How Minds Work
Brains, Ontologies & Virtual Machines

Stan Franklin
Computer Science Division &
Institute for Intelligent Systems
The University of Memphis
Question: How do minds work? What would an answer be like? That depends on the level of granularity.
Granularity in Science

<table>
<thead>
<tr>
<th>Field</th>
<th>Subfield</th>
<th>Example Entities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neuroscience</td>
<td>Neuroanatomy</td>
<td>Hippocampus, amygdale, neocortex</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>Neural tissue</td>
<td>Neuropil, cortex, layer, cluster</td>
</tr>
<tr>
<td>Neuroscience</td>
<td>Neurons</td>
<td>Cell body, dendrites, axon, membrane</td>
</tr>
<tr>
<td>Biology</td>
<td>Cell biology</td>
<td>Membrane, nucleus, mitochondria, organelle</td>
</tr>
<tr>
<td>Chemistry</td>
<td>Organic chemistry</td>
<td>Alcohol, acid, amine, phosphate, amino acid</td>
</tr>
<tr>
<td>Chemistry</td>
<td></td>
<td>Elements, molecules</td>
</tr>
<tr>
<td>Physics</td>
<td>Nuclear physics</td>
<td>Atoms, protons, electrons, neutrons</td>
</tr>
<tr>
<td>Physics</td>
<td>Sub-atomic physics</td>
<td>Quarks, bosons, hadrons, leptrons</td>
</tr>
</tbody>
</table>
Levels of Granularity

Each level has its own

- Entities
- Relations
- Processes
- Theories

Each level

- Supports the level above it
- Needs its own theories to explain it
- Theories are in terms of its own ontology
Ontology?

• Philosophy—the study of the nature and relations of being
• Computer Science—a specification of the objects in a system and their relations
• How Minds Work—a particular collection of entities, relations, processes
A Simple Ontology
Types of Machines

• Matter manipulating machines — *diggers, drills, cranes, cookers*, …
• Energy manipulating machines — *drill, cookers, transformers, steam engines*, …
• Information manipulating machines — *thermostats, controllers, most organisms, operating systems, compilers, organizations, governments*, …
Computational Virtual Machines

<table>
<thead>
<tr>
<th>Type</th>
<th>Virtual Machine Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application program</td>
<td>Microsoft Word, Internet Explorer, computer games, IDA</td>
</tr>
<tr>
<td>Developmental environment</td>
<td>JDK, JRE, Java Gnome, IntelliJ IDEA, etc.</td>
</tr>
<tr>
<td>Operating system</td>
<td>Berkeley Unix, Windows XP, Mac OS X, Red Hat Linux</td>
</tr>
<tr>
<td>Microcode</td>
<td>Specific to each machine</td>
</tr>
<tr>
<td>Hardware</td>
<td>Mainframe, PDP-11, IBM-PC, Mac Powerbook, Dell, etc.</td>
</tr>
</tbody>
</table>
Virtual Machines

• Can be implemented on
 – Physical machines
 – Other virtual machines

• Composed of abstract entities — words, sentences, numbers, bit-patterns, trees, procedures, rules, etc.

• Have causal powers

• Obey internal laws, but not physical laws
Things vs Agents

• Things (*molecules, rocks, planets, etc.*) react to physical forces acting on them

• Autonomous agents (*animals, mobile robots, software agent, etc.*) initiate (goal constrained) actions

• Autonomous agents have control structures, that is, *minds*
Mind and Information

• Minds are control systems
• Control systems must *produce, process* and *use* information
• What’s out there? (*perception*)
• What do I do about it? (*action selection*)
• How do I do it? (*procedural control*)
Minds as Virtual Machines

- Not every mind is a virtual machine — a thermostat’s is purely causal
- The mind of any mobile robot or software agent is a virtual machine implemented on another virtual machine
- The minds of humans or animals are virtual machines implemented on brains
Virtual Machine on a Brain

• Entities include *qualia, objects, categories, feelings, intentions, internal images, internal speech, etc.*

• Relations include *cause, before, on top of, isa, is not, can drink from, etc.*

• Processes include *perception, memory, action selection, learning, etc.*

• Note the partial ontology just created
The Major Structures of the Neuron

The neuron receives nerve impulses through its dendrites. It then sends the nerve impulses through its axon to the terminal buttons where neurotransmitters are released to stimulate other neurons.
Synapses

- Pulse - chemical - wave
- Excitatory or inhibitory
- Neurotransmitter reuptake
- Signal vs modulator
- Learning via strengthening
- Decay with disuse
Brains, Ontologies & Virtual Machines

Neurons in Action

• Neurotransmitters cross synaptic clefs changing the voltage of the neuron
• Internal voltage exceeds threshold
• Triggers pulse down the axon
• Releases neurotransmitter at each synaptic clef
About Neurons

• Little used neurons tend to die
• Learning by
 – Strengthening synapses
 – Adding new synapses
 – adding new neurons
• Interneurons vs projection neurons
The Triune Brain

- **Reptilian brain**
 snakes, lizards – hunger, temperature control

- **Limbic system**
 cats, rats – mood, memory

- **Neocortex**
 primates – social, planning
Lobes of the Human Neo-cortex

- Parietal Lobe
- Occipital Lobe
- Cerebellum
- Frontal Lobe
- Temporal Lobe

Brain Stem
A Cognitive “Theory of Everything”

- Sensation
- Perception
- Feeling & Emotion
- Working memory
- Episodic memory
- Consciousness
- Learning

- Deliberation
- Volition
- Automization
- Action Selection
- Problem solving
- Self
- Metacognition
Assigned Readings

Your "3-Brains-in-One" Brain
http://www.psycheducation.org/emotion/triune%20brain.htm (take the tour)
Email and Web Addresses

• Stan Franklin
 – franklin@memphis.edu
 – www.cs.memphis.edu/~franklin

• “Conscious” Software Research Group
 – www.csrg.memphis.edu/