et al., 20)2The longterm knowledge specifies how to respond to
different situaibns in the working memory so as to solve a specific problem.

Al l of Semkndmedge is organized around the functions of operator
selection and operator application, which are organized as a processing cycle as described below
(J. Laird, 2008J. E. Laird et al., 2012

1) Elaboration. Knowledge with which to compute entailments of sieont
memory, creating new descriptions of the current situatianddn affect operator selection and
application indirectly.

2) Operator Proposal. Knowledge with which to propose operators that are
appropriate to the current situation based on features of the situation tested in the condition of the
production rules.

3) Opeator Comparison (Evaluation). Knowledge of how to compare candidate

operators, to create preferences for some proposed operators based on the current situation and

goal.

4) Operator Selection. Knowledge with which to select an operator based on the
comparisos . Alf the preferences are insufficient
Soar automatically creates a substate in whic

impasses and resulting substates provide a mechanism for Soar to delibertiaty aey of the
functions (elaboration, proposal, evaluation, application) that are performed
automatically/ r@dard, P00l y with rules. o0

5) Operator Application. Knowledge of how the actions of an operatqgreafermed

on the environment, to modify the state.
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Four of the above functions require retrieving ldagn knowledge that is relevant to the
current situation: Elaborating, Operator Proposal, Operator Comparison, and Operator
Application. These functiorare driven by the knowledge represented as production(dulEs
Laird et al., 201p A production rule has a set of conditions argkt of actions. The
productionds actions are performed if 1ts con
production fireqJ. E. Lard et al., 2012 The other function, Operator Selection, is performed by
Soar's decision procedure, which is a fixed procedure that makes a decision upon the knowledge
that has been retrievéd. E. Laird et al., 2092

An operator contains preconditions and act
action. The operator action is an output for the agent to its intereatemnal environment,
while actions of a production rule generally either create preferences for operator selection, or
create/remove working memory elemef®sk. Laird et al., 202

When Soar interacts with the environment, it must make use of a mechanism that allow it
to effect changes in that environment; the mechanism provided in Soar is called output functions
(J. E. Laird et al., 2092During the operator application process, Soar productions could
respond to an operator by creating a structure on the dunkud substructure which represents
motor commands for manipulating output. Then, an output function would look for specific
motor command in this output lingnd translate this into the format required by the external
program t hat caotmmtordbE. Bairdehaé, 2002 eimft 63 t he Jxter nal
functions that execute motor commands in the environment esaltles on the output links to
determine when and how (.HEelLyirdsthlo20)2@hisengaesc ut e an
that it isS o a ext@raal program, nats output functions, that specifies how to execute the

action in detail (when and how).

55



I n the case of Soardés output, motor comman
(executed) on the external world, an external prograatwiays necessary to handle the final
Aireal 0 execution (performance) for Soar. Soar
information related to action. This allows it to maintain generality with a clear standard, without
the necessity of cortering every possible domain that the Soar agent might live in. Note the
term Amotor commandso in Soar expresses compl
architectures, such as LIDA, although it is used to represent the final output data in botim cases.
LIDA, motor commands are executable, while in Soar they are not. By saying that motor
commands are fAexecutabled, we mean that these
agent d6ds actuators di raeaderbpproprigendlo t2h) tahree angaeinnt tdas
internal goalanthec ur r ent environmentods dynamics.
Conclusions

We realize that the action execution processes implemented in the cognitive architectures
describechbovehave many similar representations and procedures though theyfesendif
structures. We conclude with some general observations regarding the nature of these
representations and procedures, followed by a summary.
Inside Action Execution

Each cognitive architecture having a representation at an explicit level of knewledg
typically also needs a process that transforms-legél knowledge into motelevel commands;
that is, action execution. For example, a task (sub task) is transformed into task commands in
4D/ RCS, a production r ul eRéardERIC, & belbawior inta dtoonic mo v e m
actions in CERACRANIUM, an act into basic behavioral repertoires (the basic execution units)

in GLAIR, a nonprimitive skill into primitive skills in ICARUS, and a behavior into a sequence
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of motor commands in LIDA. Some othanchitectures, such as BECCA and Soar, prepare the
actions for external programs to finish the action execution. These architectures accomplish only
the initial phase of the action execution process. CLARION has a unique action decision
mechanism in its®o levels of representation. As we have discusdeye this mechanism
covers both action selection (preparation) and action execution (parfognthough its action
performancedoes not maintain the specifics of the actuators within the representations of the
output actions.
The Cooperation between Action Selection and Execution
A goaldirected action resulting from action selection concomitantly initiates the initial
actionexecution process. This process may be implemented in two different ways. One
possibility is to decompose the selected gbedcted action into primitive actions, in which case
the actionb6s data struct urlegeltolewlegel vatidoutal |y br ok
gualitative changes, such as tasks in 4D/RCS, behaviors and atomic actions in CERA
CRANIUM, actions in CLARION, skills in ICARUS, and operators in Soar. The other option is
to map the selected gedirected action to another type of action eggntatiod t he acti onds
data structure has been qualitatively chadg#tht enables the generation of the ensuing low
|l evel actions, such as a productionRandil eds ac
EPIC, a transition mapping to an action in BEG@Ad a behavior mapping to a Motor Plan
Template (MPT) in LIDA. GLAIR combines the natures of these two options: it first
decomposes acts into primitive ones, and then translates them into adapsndent basic

behavioral repertoires.
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Environmental Information for Action Execution

During the action execution process, additional environmental information is usually
supplied to specify and adjust the final command values for execution. For example, in both
ACT-R and EPIC, a preparation phase operatesglthe action execution process to build and
specify a list of fAfeatur es 0g thetndime ofalordetelr es i n
acti on 68 andthevalues 6f itsgpparameters. INCEBRANI UM6s action exe
action preprocessorsquide specific contextual data for preparing atomic actions. In LIDA, the
sensory data sensed through its dorsal stream channel is sent directly to the action execution
process, so that a Motor Plan Template (MPT) is instantiated into a Motor Plan (MP) tha
generates the final motor commands.

This additional information might be directly sensed from the environment through
sensory processes; in this case, a direct communication between the perceptual and motor
modules is implemented to assist the actiocexee i on. For example, in CL
level, perceptual information directly maps to actions, and in LIDA, sensory data may be sent to
the motor system directly through a dorsal stream channel. On the other hand, this environmental
information might cora from highlevel cognitive modules that store the current state of the
environment. For example in AGCR, the data passed to the motor module comes from high
level declarative or production memory.
Summary

Based on the above review, we can identify certaimmon characteristics for action
execution. It provides an elementary cognitive layer by which a cognitive architecture couples
the environment with its higlevel cognitive modules, including action selection. Action

execution f i nantiizoers, asno atgheantt Oist igneéreer at es a cc
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Action execution involves domain specificatiénmcluding environmental specifications and
t hose of t hed sfficem to énsbleaxetutioa o berastuated in the environment.
Howe\er, it does not contain so much abstract knowledge, which is the province -tévegih
cognitive modules.

On the other hand, action execution may vary in concrete implementations, with respect
to its representations, procedures, and the means of coopeviah highlevel cognitive
modules. Also, action execution itself may or may not be considered a standard module of a

cognitive architecture, so that architectures may differ in their degree of completion.
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4. A New Action Execution Module for UDA: The Sensory Motor System

Introduction

|l and Franklin have proposed two facets of
(2014H. Following this hypothesis, the dual aspects of action areseqied in the LIDA Model
as the distinct processes of action selection and action execution. Action selection has been
described in previous wofllranklin et al., 2014 Here we specify the action execution in the
form of the Sensory Motor Sism (SMS), a cognitive model for an action execution process in
LIDA. The SMS responds by transforming a desired understandable action, a selected behavior
in LIDA, into an executable lovevel action sequence, a sequence of motor commands, and
executing hem.

The next section describes the subsumption archite@uoeks, 19861991), which is
used as t he BhEBIbwinggectionintootduges e SMS concepts and its high
level designs. Two data structure types have been prapdeedMotor Plan Template (MPT),
and the Motor Plan (MB) and three types of processes have been modeled: online control,
specification, and MPT seléah. The nextsectionintroduces the simulation of a specific action
execution process, gripping. One aspect of grip, grip aperture, has been simulated and compared
to the human performandeurthermorewe compare the SMS of LIDA with the action
(executian) process implemented in three other cognitive architectures:RAGDbar, and
CLARION. We conclude with a discussion of the benefits of modeling a natural action execution
process with the SMS for LIDA, followed by a conclusion for SMS development.
The subsumption architecture

The subsumption architecture is a parallel and distributed computation formalism for
connecting sensors to actuat@sooks, 19861991), a type of reactive structure for controlling

a robot. In the subsumption architecture, specific behaviors are merged into a comprehensive
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classification, organized in multiple layers (levels), where the components in each layer are
Augmented Finite State Machines (AFSMs). Layers (levels) or AFSMs are connected by two

types of processes: inhibit or suppress, which are represented by engméedase | or

uppercase S respectively. As shown in Figure 2, a signal coming into thievegimput of the

inhibit procesd from AFSM 2 to the encircled uppercageterminates the signal passing

through the lowlevel input from AFSM 1 to the encircledppercase |. The suppress process,

encircled uppercase S, operates as does the inhibit ppoaesgdthat its highlevel input signal

replaces (not terminates) the kewel one. Inside the architecture, there are no direct channels

between modules, n@s there any central forum for communicati@onnell, 1989f the
environment is used as t hHheworlhimus i c@hi b@s mewho

(Brooks, 1990, p. 3

Sensory data Level 2

S dat
ensory data Level 1

Sensory data Motor commands

Figure 2 The subsumption architecture example

The capabilities of the subsumption architecture match many required features of action
execution as we model it (seext Sectioh First, the subsumption architecture fulfills the
requirements for modeling online control of action execution. In thistaottre, the sensor is
directly linked to the motor that drives the actuators. This kind of mechanism follows the
hypothesis that the executable action is driven by the content of boft@@nsory information

coming through the dorsal stream.
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Second, th subsumption architecture also satisfies the requirements of transforming an
understandable action, a selected behavior, into executable motor commands. Marc Jeannerod,
citing the work of SearléSearle, 1988 built upon the concept that covert action representation
is foll owed by overt real executed action. | n
when an explicit desire to perform the action is formed), is present first. Then, at the time of
execution, a different mechanism comes into play where the representation loses its explicit
character and runs aut o m@eannera,l2008, ppShWe each t he
believe the concepts used in SMS are the same
differ.!

Inorcker to run automatically to reach the des
general idea is to decompose an understandable action inrtevelxexecutable motor
commands, and the desired goal into separatgsals to be accomplished with ldevel tasks.

The subsumption architecture supports this ki
robotés control ar-ebhtevtonogebehboiDawsse br ot omp
n.d). In other words, the architecture decomposes both tlenautd the desired goal into motor
commands and competences, respectively. A competence refers tteadbtask that could be
considered a link connecting a desired goal to executable motor commands. Although the
subsumption architecture is typicallgresidered the classic example of a reactive structure, in

the present case, a competence actually works proactively as well because chithimaskg

behavi or . It achieves both the fAhow to doo an

purposest aims to achieve are very specific and {@wel. In the subsumption architecture, a

'6An explicit dectirend or efeeafortmo tdhesel ected behayv
SMS; and ¢6the representation [that] | oses its exp
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competence conceptually plays a role like a watershed, dividing the desired understandable
actions and executable motor commands.

Furthermore, the subsumption architeethas no central control, and thus it develops a
piece of cognition that minimizes the role of representgBvaoks, 1991 De Vega, Glenberg,
& Graesser, 2008, p. Y.ZThis fact is consistent with our design requirement, as Jeannerod
proposed above, for the absence of an under st
execution process. This explains why action execution remains outside the awareness of the
ager, although it could become aware of the execution indirectly. We will discuss this later (See
below sections

On the other hand, the subsumpdevelgoat ar chi t e
directed actions, which is an essential requirement dbih8. Also, the parameters designed in
the architecture are not changeable, so the motor commands it generated cannot be specified at
runtime. We have extended the subsumption architecture in the design of SMS to meet these
points: interaction with highevel actions and dynamically specifying parameters at runtime. The
SMS6s full definition is described in the nex
Conceptual Design of the SMS

This section introduces the concepts relatively abstractly, so that it supportsievieigh
design of SMS, filling the gap between the hypotheses regarding the human mental and
behavioral, and the detailed computational designs of SMS, such as itsutataest and
algorithms. Working towards a biologically inspired understanding of the action execution
process, such as the action mentioned in the two visual systems, this section describes the

possible functional representations and processes in dietadldition this section describes
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reliable implementation requirements, in order to implement the action execution process
computationally as we will see lateseg nextection).

The SMS must transform a selected behavior into a sequence of motor atsnarah
execute them using the agentods actuators. [ n
transformation, while task execution is introduced later in experimental paxissectioh
The motor plan and online control

The output of the SMS, &guence of motor commands, is sent out in a certain order;
hence the agentdos movement is not chaotic but
goal . However, this Aorderingo effect is not
each motocommand will be sent outhe action execution process is running in a real world
with unlimited environmental data available, muchwbich heavily affects the order of the
motor commanddt is hard to anticipate such environmental situations fully ghaa explicitly
prepare a specific sequence of motor commands before the execution begins.

Citing the work of Herbert Simof1969, Rodney Brooks built upon the concept that
complex behavior need not necessarily be a product of an extremely complex control system;
rather, it may simply be the reflection of a complex environr(i&mtoks, 198%. Therefore, in
contrast to a fixed plan, a reactive structure is introduced to model the source of ordered motor
commands (Figure 3). Inside the SMS, first a set of motor commands are built in; each of them is
represented by ©, which is independent of any timestamp. Next is a set of triggers, represented
by Tx; a trigger activates a specific command in order to send it out as a part of the SMS output
when the input sensory data mas.dhHesubscriptke or mo
stands for the number of conditions a trigger contains. Third, before sending out the commands,

a choice function chooses a command from possibly multiple candidates as the final output at

64



each moment. The choice strategy must be imptégdenhen applying this higlevel design to
a concrete action execution process. The set of motor commands, the triggers, and the choice
function are referred to as a Motor Plan (MP), which specifies what to do in a particular

situation, independently diime.

Environment

SMS

Motor Plan (MP)
Y
T,——>©
—
Sensory Data ' Motor
through the —— ©
—_— © commands
dorsal stream /v 2T
\ H N
S
<
X x
T, x ©
N/

Figure 3.SMS with a MP and online control diagram

An environment located outside the SMS is shown in Figure 3 as well; it provides
environmental data to the SMS at the appropriate time through the dorsal (seeeafgure 1)
These sensory data are classified based on different modalities, such as visual, tactile, etc., and
sent to the triggers. The output of the SMS, a sequence of motor commands, executes using the
agent d6ds actuators, and t hproceskeyocauccyckcallplbetweenh e en
the environment and the SMS, which models the
roles, online control.

As shown in Figure 3, the SMS resembles a wrapper for the MP, supporting pre

processed sensorydata,gnd s si ng t he MPO6s output to the age
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environment. On the other side, a MP acts like an independent component inside the SMS. It
involves static data structures: a set of motor commands, as well as the triggers, implemented as
smdl processes.

This online control mechanism designed in the SMS reflects the ideas of a reactive
structure: it allows the MP to generate motor commands based on the sensory data, adapting to
the current environmental situation. This is inspired by theciples of the subsumption
architecture. The grounding component inside the subsumption architecture is a type of Finite
State Machine (FSM); specifically, it could be an augmented E8bbks, 186) or a module
(Connell, 1989h As shown in Figure 4, a set of states are cordaima FSM, and an internal
variable, Current State, maintains which state is the current one. Depending on the input data, the
current stateds transition conditions may be
updating Current State ihe process. Besides a transition, some states have another attribute, a
command; the command i s sent out when the sta
a MPO6s t r ingcgneitionscooasgords ta FSM state plus its transition conolits,
and the trigger is capable of selecting the command based on the input data as well. The only
difference between a trigger and a FSM is that the FSM contains commands, while in a MP, a set
of motor commands is separately maintained outside of tigets. Conceptually, a FSM equals
a trigger that points to motor commands. Representing a set of motor commands independently
from triggers provides a clearer classification between the data structure and the processes that
operate on it; also, it helps ttearly emphasize the temporal independency of the motor

commands.
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FSM

Input data———) State 1 Transition 1

!

Current State

I

Transition 2

State2 ————» X State N

—

‘ }7 Command

Transition N

Figure 4.A FSM and its components

—> Command

The choice function is generalized fraheinhibit and suppress operatioofthe

subsumption architecture, which connect many F&dsther based on a carefully designed

structure for certain taskchieving behaviors. The choosing criteria used in inhibit and suppress

are fixedly created in a hierarchical structuteeing in a higher layer gives a motor command

higher priority for seletion. We generalized the implementation of a criteraom leave its

specification to the computational design, while, as in the case of inhibit and suppress, only one

motor command is permitted to be sent out at one time as a choice result.

Motor Commards

A motor command (MC) is applied to an actuator of an agent; therefore its format relies

on the

configuration

of

t hat

actuator , whi ch,

other hand, since MCs are the output of the SMS, a general MCtfoasnaeen defined

according to the definitions that follow.

Every MC has two components: the motor name and a command value. The motor name

tells to which motor of an actuator the MC specifically applies. As an instance, if one joint of a

finger

a MC.

i s consi

der ed
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The command value of a MC encodes the extent of the command applied to the motor.
As an example, the command v apositiefivawitipnaireald t o a
number domain. Here the unit of a command vauet specified, which means the type of the
command is unknown: is it force, vel ocity, or
reasonable because 1) conceptually, the agent need not be aware of the type of the command in
the action executionrpocess (although the agentdos designeil
since a MC6s command t y@ eg.,ithetype of ptommand dppfiedf i x e d
to a finger 6s |dthecammans ty@e heednptbe dxpliatly dedareal ia
MC.
The motor plan template and specification

A set of motor commands (MCs) is prepared inside a Motor Plan (MP) and bound with
fixed command val ues. I n order to specify a M
begin® thus modeling one of the dorsalessta més hypot hesi z®&aMotorol es, sp
Plan Template (MPT) is proposed and a specification process is created in the SMS as depicted
in Figure 5.

A MPT is an abstract mot o rtermpmeamory (Sénsoty r esi d
Motor Memory inLIDA). It has a set of motor commands that are not yet bound with the
command values; after a specification process, the motor commands inside the MPT are bound
with specific command values, instantiating the MPT into a concrete MP. MPTs and MPs have
very similar structures, so they will often be designed with nearly the same data strTicire.
major differences are 1) an MPT is persistently stored in atkmng memory, while an MP is
shortterm, and created anew each time it is used; and 2) moséPalhs c ommand val ue

been specified, while those of an MPT have not.
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Online control
SMS

Motor Plan Template (MPA Motor Plan (MP)

Motor
commands
> O—O0—»X 50

L T)—

choice |

Sensory Data
through the c—=—
dorsal stream

A selected {
—l

Specification

behavior

Figure 5.A MPT A MP, online control, and specification diagram

Both sensory data through the dorsal stream and the selected behavior determine the
specification process. As shown in Figure 5, two cylinders lie under the set of motor commands
(©s); they receive the sensed data and the context of a selected beharatesg@mnd provide
the specific command values to motor commands mainly through a specification process. Each
of these cylinders represents a set of associations; every association transforms relevant
environmental features into a command value. Asanmp | e, i n a grasping ta
shapes dur i ng sshagng oftitheard.inclutds ¢he \galloan phenomenon of
O6maxi mum grip apertured (MGA), whereby the fi

of the object, but proportiongll t @eannerod, 2006, p).5 hus,one corresponding

association i mplemented in the staNtBbetwsent o tr an
gripping fingers.

The data sensed through the dorsal stream
such as a numeric value of positivefwes an obj ect és width, while t
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behavior support krged h emaddéd niaorrt itch ev aolbyeesctiids si ze
command values specified in the motor commands are only relying on the sensed data, although
the context affcts the command values in a few conditiMsner & Goodale, 2008 We have
simulated some of these conditions and replicated the effects on the command values from
variation of both the sensed data and théecanAccordingly, to implement the relationship of
the effects of sensed data and the context, a suppress operation is represented by an encircled
uppercase S in Figure 5: the command values associated with the sensed data usually suppress
the values assmated with the context unless either 1) there is a delay on the sensed data, 2) the
association transforming the certain sensed data is not availabfamiliar action, or 3)
relevant objects fineed to be ana(¥er&d f or t he
Goodale, 2008, p. 780

The specification process is supposed to specify a MPT into a MP before the execution
begins. The motor commands (MCs) inside a MPT are bound with specific command values
during the specification process. However, there are some types of MCs whose comalmesd
are conceptually specified in the process of online control but not in the specification process. In
the example of gripping an object, the indivi
action execution begins, but in the course of thexetion procesfGrafton, 2019 To model
this situation in the SMS, the pertinent command values are set with a default value in the
specification process first, and are then updated in theeocdntrol. Anupdateprocess is
represented in Figure 5, showing that the MCs command values are updated by the values
associated with the sensed data in executing the action. We will see a simulation illustrating this

case later.
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The subsumptioarchitecture sends out a command with a fixed fuiMalue, telling the
agent what to do in every moment. However, th
typically c¢classified as a process tisodduedacnswer t
the fact that the commands the architecture sends out ateuvelythe same as the elements of
environmental data, which cannot be directly recognized by humans, since they cannot describe
what the commands are, though they know a-leghl process has been accomplished in some
way. Similarly as shown in Figure 3, a MP outputs the motor command in each moment,
answering fiwhdtevted dvay itro d hledweferowvdsoadod uiat @
level responding for the godirectal action initiatednternallyfrom the agent. Here the
specification process operating on a motor comrdnidding a specific value todtaugments

the principle of the subsumption architecture by extending the motor command with a specified

vaudbesi dedofiwhat 6, answering a question of #fAh

SMS, a mechanism containing both online control and specification processes as shown in

Figure 5, answers the fihow to doo of an actio
Furthermore, ta SMS is not merely a reactive structure, adapting to its environment, but

also a structure that responds to the intentofadjoalr e ct ed acti on. A sel ect

also affects the specification process. The {églel understanding necessdrpor an acti onao
effectiveness in an external environment, such as the target object features of a grip action, can
indirectly affect a MPT by specifying the values of some variables. In this way, the SMS may

serve as a suimodule of LIDA, a systems levebgnitive model that covers the whole cognitive

|l oop from perception to action. The SMS conne

achieving the actionds execution.
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MPT Selection

A MPT awaits initiation by an incoming selected behavior before b@eagfied into a
concrete motor plan. From a general engineering viewpoint, a special procesdedlled
selectionhas been created. As depicted in Figure 6, MPT selection chooses one MPT from others

also based on the selected behavior.

SMS

Motor Plan Template (MPH Motor Plan (MP)

Motor
commands

oo |t ososXae
<

Sensory Data
through the ——>
dorsal stream

A selected —L—,

behavior

Specification

i}
X e MP'I'u selection

Figure 6.SMS with all of its components. See text for details.

The selected behavior and the dorsal stream

The design of the SMSO6s conanéipdummalizadsin been
Figure 6. The three processes modeled inside thedSMIST selection, specification, and online
controd are affected by the selected behavior and/or dorsal streams. Their detailed relationships

are shown in Table 1 below.

Tabl e 1. The selected behavior and dor

MPT selectbon  Specification  Online control

The selected behavior Affect Affect Affect

Dorsal stream N/A Affect Affect
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Note that the selected behavior affects the online control process because it conceptually
initiates the action execution, although it is dwectly involved in the online control.
Implementation and Experiment

Different actions execute variously, due to vastly different actuators, goals, or action
execution contexts. In other words, each action needs a certain Motor Plan Template (MPT)
embedded in a Sensory Motor System (SMS) that
characteristics in the execution process.

We have implemented a MPT in a newly created SMS to model the execution of a grip
action inside a LIDAbased softwareagnt . Thi s MPTO0s design is bot
arm controller(Brooks, Connell, & Ning, 1988 onnell, 19895 and biologically inspired by
some hypotheses regarding the execution of hu
compared with both robotic and human data.

The involved software agent (robot and its controller) and its expatahenvironment
are introduced ithe first two subsectionollowed by a description of the simulation of
Herbertdéds arm controller and its biologically
LIDA where one experimeétregarding the awaresg an agent to its action executiohas
been done
The LIDA Framework and Webots

The LI DA Framework is an underlying comput
the creation of new intelligent software agents and experiments based in [sic] thélodsh
Its design and implementation aim to simplify this process and to permit the user to concentrate

in [sic] the spe(Snaider,dieCalh & Franklie 20Alpmp 14l cat i on o
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Webots is a mobile robot simulation software package. It offers a developmental
environment for rapid prototypingf 3D virtual worlds, an array of readyade sensors and
actuators, and programmable controllers that control a robot living in that world
(www.cybebotics.com. We use Webots as an experimental environment in which to create an
agentdeveloped using the LIDA Framewoaidr running our computational SM3$he technical
issue regarding the use of the Framework as a controller for a Webots robagmasldessed
with a customized environment module as an interface as shown in Figure 7. Traditionally, the
worl d, the robot and robotds controller are
controller inside Webots which responds to start aA_FDamework as a real controller only.
Rather than a typical Webots controller, the Framework serves as a robot controller by way of its

customized environment.

The LIDA Framework

1

:

1

Sensory !
Memory !
1

1

1

1

1

Customized
Environment
(Interface)

X X

Sensory Motor
\ System

___________________________________

Figure 7.The LIDA Framework controlling a Webots robot

The extended youBot
The youBot is a software robot bundled with the Webots installation. As shown in Figure
8 (a), its actuators are a mobile base, an arm, and two grippers; the end segment of the arm plays

the role of a hand and the grippers are attached to it. We chosgbihii®n the basis of its
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similarity to Herbert, whose arm controller serves as the prototype of a Grip MPT inside our

newly created SMS.

(b) (€)

Figure 8.(a) The extended youBot, (b)ffa-red beams on the hand and between t
grippers, and (c) touch sensors (dark blue, bottom view).

The sensors

Following the configuration of sensors in Herbert, we extended the youBot sensors by
additionally simulating two infraied (IR) beams detecting the area in front of the hand, one IR
beam between the grippers as their closing trigger, and a touch setisetiprof each gripper.
See Figure 8 (b) and (c) for detailfie extended youBot sensors are introduced in detail in

Table 2.
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Table 2. The extended youBot sensors

Short Name

Description

Pos

Tact (wrist)

Tact (touch)

Beam

XIR

The arm segment positions, which carabeessed by the
Webots getPosition() method.

The force exerted on the wrist, the joint between
penultimate and last arm segments, which can be acct
by the Webots getMotorForceFeedback() method.
The data sensed through toech sensors, which can be
accessed by the touch se
The distance as measured by tifea-red beam between
the grippers. It is used to check whether an object is in
between, and is accessed by its getValue() method.
Thedistances as measured by the two Hnéd beams
from the hand to any object which is in the area in fron
the hand. It is used to check whether an object is in th

area, and can be accessed by the getValue() method.

The actuators

As shown in Figur® (a), the youBot arm comprises five segmeérftom armO0 to arm4,
which are linearly connected by five joiéit§rom jointO to joint4. The join@angles can be
modified by the Webots setPosition() meth@d these five joints, only the middle théegointl,
joint2, and jointd are changeable in our simulation of grip in a vertically orientedp{ane.

The first

and distal p theymota in Xoplargetthusatibese twon
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joints, joint0 and joint4, have not been used, but just bexegllfy set to value of zero.

Accordingly, armO is considered part of the robot base, anddairadd is considered part of

arm3. Because of the simplification, not all joints are explicitly shown in Figure 9 (b); the reader
might have to go back to see Figdréa) for details when we are talking about some formula

based on Figure 9 (b) later.

joint4
(wrist)

The surface a target
object stands on

The surface the robo|
stands on

(a) (b)
Figure 9.An extended youBot controlling its arm during a grip action
One important gripping issue is that the hand musiebical to the surface that a target
object stands on. This requirement follows from the fact that the XIR beams that detect the area
in front of the hand are at a fixed angle to the hand. This constitutes a considerable simplification
of the analogousman behavi or. The human chiefly acts
trunk is usually not exactly vertical but slightly forward leaning during motion, such as running;
the line of sight adjusts dynamicallyXIR does nad so that the human looks ahead stamtly

while the trunkdés angle may vary from moment
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As shown in Figure @), the hand position is controlled by the angles of jointl, joint2,
andjoint®” 1,72,°3; their sum must equal ~ to satisfy
vertical to the surfadeasdescribed by Eq. (1):

1424 3= 1)

The hand has four basic movemetits; descendextend andback each of which can
occur along one of two linesptdown or backorth. As shown in Figure 9 (b), regarding the up
down line, the parallel distance between jointl and joint3, hereafter referreDisiaasceand
expressed by Eg. (2), must remain constant, where arm1L and arm2L represent the length of
arml and arm2 respectively.

Distance= arml1L * sii 1 + arm2L * sih 3 2

The constraint oDistanceis expressed by Eq. (3), whéré 6 , " 3adhdr epr esent t

measures of the updated angles after the execution of@wwpmovement.
armlL*sin 16 + ar"m2OL =* asinhy bBrm2L * sifi 3n 3)

Particularly for the movement bft, it is apparent that3 must increase on the basis of

this constraint. We have chosen 0.04 radians as an increasing intergal tinait the movement

velocity is moderate, which process is expressed by Eq. (4).

" 3 67 3=+0.04 radians (4)
Now, onlythevalueé6f1 6 i s unknown in Eq. (3), so it
updated angle of joint2,2 6 , i's resol ved badfelhsbeen Eq. (1); t

computationally simulated. Similarly, based on Eq. (1), (3), and &j}lecreases, the movement
of descendhas been simulated.

" 3 6" 3=0.04 radians (5)

2 A precondition has been satisfied that the surface a target object stands the smdace the robot
stands on are parallel.
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Regarding the baeforth line, as shown in Figure 9 (b), the vertical distance between
jointl and joint3, hereafter referred toksightand expresskby Eq. (6), must remain constant.
The constraint orleightis expressed by Eq. (7). Similar to thedgwn line, the backorth
movementextendandbackare simulated based on Eq. (1), (7), and (4) or (5) respectively.

Height=armlL * cos 1-arm2L * @$ 3 (6)
armlL*coS 1 éarm2L*cos3 6 = a r ‘mtam?2l * o0n3s (7)

Complicated movements are simulated as well, which extend the basic ones. One of these
complicated movements is to move forward and slightly down; its simulation formula is
developed from the basic movemenrtend but instead of being constahteightneals to
slightly decrease as expressed by Eq. (8), wHezei gdpresénts the measure of the updated
vertical distance between jointl and joint3. The varidblepresents the ratio betweldright
andH e i gdetttode 0.95 in the simulation.

Heightt = Héight (8)

The constraint on the changeHeightis expressed by Eq. (9). Equations (1), (4), and (9)
computationally simulate moving forward and slightly down. Other complicated movements
have been gmiulated by the same strategy.

armlL*co5 1 édarm2L*cos36 = A * “(laarm2L kco¥3) d9 s

One special case is to carry the hand back to its home position when the target object is
held or the arm is stuck. Because the target positiongadirknown, we just adjust the values
of” 1 and 2 to approximate their target positions within a reasonable interval, such as 0.04

radians; and the value o83 is passively changed according to Eq. (1).
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The simulation of Herbertds arm controller

We have created a Motor Plan Template (MPT) in a new SMS to model a specific
execution for a grip action inside a LID#ased software agent. As describethmabove
section, this agent involves two types of actuators, the hand and the arm. The hastd obnsi
two grippers simulating the thumb and the index fingers separately, and the arm, multiple
segments being |linearly connected by joints.
of the current environment. We borrowed the design prircipléhe arm controller of a robot,
Herbert(Connell, 1989h Her bert fAé i s a completely autono
parallelpra essor and speci al hardwar e s uBqoksett f or t
al., 1988, p1). Its arm controller drives the robot to pick a soda can up and bring it back to a
home locatior{Connell, 1989a
Computational design

Three types of arm controller componentsénbeen modeled: the module (M), the
suppress node (S), and the wire (W). The module is conceptually similar to the Augmented
Finite State Machine (AFSM) used in a standard subsumption archité8taoks, 1988,

although they differ in detail®rooks, 1991Connell,19891. Regarding subsumption

architectureds two grounding processes, suppr
for Herbertdés arm controll er. Har dware wires
between modules and suppressenad. I n this way, a module or a

necessarily have a fixed source or destination; it can be connected later during implementing the
execution for a concrete action. Therefore, these three components are not limited to the
simulatonoftr bert s arm controll er; they can be us

subsumption architecture as well.
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The three components shown in Figure 10 illustrate how they look and their constituent
parts. Each of them has a core routine and 1/0 methods. Theootiree executes as an
independent task, which behaves according to different procedures (algorithms) among the three
different components. The module (M) core routine acts like an AFSM in the subsumption
architecture; it switches among multiple preparatges depending on the current state and the
input sensory data, sending out a motor command when it stays in a certain state. The core
routine in a suppress node (S) exactly simulates the suppress process in the subsumption
architecture; it copies the inpdata coming through the higher layer to the output if the data is
not empty, otherwise just copies the | ower

conveys a data copy from input to output.

A B
c
W2 “" .......................... ':
/w
vt —(S—
w1 W3

Figure 10.(A) An example of a module (M), where represents the core routine,
while and stand for I/O respectively. (B) A suppress node is boxed up by
dotted lines. is the core routine. The remaining parts stand for 1/O: the lower
higher inputs are repsented by and respectively, and is the output. (C)
Wi, W2, and W3 are simulated wires
core routine copies the data from input to output.

These core routines are computationally implementéd&-tasks (Snaider et al.,
201)i n the simul ated Her btask dndagsulaes smalcpoocessespand e r .

has implemented multithreading support, so that the core routines are able to operate in parallel
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and execute independently. On the other hand, the I/O methodscohtpenents are

implemented by regular programming language methods rather thanthHb8; therefore these

I/O methods need to be invoked by wire components so that the modules and suppress nodes are
linked (see Appendix A for their pseudo codes).

Thedes gn of the simulated Herbertds arm cont
theor i gi nal Her ber t 6(€onsell b98An Mensoiy data ertear feom tha lefts
output commands are sent out on the right. Modules, suppress nodes, and wires are structured
into multiple levels (layers), bottomp ordered by their priorities. The module name briefly
indicates the associated belmwvhile in Figure (a), thelaw module instructs the fingers to stay
wherever they happen to be, and in Figure (b)etdyptmodule freezes the arm in whatever
awkward angular configuration it happens to be in at the (@oeanell, 1989p A | evel 6s nam
expresses a behavitask, also called a competence, which is achieved according to the
combination of its modules and suppress nodebkaviors.

A Grip Motor Plan Template (MPT) was created to maintain these modules, suppress
nodes, wires and their organizations, to si mu
the simulationds software ar othanewdycreated 8JS. Thi s
and storedinlong er m memory. The SMS receives sensory
into Grip MPTO6s module components, and also p
modules or suppress nodes to the outside, typitalgnvironment in which the LIDA agent
finds itself At the present time, the MPT implementation is simply based on a robotic Herbert
arm controller: the motor commands inside the MPT are fixedly bound by default values but not

specified at run time, so thtte current Grip MPT is conceptually equivalent to a MP as well as
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shown in Figure 3. I n accordance with
be added to the MPT in a later implementation, to be describatbin
Grip Level
(9 HAND
(a) The handystem
Path Level
Park Level
7777777777777777777777777777777777777777 Si(]m Level
ARM
(b) The arm system
Figure 11.Si mul at ed Herbertds arm controll e

redrawn from the ori gi na/(ConHed, 1988 rCongarets |
the original diagrams, three changes in the simulation are as described below.

1) In (a), acradle levelwas removed. Because the upper laban force to the actuator:
is configured into the simulated environment Webots, the cradle level is unnece

2) In(b),abackmodul e was removed. Since Hertk
is impossible to simulate an arm rotation to centrdaheetarget object, and thus it is
not necessary to check whether there is a lateral offset between the hand and t
object (the purpose of thmckmodule). We assume the target object is already
centered with respect to the hand.

3) In (b), anedgemodulewas removed because its function was conceptually comb
within thehoistmodule.
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Experiments
This SMS has been implemented within a LHDAsed software agent. In this section,

two grip experiments from the original Herb@&Znnell, 1989pbhave been replicated,

investigating the controllerds reliability an

respectively. The simation successfully replicates the online control of a grip execution driven
by the simulated Herbert arm controller, lending support to the idea of utilizing the subsumption

architecture as a prototype for an SMS model of the action execution procé#sstrirare we

have reviewed two additional grip experiments

of situations.

descend

Figure 12.A composite of the grip trajectories produced by the
simulated arm controller on 10 consecutive runs

First,ther esul t s shown in Figure 12 speak to t
behaviors. The lines show the composite trajectories followed by the tips of grippers during 10
consecutive runs of the simulated arm controller. The sequences of grippestighpare
recorded by &upervisot in Webots at the run time. During each trial, the hand descends from

point a, and then traverses points b, ¢, and d exploring for the object: first doing a small bounce

®The Webots Supervisor "is a privileged type of Robot that can execute operations that can normally
only be carried out by a huywaavieybesbptiescani ltdsrirrelaviard n o't
to the machine learning concept of supervised learning.
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at point b when it touches the ground surfacel going forward and slightly downward to skim

the surface, then lifting above it and extending when it finds that the object is in front of it. The
grippers reach the object at point e and fina
task.

During these 10 runs, the agentodés position
produced by the grippersoé contact with the gr
exactly same between the runs since they are sensitive to initial conditomsh as t he age
position. These differences between the traje
design; whereas a realistic robot experi ment
and its environment have been deterministicsiliyulated. This unexpected result supports the
existence of an effect originating from within the agent itself, such as its action.

Second, the same controller is used in different environments to verify its flexibility.

Figure 13 (a) shows a trial in whi¢he target object lies on a pedestal rather than directly on the
ground. The hand starts in the same way as in the previous experiment, finds the surface and

begins to skim along it. However, at point c, it detects an object (the pedestal) but fagstto g

This attempt results in a tactile input to th
AUncrasho performs a function similar to fibou
grippers move away from the pedestal and@Givnnell, 1989 After the grippers are above the

pedestal surface, it executes the remaining portion of the grip action as in the previous case.

Figure 13(b) shows a case with the target object behind a barrier. Again, the hand
touches the top of the barrier first and then goes forward skimming it. The change of surface is

not noticed by the agent so it proceeds with the rest of the grip as before.
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descend
descend

bounce

fbounce

Figure 13.The simulated arm controller grips an object which is (a) on
pedestal or (b) behind a barrier.

Besides the replications of the Herbert arm controller experiments, additional
experiments have been performed. Figure 14 (a) shows the same controller gripping a small
object; in this case the agent skims the surface more, but lifts and exteriiariedsen
gripping the taller object (described previously). The skim is achieved by the combination of
mul tiple Aibounceo and fAsurfaced tasks. I n Fig
grip. The grippers reach the ground first and then begikino @&ong it as in the previous Figure
14 (a); however, no object has yet been found, so the whole arm is stuck at point c for a while,
and after that the grippers are retracted bac

same as when it a@es back a gripped object.

d d

descend hoist descend

surface

7 b C s A T T b

" bounce

(b)

Figure 14.The simulated arm controller (a) grips a small object or (b) fails to gri
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Biologically Inspired modification

The simulated Herbert arm controller has been modified baste @MS concept as
described abovédnstead of default values, the motor commands inside a MP are bound with
specific command values through a newly creafsetificationprocess before the action
execution begins, or a naypdateprocess at run time; theby a new grip Motor Plan Template
(MPT) conceptually exists before its motor commands are bound. Two sets of associations are
created. In each of them, a single type of as
width into a command valdethedistance between the grippers, its aperture. Some human
experimental results regarding action execution have been compared with these simulated
results.

First, the grip action is executed using the unmodified arm controller as an experimental
contro., Asyown i n Figure 15 (a), the agentdos grip
Webots virtual time during the grip execution. Whatever its starting value, the grip aperture
almost always reaches 0.0656m (the maximum grip aperture, or MGA) before thioggep
around the target object. The grippers squeeze the target object, and thus the resulting grip
aperture is smaller than the original target object width.

Second, an association (the upper cylinder in Figure 5) has been implemented by
connectingthe ensed objectds width through the dorsa
Its transformation formula is expressed by Eq. (10):

Grip aperture = ObjéeGtoppewrddbhgapMagni

The variablelO b j e c t @& & umariavalie representing a true width directly sensed
through the dorsal stream from the environmBftagnificationis used to set the grip aperture to

be slightly greater than the object width, set to a value of 1.2 in the simulation. A small gap
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betweerclosed grippers is available, which is substituted from the expected grip aperture

( Obj e ct davagnificatidry tthreath an actual grip aperture necessarily being sent to the

grippers. We are well aware that this formula can be improved in numergssfamman

example, using a more complicated formula to represeMdgmificationinstead of using a

variable only, or including additional parameters. As shown in the experimental results

introducing this section, this simple formula is effectaved we leave for future work the

discovery of various methods for improving it.
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virtual time during the grip execution.

As shown in Figure 15 (b), the grgperture typically reaches the specified value of

0.03m before the value falls as the gripperse{sse below for an explanation of the two peaks
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in the aperture). Compared to the maximum grip aperture (MGA), which is a fixed aperture
value for Herbertdés grip, the value specified
0.025m. This calibration results from the implementation of the aggwtithrough the dorsal
stream. This simulated result suppdrtnd is qualitatively the same as sagirgh at fit he dor
stream plays a central role in the programming of actions (i.e. theppo#fication of movement
p ar a meMileer & Goodale, 2008, p. 7§6as supported by evidenfrem observations of
the patient D.F(James et al., 200®/ilner et al., 1991 The specified value in the simulation is
| arger than the object width: 0.03m > 0.025m,
than required by(Jdaimerodsld82a06. dife first MGA pedk js madélanl
by setting a fixed MGA value to the grip aperture for a short while when the execution starts, in
keeping with the observed human behagearne, Pavani, Meneghello, & Ladavas, 2000
Jeannerod, 2006 The second MGA peak occurs because the grippers touch the surface; the grip
aperture is set to become maxi mal in this sit
width value as well as adapt to an unpredicted collision.

Third, another association has been implemented by connecting the object width
represented in the context component of a selected behavior to the value of the grip aperture
(Figure 5, bottom cylinder). Its formula is expressed by Eqg. (10) as well, but theevariab
Ob | e ct has a differdnt rheaning here. Since the object width represented in the context is
a semantic value, such as fAlargeodo or fAsmall 6 o
distributed in a range. We simulated this dispersionenta s soci ati ondés transf c
to EQ. (11), where thapproximate rates a random value set to be in a range of 1.0 ~ 1.1 in the
simulation, so that the object width approximates its true value.

Objectds width = Approsxiwmatte rate * (
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Il nstead of the data being sensed through t
context affects the relevant command values in several condilibinger & Goodale, 2008
We simulated two of these conditions: 1) Deleting the association implemented above which
connects the sensed data to the grip aperture; in effect, it makes a skill unfamiliar to the agent, or
2) Terminating the relevant data sensed through the dorsahstrieah simulates a delay in the
sensed data. Five executions produced a range of camesified values rather than a precise
value as shown in Figure 15 (c). We argue that these imprecise movements result from an
association f r onmsconedtosemmandvalee. Thigihtexpretation @ the
simulation results agrees with the conclusion we reached above that the dorsal stream plays a
central role in specification process. Additional evidence is found in patients suffering from
bilateraloptic ataxia caused by damage to the dorsal strethiese patients show deficits in
calibrating their grip apertuf@akobson, Archibald, Carey, & Goodale, 19%dannerod,
Decety, & Michel, 1994Milner & Goodale, 2008

Fourth, an update process is implemented to update the grip aperture values during the
execution. Its formula is expressed by Eq. (10) the same as the association which connects the
sensed object mth through the dorsal stream to the grip aperture; however, instead of a constant
value, theMagnificationhere is set to be dynamically decreasing through the executioririme.
Figure 15 (d), the updated value comes closer to the object width theprettied value; it
follows that the sensed data provided through the update process are more precise than the
context of the specification process, because the situation becomes clearer to the agent as it

executes the action.
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Linking the SMS to LIDA

As discussed abovend shown in Table 1, both the data sensed through a dorsal stream
channeland a selected behavior corresponding to a-dioatted action are input to the SMS,
and the SMSO0s odcaoviropment. ThesgripsMPT is mapped etodone onto the
action component of a selected grip behavior; this is a simple implementation of MPT selection
following the SMS concept introducedbove

These I/Os are implemented in the LI¥ased agent including the SMS as shown in
Figure 16. Onlythe related action selection and action execution modiules latter being
implemented by SM& are represented. The other LIDA modules are abstractly represented by

LI DAG6s understanding and attention phases.

A selected : :
selecte —> MotorPlan —— MotorPlan ——— Motor

behavior i Template (MPT) (MP) i Command (MC)
1 [ . J ‘ . J . Online control
_______ ‘ T MPTselection | Specification '
\\\

Dorsal stream
. T
[ Attention phase ]\ KH&‘}__ Sensory
{ Understanding phase H memory

Figure 16.The SMS is embedded into the LIDA Model

Additionally, in order to let the agent monitor the execution status, an expectation codelet
(Faghihi et al., 2012s created when the grip behavior is selected in the action selection module;
this particular attentiomodeled a small and special purpose computational précessitains
the expected result component of the currently selected behavior. It checks whether this result

has been reached (sensed and recognized by the agent) at run time. The checking regult is se
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LI DAG6s Gl obal Workspace modul e, (Baaesrle8gint comp
this way, the agentdés awareness of i1its own ac

Four checkpoints have been set up in the expected result: with the grippers 1) in the
initial situation, 2) in the final situation, 3) holding the target object,Zgnd a stuck situation.
The checked result for these points comes to the attention of the agent if the result wins the
competition during executing the grip action. This means that the agent is aware of some
significant fragments of the action executialthough it has no idea what exactly it is doing in
each moment.
Comparison

We realize that the action process we have developed in LIDA, specifically the action
execution process implemented by the SMS, have the same general form as the action processes
implemented in some of the other architectures, although they use different structures. This
section compares action execution process deployment in threlenaelh cognitive
architectured their reviews have been given in Chapter 3 aBowethat of LIDA. We argue
that each cognitive architecture having a representation at an explicit level of knowledge, also
needs a process that converts Heglel knowledge to motelevel commands, as does the SMS.
ACT-R

Adaptive control of thoughtational (ACT-R) is a cognitive architecture, a theory for
simulating and understanding human cognition based on numerous facts derived from
psychology experiments (http://acpsy.cmu.edu/).

ACT-R doesndt di fynachwithrespecttb &ciibA. Fikstehoth of their
action processes are conceptually designed with two steps: 1) the selection eeadiightion,

and 2) the execution of lo¥evel actions. In LIDA, a behavior is selected in the action selection
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procss based on the agentdés motivation and its
action executionproce8smnodel ed by t he Sensory Motor Syst el
component is transformed into le@vel motor commands that are executethe real world
through an environment module. Similarly in AT a production rule is selected and fired in
the production memory, and responds to the patterns of information in the declarative memory
buffers, after whi c latmbvements be prepared aadexecutedhisther e q u e
motor memory. The executed movements then control the devices acting in the world by
utilizing a device module.

Second, the motor control systems of LIDA and AR;Tthe SMS and the motor module
respectively, arstructured similarly. In the SMS, a Motor Plan Template (MPT) selection
process acts first, connecting a selected behavior from the action selection process to a MPT

inside the action execution process, and then the ensuing specification process #pecifies

values of MPTO6s variables, so that a Motor Pl
ACT-R6s motor modul e, the preparation process a
rul edéds action to a certain neosabevemeamdthersta yl e, su

specify the parameters necessary for the resulting movement execution.

Finally, the lowlevel actions are modeled with concrete examples of action in both cases:
a grip in LIDA, and the manipulation of virtual keyboard and mouseGi-R.

In contrast, there are also several differences between LIDAandRA&€E act i on
processes. First, in LIDA the MPTs are prepared in advance irtdomgmemory; the operation
acting on the MPTs is the selection so as to reuse the selected MPT. HowaQ&rR, a
movement is specified anew each time in the preparation process; the potential for reuse occurs

only if the movement repeats the previous movement.
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Second, in LIDAG6s SMS, an online control p
the sensogrdata to the action execution process during the execution. However HRAtDEre
is typically no direct communication between the perceptual and motor mbdilesdata
passed to the motor module always comes from thelbigh declarative memory. This
al most the only significant concepRbesamotdoffer
module.
Soar

Soar is a cognitive architecture in pursuit of general intelligent a¢eritaird, 2008.
Here we discuss th@milarities between the action processes in LIDA and Soar. LIDA has
action selection and action execution processes, while Soar has operator selection and operator
application. Specifically, first, theuteul ti pl
based on the most salient current situation.
proposal, in that both provide candidates for the action selection step that follows.

Second, in LIDA, before the process of action selection, recruited sshene
instantiated into behaviors. Additional information retrieved from the Current Situational Model
is bound to the schemesdé context and result c
known as behaviors in LIDA, are created. Similarly, oar el abor ati on updates
operators with additional detailed current situation information. Thus, in both cases the candidate
highl evel actions undergo an -pnmecanseadi omemrbe
selection process.

Third, t he selected behaviorés action compone

System (SMS) by a particular Motor Plan (MP); while in Soar, the actions of the selected

* There is only very limited direct connectivity between perceptual and motor modulasal Sp
information in particular is communicated directly.
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operator are performed by production rules that match the current situation andehe curr
operator structur@l. E. Laird et al., 2012

On the other hand, there are some differen
Soar6s operator application. We conclude that
which cannot be directly performed (executed) on the external world, an external program is
al ways necessary to handl e t heoarfliLiDAlhowevwere al 0 e
its SMS responds by transforming the selected behavior into a sequence of executable motor
commands, presumably in the real world. Note
completely different concepts in Soar and LIDA, although used to represent the final output
data in both cases. In LIDA, motor commands are executable, while in Soar they are not.

Soar does not cover the representation of implicit environmental information related to
action. This allows it to maintaigenerality with a clear standard, without the necessity of
considering every possible domain that the Soar agent might live in. In contrast, LIDA
emphasizes the biological viewpoint that an action execution process, which involves the
consideration for doain details, is a reasonable part of an entire cognitive architecture, because
the process of generating executable motor commands are not only driven by-kaeelow
environmental implicit information-dvelt al so i
explicit mental processes.
CLARION

CLARION stands for Connectionist Learning with Adaptive Rule Inductionli@&
The purpose of this architecture is to capture all the essential cognitive processes within an

individual cognitive agentSun, 20032006.
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In CLARION, the action process introduced above has many concepts similar to that of
the LIDA Model, though their terminologies and computational representations differ. First, the
sensory dataregived i n LI DA influences the action pr o
sensory data is filtered through the understanding and attention phases, and then helps recruit
appropriate actions in the action selection process. At the other level, the e@atseis through a
dorsal stream channel, directly connecting from the Sensory Memory to the action execution
process implemented by the SMS. Similarly in CLARI®N actioncentered subsysterthé
ACS) connects the perceptual current state to actions throoilp the top and bottom levels.

Second, a direct (implicit) mapping from sensory data to action output is modeled in both
LI DA and CLARI ON. Il n LI DAGs SMS, the direct S
level actions. This process is implemented &otor Plan (MP) based on the principles of the
subsumption architecture, a reactive structure. One critical feature of the subsumption
architecture is that it doeS§ andiswitnautanytexpiich any
representationSi mi |l arly in CLARI ON, the ACSO0s bottom
mentioned above, which may be implemented in backpropagation neural népmdrbse
representational units in the hidden layer are capable of accomplishing tasks, but areg/generall
not individually meaningfu{(Sun, 2003 Furthermore, the MPT in the SM@&d the
backpropagation neural network in the ACS both have the potential for multiple instances, and a

selection process is proposed for both the MPT and the backpropagation neural network.

> Although no central world state is one of the essences of the subsumption architecture, implicit
understanding and expectation of the environment has been built into the architecture by its layered
structure.

® There is the learning of implicit knowledget he backpropagati on networ k)

learning setting, there is no need for external teachers providing desired input/output mappings. This
(implicit) Il earning met(Bud®lOfhay be cognitively jus

96



Third, the interaction between the two levels is modeled in lbi@A and CLARION.
The output of LI DAOGs action selection process
MPT, mapping from a semantic action to concrete ones. In CLARION, the input state or the
output action to the bottom level is structured usingmaber of input or action dimensions; each
of the di mensions has a number of possible va
condition or action is represented as a chunk node which is connected to all the specified
dimensional values of the infs or actions at the bottom le&un, 2003 CLARION models
an interactio between the top and bottom levels, as well as between explicit and implicit
knowledge.

On the other hand, action processes modeled in LIDA and CLARION are also different.
The two | evel s ofd adtionBeledtion andcattioncexecupowarkc e s s
interdependently, and operate |linearly. A sel
selection, is not executable directly on the environment, but is used to initiate certain processes
operating in the concomitant action execution process, ultimatelgrgting executable lew
level actions as a sequence of motor commands. However, the two levels implemented in
CLARI ONG6s ACS operate independently: each of
current state in parallel. The action sent out from batratad bottom levels are all performable.
The final output action of the ACS is the combination of the output actions from the top and
bottom levels.
Conclusion

Based on the LIDA Model, the subsumption architecture, the two visual systems, as well
certain other cognitive neuroscience hypotheses, the Sensory Motor System (SMS) proposes a

model of the human action execution process.
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In the design of SMS, we havertsidered the subsumption architecture from a new
viewpoint, namely, that its capabilities fulfill the hypothesis regarding the online control role of
the dorsal stream. Second, we have modified the original subsumption architecture as inspired by
certainhypotheses of cognitive neuroscience so as to combine a reactive structure with a goal
directed action. Finally, we have designed the SMS as a submodule of the systems level
cognitive model LIDA, thereby rendering it capable of communicating with othertocg
modules naturally in a closed cognitive loop, from sensors to actions.

A computational SMS has been implemented for the execution of a grip behavior, and its
simulated results have been compared to human data. Also, the SMS of LIDA has been
compare to the action processes implemented in three of other cognitive architectures.

This biologically inspired design, together with a computational verification by the
comparison of model and human behaviors, supports the SMS as a qualitatively reasonable

cognitive model for action execution.
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5. Estimating human movements
Introduction

The perceived visual world remains stable during ongoing eye and head movements. Yet
a relatively brief, small, but unexpected visual change in the world magtattnaattention
explicitly. Jeannerod considers this stability a paradigm for the distinction betwegnaklted
and externally produced changes in the w(zaD6). He argues that #fia disp
visual scene is attributed to an external change, notto-pselb d uc ed e y(@006np.v e ment
18)

Jeannerod hypothesized that a functional model, the efferencé\tmpyHolst &
Mittelstaedt, 195)) disentangles the changes in the world produced byrestement, from

externally produced changéx006.

Von Holst and Mittelstaedt hypothesized that each time the motor centers generate an
outflow signal for producing a movement, a copy of this signal (the efference copy) is stored in a
shortterm memoryAfterward the relevant reafferent inflow sign@alsesulting from the
movement and sensed by the adénanklin & Graesser, 1993 are compared withhe
efference copy1950. Note that the comparison is actually between the sensed inflow data and
the desired estimate that is based on the relevant efference copy. If theregpamud, Von
Holst suggests that they would cancel each other out so that there is no inflow data perceived
(1954, a suitable situation for anticipag) the sensory effects of a splfioduced movement. On
the other hand, if the actual movement departs from the anticipated one, it is likely due to an
external caus@leannerod, 2006

Wolpert and his colleagu€$995 haveinvestigated a sensorimotor integration
mechanism by which people produce an estimate of the result of their movement. They have

hypothesized that the central nervous system (CNS) internally predicts the result-of a self
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produced movement by simulatingetdynamics of the environménitsing a secalled (forward)
internal model, which is driven by a copy of human motor commands, the efference copy. This
prediction is then combined with a reafferent sensory correR®5. To test this hypothesis,
they have simulated this prediction and correction using the Kalman(iéman, 196{. In
this way, they qualitatively replicated how humans estimate their hand movements in the dark.
The question of whether combining such an internal model with sensory correction is in
fact neurally implemented in humans, or is just a metaphor for what th@rhoervous system
does, remains opderafton, 2019 However, this model is useful for studying further
hypotheses, including Bayesian decision theory for sensorimotor c@fdmling & Wolpert,
2000, optimal feedback contrglodorov & Jordan, 20Q02and motor recogndn (Jeannerod,
2006. Moreover, the Kalman filter itself h&gen applied in different domains in other fields
together with its extended version: extended Kalman filter (EREyer et al., 20183
Following the example set by neuroscience resear¢kérding & Wolpert, 2006
Todorov & Jordan, 2002Nolpert et al., 1995 we embed estimation into tisensoryMotor
System (SMS) (see Chapter 4 for details) by implementing a Kalman Filter (Kalman, 1960) as
the ficore engined of the forward model 6s esti
In the Kalman Filter, there are two facttinsit balance the importance between predicted
results and sensory results: the inaccuracy in the knowledge of the dynamics of the environment,
and the noise in the sensory process.
We introduce a third balancing factor, changes in the environmental dynakuataally,
humans may experience, and then remember, such changes as a kind of error, the difference
between intended (predicted) results and actual (sensory) results. We propose that this new factor

is driven by memory of errors caused by changes idyhamics. This idea is inspired by a

'The environment includes both the agentés motor
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recent study in sensorimotor learnifiterzfeld et al., 2014 Herzfeld and his colleagues
hypothesize that besides learning from errors, the brain may decide how much to learn from a
given error depending on its memory of errors. These historical errors help humans determine
whether the environment is steady quidlly changing. Environmental stability thus controls
how much of a given error will be learned so as to affect the estimate of the upcoming
movement.

In the following section we describe and compare the studies of Wolper(38) and
Herzfeld et al(2014). We then introduce our new modehadified Kalman filter, which
estimates human movements using memory of errors, and go on to describe a computational
experiment that simulashand lifting action.
Previous Work

In this section we first review a study regarding how people estimaténtrelr
movements in the dakVolpert et al., 1995 and then introduce a recent study about how
memory of errors affects sensorimotor learr(idgrzfeld et al., 2014 Finally, we compare the
two studies. In this way, we provide adequate background knowledge to prepare for the

introduction of ounew model in the following section.

Simulating a Sensorimotor Integration Process Using the Kalman Filter

Wolpert and colleagug4995 have argued for the exismof an internal model in the
central nervous system (CNS) that simulates the response of the motor system. They have carried
out a human experiment in which participants move one of their hands horizontally on a plane
either to the left or to the riglalong one dimension in the dark. In the absence of vision, their
sensory feedback consists only of proprioception during the movement. Participants are
instructed to continue moving until they hear a tone. The timing of the tone is controlled so as to
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produce a uniform distribution in movement duration between 0 and 3 seconds. At the end of

each movement (trial), participants indicate (estimate) the unseen new location of their moved
hand. The difference (error) blatdieagonsipparti ci p
recorded as a function of movement duration. In total, eight participants performed 300 trials

each. In this experiment, researchers found that on average, 1) participants overestimate their

hand locationd the estimatetbcation isfurther thanthe actuad and 2) the error peaks after

one second and then decreases gradually.

As argued by Wolpertet 1995, At hese exper i meascountedfore s ul t
if we assume that the motor control system integrates the efferent outflow and the reafferent
sensory inflowdo. To support this conclusion,
with the use of a reafferent sensory correction, plicate human selkéstimation of hand
movements in the dark using a Kalman filter.

The Kalman filter is a recursive algorithm that estimates the state of a distretenear
stochastic systerfKalman, 1960Maybeck, 1979 It first predicts the s
ti meline, based on its current rmmiestaad on know
optionally on its current motor command. Then it corrects the prediction based on sensory data
that may have noise. Thistvoot ep routi ne operates iteratively
state. From a mathematical viewpoint, the KalmareFi# a set of equations that provides an

efficient estimate for the state of a process, expressed by Egs. (12) ~ (16).

X1=AX 1 + Bu (12)
P-t = Pt_]_ + Q (13)
Ki=P/ (Pt +R) (14)
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Xt = X_t + Kt(CZt - X_t) (15)

Pr=(1-Ky) P (16)

The Kal man Filtero6s prediction process
correction process is represented by Egs. (14) ~ (16). Variable x represents the state value.
Specifically, x1, X, and xrepresent the immediately previous, intermediate predicted, and
current estimated state values respectively. Varigbkpuresents thealue ofinput motor
commands, and thevalue ofinput sensory dat#, B, andC are the parameters for the above
variablesK acts as a gain that weights the new sensory data against the predicted result.
Parameter®, R, andP represent the uncertainty of the prediction, the correction, and the entire
estimation respectively. Forriner details(Kalman, 1960, (Maybeck, 1979 or(Welch &

Bishop, 200§ may be consulted. From one viewpoint, the Kalman filter is a kind of non
Markovian extensioiiThrun, Burgard, & Fox, 20Q0%ecause its estimation relies on its
historical data, while optimality is not of concern, and so is not guaranteed in our new model.

Based on the simulatedsults, Wolpert et a(1995 have shown that the Kalman filter is
able to qualitatively reproduce the propagation of the error of the estimated hand location as

function of movement duration.

A Memory of Errors

In the study of sensorimotor learning, Herzfeld and collea(i@g#s) have hypothezed
that the brain not only learns from individual errors that it has experienced before, but also
accumulates the errors into a memory; this memory of errors makes it possible for the brain to

control how much it will learn from a given current error.
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Herzfeld et al(2014) have done human experiments to explore the effect of memory of
errors in human hanaching movements. The expeeintal setup is as follows. (1) A
participant sits down in front of a table, and holds the handle of a robotic arm; the arm is attached
on the table, and its handle can be moved because of several moveable joints in the arm. The
participant is asked to regedly make ouindback reaching movements; the goal for a trial is
to reach a target | ocation from an initial | o
opaque horizontal screen that is located above the plane of the forearm; thus tipapirtici
cannot see his hand. (3) An overhead projector displays information on the screen about the
actual hand location, the initial location, and the intended target location of the reach. This
information is visually available to the participants. (4) Dgra reaching movement (only on
the outward reach), the participantds hand ma
with a force perpendicular to the reaching direction. The perturbation produces an error during
the reaching movement, thefdifence between the intended hand location and the actual hand
location upon arriving. (5) The magnitude of the perturbing force is constant, and the direction
may be either to the left or to the right. Thus the force may create two types of errors.

Usingthis experiment, Herzfeld et al. examine the relationship between memory of
errors, and the amount that is learned from a given error. They hypothesize as follows:
Al Consider] an environment in which trhe pertu
environment in which the perturbations switch
should learn from error because the perturbations are likely to persist (learning from error in one
trial will improve performance on the subsequent trial). Eoev, in a rapidly switching
environment, the brain should suppress learning from error because any learning will be

detrimental to perf o(Hendeidetal., 200 subsequent tria
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In the experiment, participants are randomly divided by environmental stability into three
groups (9 per group): they first performed 30 trials of reaching in either a slowly, mspeed,
or rapidlyswitching environmeid the direction of the perturbing force switches. And then all
participants experience a pure reaching movement without any perturbation for 0inrthis
way, the effects of the perturbation are removed. Finally, all participaptsience one reaching
trial with the same perturbation.

The researchers measured the change in the force applied by participants before and after
the final perturbation. By considering the force produced by a particgpanbxy for the
par t i cdtimpatemnftth@ pertwrbing force, they can indirectly measure how much the
participantodos estimate of the perturbing forc
They found that the responses of participants to the same perturbation aretdgeseen
groups. A participant gives larger respor@sesrresponding to a higher estimate of the férce
in the slowly switching environment and smaller respamsedicating a lower estimate of the
forced in the rapidly switching environment. This phenomesopports their hypothesis quoted
above.

Note that in this experiment, although the memory of perturbation has been removed
using 10 trials of pure reaching movements before measuring the effect of the final perturbation,
a more abstract attribute of theveonment, corresponding to a level of persistence of the

environmend environmental stability, is still available in the memory, and thus influences the

effect of the final perturbation. A term Asav
attribute.
“Thispurer eaching movement is known as a fAwashouto (F
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Comparisons between the Two Studies

In this subsection, we compare the two studies reviewed above. To conserve words, we
cite the two paper@ierzfeld et al.2014 Wolpert et al., 199bfor the two studies respectively in
the whole subsection here, and at times below we simply refer to the study of Wolpert et al.
(1995 as the first study and to the study of Herzfeld et24114) as the seconduwy.

First, in both studies, researchers investigate the process by which humans produce an
estimate of their movement. Wolpert and colleagues simulate how people esisagehe
Kalman filter, howtheir hand mowein the dark, and Herzfeld and colleagues propose a causal
relationship from memory of errors to the knowledge of the environmental dynamics, which
knowledge affects the estimation of upcoming movements.

However, the estimation processes examined in thestudies are at different levels.
Wolpert and colleagues study the estimated hand location within a single movement trial. They
calculated the propagation of estimation error on average for one movement, while they did not
concern themselves with the rateships between multiple movement trials. On the other hand,
Herzfeld and colleagues study the estimated hand location between trials. They proposed the
hypothesis regarding the effect of historical movements on the estimation of the current
movement. Buwe still consider these two studies comparable, because in fact, they are
gualitatively studying the same thing, how humans estimate their movements. From this
viewpoint, it is reasonable to borrow ideas from the second study to modify the simulation
implemented in the first study.

Second, in both studies, an update process relying on aé ¢énedifference between
predicted (intended) results and sensory (actual) résidtssed in the process of producing the

estimate of movements. In the first stuthg predicted result is corrected using sensory results.
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A parameteK is used to weight the effect of the error in this correction (see Eq. (15)). The value
of K depends on both the inaccuracy of the knowledge of the environmental dynamics, and the
noisein the sensory process (see Eg. (14)). In the second study, a memory of errors controls
(weights) how much the current error will be used for updating the newly estimated result, the
magnitude of a type of learning rate. Here we see that in the first shedy are two factods
the inaccuracy and the nois¢hat weight the error, and in the second study, a third factor
memory of erro@ is used.
A Model That Estimates Human Movements Using Memory of Errors

In this section, we first propose an operational definition for a learning| thg
determines how memory of errors functionally controls the extent to which errors will be
learned. This definition is conceptually inspired by the work of Herzfeld £Gil4). Then we
introduce a modified Kalman filter, in which we add a new factmremory of errord to
balance the importance between jicetl results and sensory results. The effect of this new
factor is represented by the magnitude of the learningjradtethis way, we achieve a new
model that is able to reflect its knowledge of memory of edr@a$eature of the environmental
dynamic$® into the process of producing movement estimates. Finally, we add this estimation
model, which is implemented by the modified Kalman filter, toS&esoryMotor System
(SMS).
The Learning Rateg

The magnitude of the learning rath {s controlled bymemory of errors. The specific
formula for this control is represented as a sigmoid function expressed by Eq. (17), and which is

assisted by Eq. (18). The learning rate ranges from 0.5 to 1.5 with a default value of 1.0.

s —— m (17)
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t=10i—i f n I 0, and t =

Specifically in Eq. (17), the variabteepresents the status of the memory of errors,
which is calculated according to Eqg. (18). It ranges frbi@ to 1.0. The parametditunes the
effect oft, and is setd 6.0 by default. In Eqg. (18), the varialoleepresents how many errors
have been experienced by the brain, and thus stored in the memory. farsaéteinteger
starting from zero.

As mentioned irabove the forces of perturbations used in the studyerzfeld et al.
(20149 have the same magnitude with directions either to the left or to the right. Similarly, we set
only two types of errors in our model: the same magnitude with either positive or negative sign.
Variablesrepresents how many times the error type has switeftbth the memory of errors.
Variablesis an integer starting from zero.

Here we explain the behavior of the above formula with examples. If the brain has
experienced many errors and most of them have the same sign, the vaisi¢acde and the
valueof sis small; therefore, the value i large, close to 1, so that the valualdk close to
6.0 andd is close to 1.5. This means a slowly switching environment results in a high learning
rated learning more from the current error. On the other hidutidere are many errors in
memory and they have switched signs very often, the values of bhotin are large, sobis
negative with a large absolute value; thus the valug®otlose to 0.5. This means a rapidly
switching environment leads to a ld@arning raté learning less from the current error. These
simulated behaviors qualitatively agree with the hypothesis proposed by Herzfel@@14l.
Note that when there is no error in the memory yet, the valuis 6fbecausais 0, so the value

of dis 1.0, which is considered the default value|.of
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A Modified Kalman Filter

Compared to the original Kalman filter expressed by Ed. ~ (16), we modified Eq.
(15) by adding a new variabtg which is defined in aboveectionsas expressed by Eq. (19).
The newly modified Kalman filter is expressed by Egs. (12)~(14), (16), and (19).

Xt=Xt+ KgCz - X?) (19)

The added variable dqd represents a new fact
predicted results and sensory results, occurring together with the parameter K.

Two questions need answering regarding this modified Kalman filter: does this
modification make sense, and what is its benefit? For the first question, as we have discussed
above both of the studie@erzfeld et al., 201ANolpert et al., 1996introduce a process that
updates the movement estimate using a given error, the difference between predicted and sensory
results. Although the two updating processes are in different granularity: tee upeastimate
within one movement trial or between trials, they conceptually produce the same thing. A
parameter has been used to weight the error in each of the updating processes: a Kaknan gain
in the Kalman filter, and a learning ratelescribed above. Becaugbas a nature thét does
not havé the representation of the effect of memory of efratss reasonable to adtlinto the
Kalman filter to weight the error together wkh

Second, the major benefit of adding the parantgieto handle more casg@sallowing us
to simulate more human behaviors using memory of errors; the original Kalman filter uses only
the previous estimate to make the current estimate. The modified Kalman filter has both
inherited the capabilities of the origin&alman filter (Wolpert et al., 1996that simulates the
estimation process within a single trial of movement, and obtained a new way to weight the error

for updding the estimate of movemer{tderzfeld et al., 2014 so as to simulate the estimation
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between movement trials. In the following sentiwe examine the capabilities of the modified
Kalman filter by implementing it into a simulated lifting movement.
Adding an Estimation Process into the SMS

As shown in Figure 17, the original SMS generateslixel motor commands to
actuators within thenvironment. It is driven by 1) a higavel goaldirected action provided by
LI DAGs Action Selection modul e, and 2) the se
Memory. We added an estimation process into the SMS of LIDA to implement our modified
Kalman filter. The inputs to this estimation process comprise a copy of motor commands (the
efference copy) together with real sensory data. The newly added estimation process in the SMS
provides estimated sensory dat a attd otntbe cDMPoON e
Inside this new process, we implement two-suddlules, an internal model and a correction
process, which accomplish the prediction and correction steps of the modified Kalman filter
respectively. The above Egs. (12)~(14), (16), and (8pen detailed computational

expressions of the prediction and correction steps.

Stimulus Sensory Sensed data*
[ Memory |
Environment
A new XX
estimation _ | SMS

Internal state
Model

Qorrection

process 1™ © Predicted |
|
|
|
L

o —————

Estimatg

state

Motor Command
Generation

Action
Selection

A goal directed
* The sensed data has noise action

Motor commands

Figure 17.An estimation process in the Sensory Motor
System (SMS) of LIDA
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We have observed that the motor commands sent out to the actuators need time to be
executed, which means that at a given time, the motor commands and the sensory data input into
the estimation process may not be consistent. To deal with this, we have created a FIFO (First In
First Out) queue for storage of the input motor commands imt&aal model and set the
gueueds | engt h t o -semdelaybetWwebnuhe motdr tommmamds amnslth@ o n e
current sensory data used for the estimation.

Experiments

In this section, we test the performance of the estimation process of ourpmepdged
model in a simulated hand lifting action, by comparing its estimation process with human
behaviors reported from two previous studidsrzfeld et al., @14 Wolpert et al., 1996 The
comparison results support our new model 6s ab
within one trial of the movement but also between trials using memayms.

Experimental Setup
From recent reviews of the study of human hbftithg movementJohansson &
Flanagan2009 Wolpert et al., 201)1 we see that some research{@&arner, Schonfeldt
Lecuona, & Nowak, 20QFlanagan, Bittner, & Johansson, 2008nmalm, Schmitz, Forssberg,
& Ehrsson, 200phave supported the existence of a (forward) internal model occurring during
lifting. They hypothesize that people predict their lifting movements based on a system that
simulates the behavior of their body and their environrf\&aipertetal., 2011 and @At he CN
signals the sensory discrepancy between the predicted and actual sensory consequences of
a c t i(Jenmalm et al., 2006These hypotheses have led us to chbfisg as a reasonable

target movement to which to apply our model to simulate the human movement estimation

111



process, because the hypotheses support the primary mechanism of our model, a modified
Kalman filter.

We use a software robot simulatipouBot),a robot controller (the LIDA Framework
(Snaider et al., 20}, and a virtual experimental environment (Wel{eig/w.cyberbotics.cor))
to simulate a lifting movement. We consider this robotic simulation to be a-biéx&d software
agent. The LIDA Framework, youBot, and Webots have been introduced in detail in sections
4.4.1 and 4.4.2bove Here we present only a screenshot of the L-lix8Sed agent lifting an
object (Figure 18), so as to give an intuitive feel for the agent and its action. Specifically
experiment lifting refers to an action in which the agent grips an object, and moves it upwards.

The gripper tip locations serve as the hand locations.

Figure 18.A screen shot of a LIDAased agent lifting an object

We implement ounew model into the Sensory Motor System (SMS) of LIDA. In the
LI DA Frameworko6s Environment module (see Figu
Figure 8) by randomly setting their angles with a normal distribution: the mean is the actual
measue of the angle, and the STD is 0.1 degrees. In this way, uncertain sensory data is sent to
the estimation process. We use the added proc

during executing an action in the above uncertain situation.
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Implementatio of the Learning Rateg

As definedabove the value off depends on both the number of historical errors and the
switching time between these errors. Computationally, we created three variables stored in long
term memory: (1) the number of errarg2) the number of switchesand (3) the current error
typec. The first two variables ands have been introduced in above sectidrariablecis used
to determine whether the current error and the upcoming error have different types. If the two
erras have different types, one instance of eswitching will be accumulated to varialse
otherwise the value afdoes not change.

In the experiment, these three variables are retrieved once when the agent initializes a
lifting movement; thus, the vaduofd is calculated before the start of the movement and is
constant within one trial. Then, at the end of every lifting trial, the three variables are updated
based on the error between the estimated hand location and the actual hand location. yn this wa
the value off may change between trials.

Estimation without Memory of Errors

We prepare a computational experiment that is configured similarly to the human
experiment reported earli@Volpert et al., 1996 which studies the estimation process within a
single movement trial without being concerned about memory of errors.

As we have reviewed abovia the study of Wolpert and colleaguy@995, human
participants are asked to move their hand in dark, and they stop moving and report an estimated
hand location when they hear a tone. In our simulation, the agent does@otdel sensors
but senses the angles of its armds joints;
experiment, namely, that participants are without vision, and guided solely by proprioception.

Also, we created a program that sendsop sbmmand to the agent, instructing it to stop lifting.
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This program plays the role of fithe experi men
human experiment. In the human case, a pair of real and estimated hand locations was collected
at the enaf each movement trial. So in total, 2400 data pairs were collected (eight participants
with 300 trials each). I n our simulation, the
command at a different virtual tifiduring each lifting trial. Stop command®ayenerated so as
to give a range of lift durations from 6 to 65 units over 60 lifting trials. We consider the process
during the first 5 time units to be the syste
this interval. We performed 40 rep&ns of the above trial block (60 lifting trials with different
durations) for a total of 2400 data pairs of estimated hand location and actual location, in order to
achieve parity with the data collected during the human experiment.

On t he a drstit$edsss the stap eammand friagenvironment as an input to
its Sensory Memory; and then this command is sent to the Current Situational Model (CSM) as
part of the agentdés current understanding of
stop node in the CSM. A special Attention Codelet is implemented to attend to this stop node,
and form it into a special data structure, a coali(Baars, 2002Franklin et al., 2014 sending
the coalition then to the Global Workspace (GW). In the @ coalition containing the stop
node might win a competition among different coalitions, and thus be broadcast to the rest of the
system as the conscious content. There are multiple schemes stored in Procedural Memory (PM),
which are able to be instartia to behaviors. We prepared a special scheme that (1) will be
recruited by the arrival of the stop node in the conscious content, and (2) contains an action
component for executing a stop command. Then when the stop node comes through the

conscious contd to PM, this scheme is chosen and instantiated into a behavior that has an

® The agent executes at unit intervals in Webots virtual time.
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action component for stop. Finally when this behavior aragéise Sensory Motor System
(SMS), the currently running lifting movement is stopped.

In our simulation, the differences (errors) between real and estimated hand locations are
recorded as a function dfeduration of the hand lifting movement. The average error for each
moment (virtual time unit) is calculated, and is shown in Figure D®ement duration is
represented as a number of virtual time units. These simulated results are qualitatively similar to
the human dat@WNolpert et al., 1996 Ovenall, 1) the hand location is overestimated, and 2) the

error peaks in the first part of the movement (at virtual time 23), and then goes down.
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Figure 19 Simulated estimation errors
of hand lifting action on average
without memory of errors

Figure 20.Different propagation of
simulated estimation errors of hand
lifting action on average. The
propagation of errors (a) through (e) a
when experiencing different
environments that have the error
switching rates of 90%, 70%, 50%,
30%, and 10% respectively
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Estimation with Different Memory of Errors

In this subsection, we describe a computational experiment to examine the effect of
memory of errors on thestimation process of an agent. This effect has been examined in, and
supported by, human experimef(itierzfeld et al., 2014

In our experiment, the agent may lift three types of objects, which have different weights:
0.1kg, 0.2kg, or 0.3kg. We consider 0.2kg to be the default weight, and 0.1kg to be lighter and
0.3kg to be heavier. To artificially create errors as those thatweoduced in the human
experimentgHerzfeld etal., 2004 we f i rst configure the agentao
weight to a defalt value (0.2kg), and then let the agent lift either a lighter (0.1kg) or a heavier
object (0.3kg). In this way, the difference (error) occurs between the estimated hand location and
the actual one, and two types of errors, positive or negative, areaypadeng lighter or heavier
objects respectively.

Based on the fact that the sequence of errors stored in memory may switch between
positive and negative, we prepare five types of environment that the agent can experience: error
switching rates of 10%, 30960%, 70%, or 90% respectively.

To observe the effect of memory of errors, we first let the agent perform 30 lifting trials,
using either lighter or heavier objects, to create its memory of errors, and then we let it do one
lifting trial using a heavier object. We analyze the propagati@mulated estimation errors
during the last lifting trial when the agent has experienced a certain type of environment. In
detail, we let the agent perform the above 31 trials 25 times for each type of environment, and
calculated the estimation erras average during the 31st trial, as shown in Figure 20. Within
every 31 trials, the value dfchanges (see Sections 5.3.1 and 5.4.2), and its value is initialized to

zero when the agent starts a new sequence of 31 trials. The approach we are using here t
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explore the effect of memory of errors is based on the design of previous human experiments
(Herzfeld et al., 2014

As shown in Figue 20, the simulated estimation errors are different in different
environments. In detail, the errors are smaller when the environment the agent has experienced
has a lower switching rate of errdrpropagation (a) is largest and (e) is smallest; thates, th
error propagation peak is lower, and the decline after the peak is more rapid. This difference
demonstrates that when the environment is more gtdidging lower error switching radethe
estimated hand location is closer to the actual because the egyastinore from a given error
created using a heavier object. This effect of the environment (memory of errors) matches the
phenomenon found in the human experin{etarzfeld et al., 2024 In more detail, the value of
d is different while generating propagations of simulated estimation errors ((a) ~ (e)). For
example, in situation (a), the agent experiences a rapidly changing envirgemigstting rate
of 90%), so in Eq. (18) variable s is close to n, and then together with Eq. (17) the \dhlue of
nearly reaches its minimum, 0.5. On the other hand, in situation (e), because the agent
experiences a very steady environment (switching fat@%), we can infer that the valueaf
nearly reaches its maximum, 1.5. Similar computational inferences can be done for situations (b)
~ (d) as well. These inferences match the interpretation of Herzfeld and his colleagues for the
human result§2014). Therefore, we argue that we have simulated both the phenomenon and
causal factors present in certain human experin{elezfeld et al., 2014

Furthermore, for most propagations of simulated estimation errors shown in Figure 20,
from (b) through (e), their behaviors aienilar to study results of human behawjérolpert et
al., 1995: 1) the hand location is overestimated, and 2) the error peaks in the first part of the

movementand then goes down. The only exception is the propagation (a) in Figure 20, which
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does not exactly follow the human experimental rgMtlpert et al., 1996 although it shows
the overestimation of the hand location, its error simply goes up but does not have an ensuing
decline. We think this exception may be due to the fact that the 90% switching rate is an extreme
situation that is outside the scope of fiypothesigWolpert et al., 1996describing usual human
behavior. In this situation, the agent has experienced a very rapidly changing environment, so it
almost abes not believe the current senseddldtah e agent 6s knowl edge domi
estimation. That is why the decline does not appear after the peak, and the decline is the result of
atradeof f bet ween the agentodés knowl editggensory t he d
data.

In summary, together witthé experimental results shown abowe have shown that an
agent embedded with our newly proposed model is able to simulate both (1) human estimation of
its lifting movement within one trigMWolpert et al., 1995 and (2) human estimation between
lifting trials driven by memory of erroi$ierzfeld et al., 2014
5.5 Conclusion

We have presented a new model that estimates human movements using memory of
errors. Furthermore, we have computationally embedded this model into a cognitive model,

LIDA (Franklin et al., 2014 to simulate human se#fstimation of their movements.

118



6. Modeling Sensorimotor Learning in LIDA

Introduction

We studied the term fisensorimotoro from th
by Jean PiagéPiaget, Brown, & Thampy, 198Pulaski, 1980 As he reported, when an infant
was in his first two years dife, withinthesec al | ed fisensori motor stage,
mental mechanism for its overall interaction with the environment. This building process results
from several inherited elements, as well as his experience interacting with the environenen
ti me. I n our view, we consider this mental me
there is a kind of sensory motor system acting in the mind for the control of such behavioral
interactions. As the infant progresses to the higher cogmitivelopmental stages, more
complex mental processes and representations emerge, and the sensory motor system integrates
with them while continuing to handle the inte
mind, the sensory motor system coopexatéh other parts of mind, and directly interacts with
the environment.

In a recent review in neuroscien@@olpert et al., 201} the athors argued that there are
different task components necessary for motor learning, including relevant information
gathering, selection of strategies, and both predictive and reactive (motor) control mechanisms.
Furthermore, different learning processesaecessary to be applied on these components.
These necessities have been conceptually fulfilled in a cognitive architecture, LIDA.

We present a new model of sensorimotor learning in LIDA using the concept of
reinforcement learninglhis is the second iplementation of learning in LIDA, the first being
the modeling of attentional learning by Faghihi and collea{R@E?. The new model stores and
updates the rewards of pairs of data, motor commands and their contexts, using the concept of

reinforcement learning; thus the agent is able to generate (output) effective commands in certain
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contexts based on itewardhistory. Following Global Workspace Theory, the primary basis of
LIDA, the process of updatingwards n sensori motor | earning i s cI
content, the most salient portion of the agen
the Global Workspace module of LIDA.

Furthermore, researchers in neuroscience have recently pbiag the brain maintains
a memory of errors in sensorimotor l earning,
controls how much it is willing to learn from the current error through a principled mechanism
that depends on the history of past r (Herzfa@ld et al., 2014 Here the error is the difference
bet ween the brainds predict eedrcheremopdséedaand t he
concept, called error sensitivifierzfeld et al., 201dor learning ratéGonzalez Castro,
Hadjiosif, Hemphill, & Smith, 2014 to represent the peentage of error that will be added to
the predicted results during its updating.

The researchers found that the brain controls this error sensitivity depending on the
er r or 0 @Hertddaldstab, POy The brain learns more from the er@rsrror sensitivity
becomes high when their histories are likely to persist, and it learnlessor sensitivity
becomes low when the histories&vr e | i kel y t o change. MnAPersiste
historical errors that have the same sign, either both positive or both negative. Another relevant
work has been reported for the dynamic regulation of reinforcement learning parameters as well
(Khamassi, Enel, Dominey, & Procyk, 2018 their work, the learning rate is dynamically
tunedaa function of the environment's volatilit.y
(uncertainty) is similar to the error sensitd.i
stability. Inspired by these hypotheses, we introduce the effect of mememp into the

newly added learning mechanism, so as to implement a dynamic learning rate.
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In the next section, we introduce the work of modeling sensorimotoirigamLIDA.
Then in the following sectigrwe describe an addition of a dynamic learnig into this
learning mechanism. Following that, we provide current experimental results. Finally, we
conclulethe work and propose someetttions for further research.

Modeling Sensorimotor Learning in LIDA

Practically it is easy to study this modeling work by using an example that includes
concrete motor commands. Therefore, we simulated an autonomougFagahklin & Graesser,

1997 to implement our model of sensorimotor learning. The agent consists of a simulated robot
body and a controller implemented usthg computational LIDA frameworkSnaider et al.,
20117). This agent is designed to learn how to push a box properly.

Below we introduce the robot, the cooperation between the Sensory Motor System (SMS)
and some of LI DAG6s other modul eheimplemerdgatiothme vel op
of other relevant LIDA modules.

A Box Pushing Robot

We reuse a twavheeled robot provided by Webots, as shown in Figure 21. Its simulated

height is 0.08m and its radius is 0.045m. The motor commands of the robot are limited to going

forward, and turning left or right either by approximately 13 or 22 degrees

Figure 21 A pushing robot
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The robot has eight distance sensors. Each of these sensors has a field of view of about 15
degrees, and can detect objects within 0.3m. We simplified the sensors to detect objects in two
distance rages, one from Om to 0.15m (NEAR) and the other from 0.15m to 0.25m (FAR).

These sensors are arranged in an orthogonal pattern, with four on the front and two on each side.

I n addition, a touch sensor i s pl thergedsoron t he
built inside the robot ds bodthe sehsotsersdsthe when t h
agentdés | ocation and rotation; it is activate

during two consedive sensory cycles.
The Cooperation btween the SMS and Some Other LIDA Modules

There are two LIDA modules, Action Selection and Sensory Memory (see Figure 1), that
provide relevant information as separate inputs to the SMS. The SMS sends out motor
commands as its output to teevironment.The output of the SMS also modulates other parts of
LIDA. The LIDA-based agent is an autonomous agent that senses the effects of its own previous
output (motor commands), which influence other modules in LIDA.

We i mplemented a broadcasting channel from
SMS (Sensory Motor Memory in Figure 1), sendi
The arrival of this content cues (initializes) the update ofg¢h@rdsto motor commads in the
SMS so as to assign credit to effective commands. Note that the conscious content does not
directly provide theewards but it leads to the process of making and then updatingweeds
This is in keeping with GWT, in which the consciousteom broadcast from the GW modulates

learning in the rest of the system.
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The Development of the SMS
The SMS is the key module that was augmented when we implemented a model of
sensorimotor learning into LIDA. Prior this addition, motor commands waleitto a
mechanism (subsumption architecture style) implemented in the &dSould not be changed
at runtime. Now, the sensorimotor learning implemented into LIDA leads to a dynamic selection

of motor commands at runtime based on the newly expedeaeardsto the commands. Our

computational design is inspiredl99yTheéyflahadevan

added a learning aspect into the traditional subsumption architecture using the idea of
reinforcement learnin(Kaelbling, Littman, & Moore, 1996We improved theirs in two primary
ways: 1) we imbed the original learning withmore biologically inspired interpretation by
bringing it into LIDA to implement sensorimotor learningasically in LIDA, the arrival of new
conscious content issued from the Global Workspace module cues the creatingedimd) wbd
rewardsn the SMS, and 2) we implemented a new mechanism to control the rate of learning

(see this ithe below sectiofater).
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Figure 22:The design of a new SMS
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The design of the new SMS is shown in Figure 22. Compared to its previous version, we
have added three new components: (1) a sevedrdupdating processes, (2) a set@iards
databases, and (3) a set of errors databases. We introduce the first two components and the SMS
for modeling sensorimotor learning below, and leave the introduction of the errors databases for
adding a dynamic learning ratettee following ®ction. In bref, therewardsdatabase maintains
therewardvalues, while the errors database stores the histognairdprediction errors. Note
that in our work, the term error ravarg¢rathenot mea
an error here refers todlfdifference between the currently storeddardsand newly generated
rewards

In Figure 22, the SMS contains a (motor) command generation module depicted in the
upper part of the diagram and a letegm memory, Sensory Motor Memory (SMM), depicted in
thebottom part. The command generation module responds to the execution of a selected
behavior. That behavior results from the preceding Action Selection Module on the right, and
acts to specify a desired action in LIDA. General details about the behada@tdetture can be
found in(Franklin et al., 2014 In our case, the selected behavior is pushing a box. On the left
side of this module, a reactive motor control mechadisnkind of subsumption architectdre
is built in. The structure of theeuhanism implements a priority network that imposes an order
onthethreesubas ks of box pushing. The unwedger 06s be
both of these suppress the finderdés. A suppre
uppercase 8 the network diagram. Briefly, the agent begins by finding and closing a box, it
then continuously pushes the box, and finally

These subtasks are implemented by finite state machines (FSMs), whitlvaneby the
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current state of the environment sensed through the Sensory Memory (SM), and which may in
certain statesend out motor commands to theveonment.

Because of the implemented sensorimotor learning, the motor commands sent out from
the FSM ca now be dynamically chosen at runtime based on teeiards Each FSM has its
own rewardsdatabase maintained in SMM. Another part of learning is a setardupdating
processes, which are depicted on the right side of the command generation nmuekde. T
processes are driven by the conscious content
and each of them orte-one updates thewardvalues stored in eewardsdatabase for a certain
FSM.

The algorithm of theewardupdating process is inspired byl@arning(Watkins, 198%
this updating helps the agent propagate rewards in the tim&@heeeward update formula (see
Eq. (20)) uses a reward function Q(x, m) across states (x) and motor commands (m). This reward
function is defined by Q(x, m) =r 4+E(y), wherer is the immediate reward, and E(y) is the
expected reward of the state y riéisig from the command. E(y) is the maximum Q(y, m) over
all commands mi. is a discount parameter that is set to 0.9, which determines the importance of
future rewards. l'ts current value 0.9 is supp
results(1992).

Qx,ma Q( x, m)=Efy)T Q% m)) + (20)

During updating, since the current stored reward Q(y, m) has not yet converged to the
updated valu@ r + ~ E(y)0 the difference between them then provides the reward error in the
current stored rewards. This error is used to update the stored rewardsleaming rateb.
Currently, thevaluedfi s set to 0.5 as supported by Mahad

results(1992; but we willreplace it using a dynamic learning rate mechanism desdréed.
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In EQ. (20), immediate rewardg( ar e cal cul ated differently

behavior (see Figure 22). First, for finding a box, the agent is rewarded by +3 if it detects an
objectin its front NEAR zone during forward movement, or it is punisheelb/no object is

there. The defautewardis O if the agent is not moving forward. Second, for pushing a box, the
agent is rewarded by +1 if it is touching an object during its fawastion, or it is punished by

-3 if not touching. The defaufewardis O as before. Finally, for getting unwedged, the agent is
punished by3 if it is wedged while moving forward, or it is rewarded by +1 if no wedging
occurs. The defautewardis O if the agent is neither wedged nor moving forward.

When a FSM chooses its current command, in 90% of the time, given the same current
state, the motor command that has maximmewardvalues is chosen. In the remaining 10% of
cases, a motor command is randogtipsen. Choosing commands only based on teeiards
will never allow the exploration of new commands or new states. Sometimes, a random
command is chosen to ensure that all states in the state space will eventually be explored.
Suggested by Mahadevanda@onnell(1992, 10% is a good compromise between exploratory

and goaldirected activity, in line with their experimental results.

Implementation of Other Relevant LIDA Modules

We implemented several other relevant LIDA modules appropriate for the specification
of learning a box pushing task using sensorimotor learning. We list the implementation of each
module below, ordered accordito the three phases of the LIDA cognitive cycle:
understanding, attention, and action/learning. Figure 1 gives an intuitive feel for the relationship
of these modules. Details of these modules can be foufkdanklin et al., 2014

SensoryMemory (SM)
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SM gets sensory data froenvironment, structured as an array of Boolean bits,
representing the data status sensed from each of the sensors, either active or inactive. SM
provides the SMS with the current data.

Feature detectors (FDs) anBerceptual Associative Memory (PAM)

PAM stores a set of nodes, each of them representing a specific aspect of an
environmental state of concern to the agent. In our work, these nodes are distance nodes
including NEAR and FAR, a bumping node, and a stuadken FDs constantly obtain the current
state from the SM, activating relevant nodes in PAM.

The Current Situational Model (CSM) and structure building codelets (SBCs)

The CSM receives currently activated nodes
understandig of the current situation. SBCs reorganize data in the CSM, combining sets of
nodes and | inks into node/link structures. Th
current situation.

Attention codelets and the Global Workspace (GW)

We added m attention codelet concerned for the entire current situation in the CSM, and
bringing it into the GW. In the GW, the current situation may win the competition to produce the
agentds conscious cont ent .0néwlyomplememdthistimed om t he
broadcasts the conscious content to other modules including the SMS.

Procedural Memory (PM)

Following the broadcast of conscious content from the GW, a box pushing scheme is
recruited in the PM, and then a relevant behavior is instantiated ged¢esed by the Action
Selection module and sent to SMS, which initiates a motor command generation mechanism for

executing the box pushing in the SMS.
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A Dynamic Learning Rate in Sensorimotor Learning

In a study of sensorimotor learning, Herzfeld and collea{R@E) have hypothesized
that the brain not only learns from individual esrthat it has experienced before, but also
accumulates the errors into a memory; this memory of errors makes it possible for the brain to
control how much it will learn from a given current error. These historical errors help humans
determine whether thenvironment is steady or rapidly changing. Environmental stability thus
controls how much of a given error will be learned so as to affect the prediction of the upcoming
movement. This study has been described in dettikiprevioussectiors.

We interpret the above hypothesis as a computational mechanism. In the mechanism,
memory of errors controls the value ofda #fAl ea
typically the difference between sensory (actual) result and predicted (inteesigl) that will
be used in an update process of the predicted result.

In the work of modeling sensorimotor learning as described above, one step in updating
therewardof motor commands is to learn from tlesvarderror as expressed by Eq. (20). We
consicer thisrewardupdating process to be similar to the update process mentioned in the above
mechanism. Therefore, here we revise Eq. (20) by changirgy#iey of its parameteb from a
constant value to a dynamic value. Now the value of paramei#r be controlled by memory
of errors as introduced abofderzfeld et al., 2014

Note that theewardof motor commands manipulated in our development of
sensorimotor learning is different than the execution result (the movement) of motor commands
discussed by those neuroscience researchers in sensorimotor l@danizfgld et al., 2014 In
our sensorimotor learninggwardof motor commands is maintained inside an agent as the

judgment provided by thtserussrientd réssarcnersassumethat c on

128



the movement of motor commands occurs out si
environment. We consider thewardand the movement to be the two indicators for the
evaluation of a motor command. We ndtattboth of them are used to indicate aspects of motor
commands, and it seems they also have some similar principles, such as the way to update their
indications of motor commandsthey both use a type of learning rate to weight the updating of
the old knoviedge of the motor command by the new. Thus, we have integrated the idea of
memory of errors from Herzfeld and colleag(@814) into ourwork for updating theewardof
motor commands. We consider this a kind of indirect biological inspiration for our approach.
Next we provide the way in which memory of errors dynamically controls the value of
the parameteb. (This paramete is asimilar concept to that of the learning rdtpreviously
introduced, both of them are inspired by the concept of memory of @derzfed et al., 201%
but their computational implementations are slightly different.)
First, a (eward error is classifie@seither positive or negative, depending on the sign of
subtracting the old (stored®@wardfrom the neweward Then when our agehtis performed its
task (pushing box) for a while, having experienced a sequence of errors, the type of these errors
may switch differently, switching from slowly to rapidly; here we mean switching between
positive and negativeewarderrors, and the swahes occurs either frequently (i.e. "rapidly”) or
sporadically (i.e. "slowly"). Therefore, we have different types of memory of errors from the
viewpoint of their stability, based on the rate of switching.réeesent the number of errors the
agent hasxperienced by a variable and the number of switches between these errors by a
variables. These variables are integers starting from zero. Based on these two variables, we
represent the status of the memory of errors by a vatialslexpressed by E(1), and then

calculate the value d@fusing a sigmoid function assisted by the varialale expressed by Eq.
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(22). The parameteftunes the effect df and is set to 1.0 by defauitranges from 0.0 to 1.0
with a default value of 0.5.

t=ni 2*s (21)

r - (22)

Here we illustrate the behavior bfvith examples. If the agent has experienced many
errors that rarely switch, the valuerois large and the value efis small; therefore, the value of
t and thereforel aire largesobis close to 1.0. This means that a slowly switching environment
results in a high learning rate. On the other hand, if there are errors in memory but they have
switched signs very often, the values of b®#mndn are large, sbis negative with adrge
absolute value; thus the valuelok close to 0.0. This means a rapidly switching environment
leads to a low learning rate. These simulated behaviors qualitatively agree with the hypothesis
proposed by Herzfeld et 2014). Note that when there is no error in the memory yet, the value
of tis O becausa andsare 0, so the value 6fis 0.5, which is the same as the default value of
Finally, we add error databases to store the history of varialaled variables. These
databases are maintained in the SMM as shown in Figure 22. They interaeweitt
processes to (1) update many of errors based on the arrival of new errors, and (2) provide

current errords history bto dynamically contro

Experimental Results

This section describes an experimental study to evaluate this modeled sensorimotor
learninganditsdynami | earni ng rate. Figure 23 shows a b
environment and the agent in their initial configuration. The agent stands in a field containing

three movable boxes. They are surrounded by walls, a kind of obstacle that cannoéthe mov
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Figure23:A birddés eye view of the exp:

We are interested in the following questions: 1) How well will the action of pushing a
box be executed with sensorimotor learning; and 2) What is the effect of implementing the
dynamic learning rate into the learning?

We evaluate the performance of theipaishing using two criteria: 1) the average value
of therewardobtained so far by the pusher FSM (see Figure 22) inside thédagertonsider
pushing to be the core part of the box pushingdakd 2) the distance that the boxes have been
moved in the evironment.

We compare the box pushing performance across six different agent conditions: 1)
randomly chosen motor commands; 2) handcoded motor commagigsgBsorimotor learning
with constant learning rates of 0.1, 0.5, and 0.9 respectively; and @Ghgpaith a dynamic
| earning rate. Under the handcoded condition,
the agent is in certain given states: the finder module chooses forward motion if an object has
been detected to be near the front; the pushersesoforward if a bump event is detected; and
the unwedger module randomly chooses a command to turn left or right if the agent is stuck. In
other states, commands are randomly chosen.

In each condition, we perform 10 consecutive trials. A new trial béginsthe initial

configuration of the environment and the agent, butelardsof the motor commands and the
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rewarderrors are remembered throughout the trials. During each trial the agent runs 500

simulation steps, so under each condition, the agest5000 steps. In our case, each step is

simulated with 50 virtual time unidst he agent executes at unit i
We collected the first criterion of average value ofrtheardevery 50 steps of the

agent 6s r ugevaleowerke 0ollected\d@ingahe total of 5000 steps. Figure 24 plots

the average values under the six conditions. The plotted curves illustrate that 1) with

sensorimotor learning added, the pusher module obtainsrewsaedsthan the random agent

does,2) the pusher obtains the mostvardsunder the dynamic learning rate condition (except

during the initial steps), and 3) the handcoded agent outperforms the agents with the three

constant learning rage

—6— Dynamic
—— Handcoded
Constant (0.5)

------- Constant (0.9)
Ak Constant (0.1)
e Random

Average reward obtained

35 L L L L r r r L L r
0

Completedproportion of the 5008teps (percent)

Figure 24:The average values céwardsobtained by the pusher over 5000 steps. 1
vertical axis represents the sum ofrelvardsobtained by the pusher divided by the

number of steps the agent has run so far, and the horizontal axis represents the

completed proportion of the 5000 s$efor learning vs. random, p < 10for dynamic

vs. hanecoded, p < 10; for handcoded vs. constant learning rates, p 210

Regarding the second criterion, the sums of the distances that the boxes have been moved

during 10 trials under each thfe six conditions are displayed in Table 3. These show that 1) the
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agents with sensorimotor learning at the three constant rates have pushed the boxes farther than
the random agent, 2) using the dynamic learning rate yields the greatest box pushing,distan

and 3) the handcoded agent yields the second greatest distance.

Table 3: The sums of the distances that the boxes have
been moved during 10 trials

Learning Rate Distance
(m)
Dynamic 1.6002
Handcoded 1.2023
Constant (0.5) 0.9521
Constant (0.9) 0.6357
Constant (0.1) 0.3223
Random 0.2338

The results reported above support the assertion that sensorimotor learning improves the
performance of box pushing to a certain extent, and that adding the dynamic learning rate clearly
increases thaxtent. This increased improvement supports that memory of@&rmrolse agent 6 s
knowl edge of t he OJdehelpsihe agenmmenact vith itssehvadmrmentimbrg
effectively.

On the other hand, we think more evidence is needed to support thétgdesaleen
using a dynamic learning rate and the learning performance. Our motivation for modeling this
dynamic learning rate is the replication of some recently proposed hypotheses from neuroscience
regarding the effect of memory of err¢kerzfeld et al., 2014 In brief, the hypotheses suggest
that a dynamic learning rate helps an agent achieve a better adaptation to its envirasetent
on its memory of errors, but can that adaptation always be translated into improved

performance? We leave this as an issue for future work.
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We did not compare our results with the results obtained by Mahadevan and Connell
(1992 because they have different experimental motivations, and thus a different types of
results. They are interested in determining 1) the effect of decomposingéhall task into a set
of subsumption modules for learning, and 2) the performances of different learning algorithms,
while we are interested in the biologically inspired implementation of sensorimotor learning, and
adding a learning rate control meclsan inspired by the idea of memory of err@iferzfeld et
al., 2014,
Conclusions

In thischapter we implemented sensorimotor learnind-IDA (Franklin et al., 2014
This implementation follows the ideas of Global Workspace Theory, and uses reinforcement
learning. Furthermore, we added a dynamic learning rate into the learning, which afexbibly
a history of errors. Actually the approach to a variable learning rate has been explored before,
such as the principl e (Bowlindgi&Welaoso, @00}, whdednroar Fast 0
work the design distinctly relates to recent results on error memory from neuroscience. Our
preliminary experimental results suggest that sensorimotor learning using a dynamic learning
rate improveshe performance of action execution: the generated motor commands are more
effective. But as we have mentioned above, we think this conclusion needs more supporting
evidence.

One major limitation in the current project is that the motor commands oflibeare
very simple and the execution of each of these commands typically can be done within one step
of the agentdés run. That means the agent can
very welld its predicted result will very often be approxingtiie same as the sensory result.

Under this condition, it is hard to model, and so then study, the motor command error, the
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difference between the predicted and the sensory result. We plan to apply the currently
implemented LIDAbased controller to anathrobot that provides more complicated motor

commands, which we expect, will produce more obvious (larger) motor errors.
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7.Modeling Motor Priming in LIDA

Introduction

In the field of science, we propose a hypothesis about our study target, one particular
aspect of the world, and then constantly refine the hypothesis. Basically, a hypothesis is refined
based on the observations of our study target and the relevanhaafeifeom them. We design
and perform experiments about the study target, so as to observe it more deeply and broadly.

In a studyof human movemer(f. Schmidt, 2008, the autlor reported that the
participant s® mo v eaniersenhssrydatgesuggestiad tHgkiming e@aturshny
motor control. However, our current SMS can neither explain nor replicate the priming effect
Schmidt reported, so we improved the LIDfodel by extending its SMS to model motor
priming in LIDA.

The rext section introduces the detailstioé priming experiment with humans.
Following that,l introduceour design of the extended SMS. And then the simulated finger
movement is introducedrinally | givethe summary, the limitation, and the future work of the
model of the extended SMS.
Previouswork

In psychology, priming refers to an effect in whaxposure to one stimulus influences
the response to a later stimulus. For example, if a person sees a picture of a fish and soon
theraafterreads the wordbanlo, then he isnorelikely to interpretthe wordas the bank a river,
as opposed ta financial institution. In general, priming can affeagkdecisions people make,
for object identification, motor contrahnd manyothers

This experimen(T. Schmidt, 200Pwas designed to measuy®ming effect for human
movement. Participants were required to view a white dot in the center of a dark background

screen, and put their right index finger on the dlben, they were asked to respond to the
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appearance of a target with ajspeecified color (redpy moving the right index finger onto the
target. In detailanexperimeral trial consisedof four phases: fixation, primes, blank, and
masks (Se€igure 25. In the fixation phase, a white stimulus, the fixation point, was shown in
the center of the screen, and the participant was required to initiate the experiment by placing his
right index finger there. The fixation point remair@dthe screethrougloutall four phases.

During the primes phase (10 ms in length), two disk stimuli (one red and one green), the
primes, were showim opposite quadrants of the display, on a rising diagonaHigeee 25.
Then the blank phadeegan, consisting o& specifieddelayfrom 0 to 50 m&t 10 ms interva,
during whichthe primes disappeared, leaving only the dark background and the fixation point.
Finally in the masks phase, two annular stimuli (one red and one green), the maskispwere s
at the same positions as the primes; they remained on the screénturgil par t i ci pant 0s
reached the targeitlask colors were either switched (inconsistent) with respect to prime colors

or notswitched (consistent).

. . . . o
. . . . o

Fixation Primes Blank Masks

Figure 25 Four phases in the priming experiment
The participantsd finger movemdhS$chnidt,aj ect o

2002. When primes and masks were consistent, the finger moved directly toward the target (red)

mask stimulus. However, when primes and masks were inconsistent, the movement initially
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started in the direction of the noarget (green) mask stimulus but then wasected and moved
to the target (red) one.
Schmidt explained why the Awrongo finger m
inconsistent situatiorwherethe participants first movedwardthe nontarget mask stimulus,
though the goal was moving to theget ong2002. He hypothesized théte previously
perceived sensory data, the target (red) praffects thdatermovemenin the masks phase.
Since in the inconsistent situation, the target (red) prime stimulus and tkiargeh (green)
mask stimulus were displayed at the same locations, participants were affected to move toward
the nontarget (green) mask stimulus in the beginning of the n@is&se. This is a typical
priming effect occurring in motor control that we wolile to replicate
Furthermore, Schmidt found that in the inconsistent situation, the magnitude of the
priming effect, that niwr othestimuldsionsetadyrictbpomy movi n g
(SOA) of prime and mas002). SOA refers to the time between the primes onset and the
masks onset. Since the blank phase is specified between 0 ~ SO between 10 ~ 60 ms.
The average finger movement trajectories are shown in Figir&8egarding the inconsistent
trajectories, their maximum amplitude represents the magnitude of the priming effect, which
increases with the SOA. This is anothepaortant feature of the priming effect that wish to
replicate.
In Figure 26 eachmovement trajectorgveragas calculated based on about 1,000 trials.
The movement is considered to have arrived when the digateeyetis shorter than 10 mm.

More details of the experiment can be consulted in its original réEpdBichmidt, 2002

! Figure 26 is reused frofiT. Schmidt, 200Rwith permission.
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This is the figure taken frof@chmidt, T. (2002). The finger flight: Reattime motor
control by visually masked color stimuli. Psychological Science, 13(2)1182

Figure 26 Time course of the euclidean distance between finger and target (red) mask
the fingermovements. Trajectories are alignedpoime onset to show that the early phase
of the movements were similar in all conditions. Vertical lines indicate onsets of primes
(solid) and masks (dotted). Standard errors (between trials) at the sample times of max
amplitude and arrival are showBOA = stimulus onset asvnchronv of prime and mask.

The experimental results reported abfveSchmidt, 200Phave been cited in the study
of visual priming(F. Schmidt, Weber, & Schmidt, 2018afazoli, Di Filippo, & Zoccolan,
2012, unconsciousesponsefo primes(Deplancke, Madelain, Gorea, & Coello, 2p18nd the
channeffor nonconscious visioriBreitmeyer, 201 In addition,the further studies have
pursuedn different directionsincludingthe studies of two sequential prim@yainger,
Scharnowski, Schmidt, & Herzog, 2Qlahddifferentstimuli (chromatic vs. achromatic stimuli)
used in updating target locatifidane, Wade, & MaWyatt, 201).

The design of theextended SMS

In the design of theriginal SMS, sensory dataerceived beforéhe star@action the

prime, would not have been involved in the process of action execlihioa.he priming effect
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