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Abstract

Human spatial representations are known to be remarkably
robust and efficient, and to be structured hierarchically. In
this paper, we describe a biologically inspired computational
model of spatial working memory attempting to account for
these properties, based on the LIDA cognitive architecture. We
also present preliminary results regarding a virtual reality ex-
periment, which the model is able to account for, and the quan-
titative properties of the representation.
Keywords: Spatial memory, LIDA, cognitive architecture,
grid cell code

Introduction
In this paper, we describe a partially implemented spatial
memory model based on the LIDA (Learning Intelligent Dis-
tribution Agent) cognitive architecture, focusing on allocen-
tric representations and short-term working memory, and at-
tempt to verify the assumptions underlying this model by ac-
counting for error patterns made by human subjects in spatial
memory tasks in a 3D virtual reality.

Since Baddeley and Hitch’s influential working memory
model (A. D. Baddeley, Hitch, et al., 1974; A. Baddeley,
2003), a number of computational cognitive models of work-
ing memory have been developed, many of which include
spatial representations. Most of such models focus on pro-
cessing spatial stimuli in two dimensions, such as arrays of
objects on a screen (Winkelholz & Schlick, 2007; Fischer,
2001). To our knowledge, however, short-term memory in
three dimensions has received little attention from the cogni-
tive architectures community.

LIDA (Franklin, Strain, Snaider, McCall, & Faghihi, 2012;
Franklin & Patterson Jr, 2006) is a conceptual and partially
implemented computational cognitive architecture based on
Baars’ Global Workspace Theory (GWT) (Baars, 2002) of
functional consciousness in brains. Three properties of
LIDA make it well-suited to modelling spatial memory: spe-
cific and detailed subdivisions of memory systems, cogni-
tively plausible memory representations based on Sparse Dis-
tributed Memory (SDM1) (Baars & Franklin, 2003; Snaider

1SDM is a mathematical model of human long-term memory
based on large, sparse vectors, proposed by (Kanerva, 1988)

& Franklin, 2012), and a functional consciousness mecha-
nism central to LIDA’s cognitive cycles, making use of a
short-term memory capacity which enables access between
cognitive functions that are otherwise separate, and which in-
cludes spatial representations.

Working Memory in LIDA
LIDA’s cognitive cycles, corresponding to the action-
perception cycles in neuroscience (Freeman, 2002; Fuster,
2002), consist of three phases. The understanding phase in-
cludes sensing the environment, detecting features, recogniz-
ing objects and categories, and building internal representa-
tions. The attending phase is responsible for deciding what
portion of this representation should be attended to and broad-
cast to the rest of the system, making it the current contents
of consciousness. This portion allows the agent to choose
an appropriate action to execute in the action phase. These
phases, their timing, and empirical support have been de-
scribed elsewhere (Madl, Baars, & Franklin, 2011; Franklin,
Madl, D’Mello, & Snaider, in review).

During the understanding phase, percepts are recognized
based on LIDA’s perceptual knowledge base, the Perceptual
Associative Memory (PAM), which is a semantic net con-
taining nodes with activation connected by links. Recog-
nized objects, categories, etc. are stored in LIDA’s precon-
scious Working Memory, and are represented by structures of
PAM nodes and links between them (Franklin & Patterson Jr,
2006). These PAM node structures - parts of the PAM se-
mantic net - are hierarchical, modal representations similar to
Barsalou’s perceptual symbols (Barsalou, 1999).

Since in a complex environment, the internal representa-
tion of the current situation could be too complex to process
by the action selection system at once, LIDA agents need
to select the most important or urgent portions of the rep-
resentations. Following GWT, this selection is implemented
as a ’competition for consciousness’. The most salient (im-
portant, urgent) PAM node structures win this competition,
are broadcast globally - bringing their contents to ’conscious-
ness’2 -, and allows agents to select the most appropriate ac-

2Percepts which have been broadcast to other modules of LIDA,



tion. The number of representations (PAM node structures)
that the broadcast can contain is limited to C, a model param-
eter - such as e.g. C = 4±1 in accordance with human work-
ing memory capacity limits (Cowan, 2010) - which plays a
role in the recall of spatial information.

Spatial Working Memory

Figure 1: Cognitive map representations. A: screenshot of the
virtual reality environment. B: Top view of the environment.
Thin ellipses: sub-maps. Red, blue, green axes: reference
frames for the entire environment (aligned to boundaries),
and for the two sub-maps (aligned to intrinsic structure). C:
The hierarchical cognitive map structure. Red, blue, green
circles: map and submaps; black circles: objects. Links con-
vey containment and rotation information; place nodes con-
tain position information. D: Location representation by grid
and place nodes. Top row: three grid nodes, their phases at
each point (hot colors - high values), and the value of the com-
posite code (right). Grid nodes convey activation to all place
nodes. The ‘self’ node (bottom) monitors all place nodes and
attaches to the winning node with the highest activation.

Neural basis. Spatial memory in LIDA is inspired by the
computational properties of the hippocampal-entorhinal com-
plex (HEC), the neural structure responsible for spatial mem-

and can be acted upon, are called functionally conscious, as in GWT

ory in brains (Moser, Kropff, & Moser, 2008). Two types
of neurons are important for this purpose: place cells, hip-
pocampal neurons firing in specific spatial locations and thus
suggested to encode a ‘cognitive map’, and grid cells, entorhi-
nal neurons firing at multiple regularly positioned locations.

The HEC is uniquely suited for representing space. Grid
cells employ a surprisingly precise and noise-robust, self-
correcting, modular code, which can produce exponentially
small error at asymptotically finite information rates and
is thus a ‘good code’ in the sense of Shannon’s theorem
(Sreenivasan & Fiete, 2011). The grid cell code resembles
a residue number system (RNS), which allows very fast, par-
allel, carry-free computation and recall (since each digit of
the representation can be processed independently from the
others) and degrades gracefully (Yang & Hanzo, 2001). Our
high-level model of this grid code attempts to exploit these
properties, which have the further advantage of fitting neatly
into LIDA’s SDM-based memory systems - in which error
tolerance and graceful degradation are important, because
of possible interference between memories, and an RNS
with small parts can reduce storage requirements (Snaider &
Franklin, 2012), and, finally, the carry-free code is easily im-
plementable on parallel hardware.

The readout network for making the grid cell representa-
tion explicit is suggested to be implemented by hippocam-
pal place cells, neurons with spatially localized firing. Most
place cells provide unambiguous location estimates; however,
they encode locations via Classical Population Codes, and
thus their capacity grows only linearly with the number of
neurons, instead of exponentially as is the case with grid cell
coding (Fiete, Burak, & Brookings, 2008).

Finally, the hippocampal-entorhinal map contains repre-
sentations on different scales, and is fragmented into inde-
pendent representations or reference frames (Derdikman &
Moser, 2010; Sato & Yamaguchi, 2009).

Location Representation. For representing a LIDA
agent’s spatial location, we use N ‘grid nodes’, which are
types of PAM nodes employing modular representation. Each
grid node α has a period λα (the same for all dimensions) and
encodes a spatial vector xxx as a spatial phase with respect to
this period: χd = xd mod λα, where xd is the position in di-
mension d - based on the formalization by (Fiete et al., 2008).
Each grid node represents a grid lain over the environment
(see Figure 1D for a plot of the spatial phases χd for three
grid node periods λα). However, one grid node cannot unam-
biguously represent a location, having multiple maxima.

In order to represent unambiguous locations, N grid nodes
are used to represent each location as a composite grid code:
L(xxx) = {χ1, ...,χN}. At initialization, each grid node is ran-
domly assigned a period λα and a phase χχχα,0. The phase is
relative to the reference frame provided by the boundaries
of the immediate environment (similarly to biological grid
cells). When the agent moves by a vector vvvt in any direc-
tion at timestep t, the phase of each grid node is updated:
χχχα,t = (χχχα,t−1 + vvvt)mod λα. This mechanism resembles rep-



resenting a large number by separately storing each digit in
a register, as in a fixed-base code (FBC) such as the decimal
system. In this case the location representation L(xxx) would
be a set of registers together representing a decimal number.
However, there are some key advantages of this modular RNS
coding (see previous section and Results).

Grid nodes alone could not represent a ‘cognitive map’ -
although the composite code using multiple nodes can rep-
resent unique locations, it is aperiodic, non-Euclidian, and
cannot easily be used for metric comparisons. For repre-
senting a map, the model uses a number of ‘place nodes’,
readout nodes arranged over the environment, with a den-
sity/resolution depending on the size of the map. Multiple
such maps can be built in a hierarchical fashion. To be able
to decode the modular grid code, all grid nodes are connected
to each place node via PAM links. Each place node i is as-
signed a constant phase χχχpn,i calculated from the position it is
representing in space, and an activation of 0. Upon each up-
date, grid nodes asynchronously send an activation depending
on the phase difference between the grid node and the place
node: ∆a = (1− |χα,t − χpn,t |/λα)N−1. The LIDA-agent’s
‘Self’-node (Ramamurthy, Franklin, & Agrawal, 2012) im-
plements a winner-take-all mechanism, and will be linked to
the place node with the highest activation3. This is an opti-
mized mechanism for the maximum likelihood position esti-
mation in (Sreenivasan & Fiete, 2011), sacrificing some bio-
logical plausibility4 for computational efficiency.

Distances within place nodes can be estimated either by
propagating activation through the place node network over
links (see Results), or by structure building codelets creat-
ing explicit spatial links between object nodes if required
(McCall, Franklin, Friedlander, & DMello, 2010).

Environment Representation. To represent an environ-
ment, PAM node structures representing objects (obstacles,
landmarks, goals, etc.) in LIDA’s working memory need
associations with spatial locations. This is implemented by
high-level feature detectors connecting such representations
to the appropriate place node using a PAM link, similarly to
the connection with the ‘Self’ node to a place node. These
feature detectors find the right place node to connect to based
on the objects perceived distance 5.

As described in the previous section, LIDA’s attention and
functional consciousness mechanism lets multiple represen-
tations compete against each other in order to select the most
important information to act upon. The broadcasts contain
one to five (see capacity limit below) node structures, which
in turn are hierarchical, tree-like representations containing
objects and associated spatial information, i.e. arrays of place

3The ‘Self’ node receives links from all place nodes, but only
projects back to the winning place node. This winning link is up-
dated whenever a different node exceeds the activation of the win-
ning node. This is more efficient than lateral inhibition

4Apart from the simplified connectivity, we have also removed
the circular normal and Gaussian functions, and constrained the
RNS variables to integers in order to fit the integer SDM

5For now, feature detectors receive the true distances explicitly.

nodes. Such a node structure containing spatial information is
called a ‘cognitive map’ structure in LIDA, and is allocentric
(relative to aspects of the environment, instead of the agent).

Multiple cognitive map structures can be used within the
same environment in a hierarchical fashion (there can be
maps and sub-maps on different scales, and containment rela-
tions between them). There is some evidence that the human
cognitive map is hierarchical, organized according to clus-
tered objects or landmarks (Hirtle & Jonides, 1985; Sato &
Yamaguchi, 2009). Hierarchical representations are a crucial
part of the model, as is the limited information carried by the
conscious broadcast. We strengthen these assumptions using
human behaviour data in the Results section.

Containment relations between map structures can be seen
as reference frames. Sub-maps have to be anchored to the
environment structure of the parent map, such as to bound-
aries. Relative position information is given by which place
node the link between the two maps is connected to, whereas
relative rotation is stored within the link - see Figure 1. If
information from multiple sub-maps is needed for problem
solving (e.g. shortcut or multi-goal route planning), the sub-
maps are rendered onto the parent map in order to be able to
use a common reference frame.

Methods
Participants. Sixty subjects were recruited on the online
crowd-sourcing platform Amazon Mechanical Turk, which
has been argued before to be well-suited as a source of sub-
jects for experimental and behavioural research (Paolacci,
Chandler, & Ipeirotis, 2010; Mason & Suri, 2012). Sub-
jects indicated their consent on the form, and received a small
monetary reward for participation.

Procedure, Materials, and Design. Participants were free
to perform the experiment on their own computer (the only
requirement was a WebGL-enabled browser). After reading
instructions, they were asked to complete 15 trials, lasting
about an hour in total. At the start of each trial, a 3D virtual
environment6 was displayed within the browser which sub-
jects could freely explore, consisting of a large square hori-
zontal floor patterned like concrete and constrained by four
walls, and a number of buildings within the walls. Each trial
consisted of four phases: 1) free exploration, 2) questions
about the distances between buildings, 3) a map recall task in
which subjects had to move icons of the buildings into their
remembered positions, creating a schematic 2D map, and 4)
the travelling salesman problem (TSP), in which they were
asked to mark all buildings using the shortest path visiting all
buildings and returning to the first one. The 15 trials consisted
of five blocks of three, with the number of displayed buildings
starting at four and increasing after each block up to a total
of eight displayed buildings. Within a block, there were three
trials, a random trial in which the buildings were placed ran-
domly (but with a minimal distance ensuring that no random
clusters emerged), a visually clustered trial in which build-

6Using the CopperLicht engine, http://ambiera.com/copperlicht



ings were also placed randomly, but visually similar build-
ings were grouped (all buildings of a type, e.g. skyscrapers
or churches, were adjacent), and a distance clustered trial in
which some buildings were placed closely next to each other
to build a random number of clusters.

Participants estimated building distances, and their recalled
building positions on the map recall task, were recorded af-
ter each round. Since these building positions were drawn on
a separate 2D screen and used arbitrary pixel distance units
instead of 3D distance, they were linearly transformed (trans-
lated, scaled and rotated) to best conform to the real posi-
tions using procrustes analysis. Fourteen participants were
excluded from the analysis, because their estimated distances
had negligible correlations to the real distances (the corre-
lation threshold was set at r >= 0.2). All reported subject
errors are squared distances (or the sum of squared distances
for multiple buildings) in the 3D engine’s coordinate system.
Model parameters were fitted using coordinate descent.

Results and Discussion
Robustness and performance
The outlined implementation of the grid code inspired RNS
can represent an exponentially large range of distances, simi-
larly to the range in a FBC. The maximum representable dis-
tance is the least common multiple of all phases λal pha, or
in the best case Dmax = (∏N

α=1 λal pha)−1 (Fiete et al., 2008).
However, introducing redundancy by only using a subinterval
within this representable range, the modular code becomes
highly robust to noise, because the representation of each lo-
cation xxx within the subinterval maps to highly different lo-
cation representations L. A representation L′ in which each
phase χλ is corrupted by independent noise - e.g. interference
effects in SDM - can be fully recovered, as long as the differ-
ence is smaller than the largest correctable error - see Figure
2A for numerical results of error robustness in our model, and
(Sreenivasan & Fiete, 2011) for an analytical treatment of er-
ror correction capability of the grid cell code.

The second advantage is performance - RNS codes can per-
form addition, subtraction, and multiplication in linear time.
In contrast, FBCs need polynomial time for multiplication.
For addition - the most frequently required operation on spa-
tial information (e.g. for path integration or multi-goal path
planning) -, both RNS and FBC require linear time, but the
latter require carry operations, which makes the computa-
tion slower. Figure 2B compares the number of operations
required for adding two randomly generated numbers in the
range of 0 - 10.000m in the two representation systems.

A third advantage of the described RNS representation is
the ease of parallelization - since each phase can be indepen-
dently processed. LIDA’s SDM has been implemented both
for parallel and for GPU computation.

Distance errors
Judgement (and recall) of spatial distance information is im-
perfect. To be able to interpret our data, we will assume the

Figure 2: Robustness and performance of RNS-like represen-
tations. A: errors of location representations in the described
grid node representations for different grid node numbers and
levels of multiplicative Gaussian noise (in a square environ-
ment of 1km2). B: number of required operations to add two
integers of various sizes in an RNS and FBC representation

noise or error to depend on the absolute distance. We will
assume a linear relationship; although this is just an approx-
imation, it provides a reasonably good fit for most distance
judgement data in virtual environments (Lampton, McDon-
ald, Singer, & Bliss, 1995; Waller, 1999).

Except for the 14 excluded subjects, participants were able
to judge distances in the virtual environment: the average cor-
relation between real and estimated distances was rdist = 0.82
(σ = 0.10). The distance errors were correlated with the
real distance, with an average rerr = 0.56 (σ = 0.18), and
a linear model error = c1 ∗dist + c2 could explain R2 = 0.35
(σ = 0.19) proportion of the variance on average. Note that
there was a very high amount of random variance due to the
guesses entered when subjects did not remember the distance
- exponential models did not perform significantly better than
the linear model (error = c1∗distc2 +c3 : average R2 = 0.39).

Position errors
The hierarchical cognitive map model predicts that errors
should depend linearly on map size. They should be smaller
on small maps, since the positions are stored relative to the
map reference frame instead of a global reference frame (if
the latter was the case, the cluster sizes would not matter,
only the distances from the walls).

Figure 3 shows the dependence of the squared position er-
rors on cluster sizes (approximated as the area of the smallest
rectangle enclosing all buildings within the cluster), which is
approximately linear. The position errors are strongly corre-
lated with cluster size (r = 0.82), and a linear model explains
R2 = 0.67 proportion of the variance. Together with the dis-
tance errors depending linearly on the distance, this is an in-
dication of building positions being stored relative to intrinsic
cluster structure, not relative to the global reference frame.

The green line in Figure 3 shows the moving average of the
errors of a simulated agent, representing environments in the
way described in the Introduction. Three parameters were
used for fitting this dataset, two defining an additive Gaus-
sian error µε,σε assigned to the place nodes and designed to
model readout error, and a random error added at the moment



of conscious recall in the Global Workspace, in the range de-
fined by recall error ξ. Since Gaussian noise is added to each
readout place node, the total error depends on the number of
place nodes involved in the representation, which depends on
the cluster (map) size. The blue line shows a moving aver-
age of subject errors (with the smoothing parameter S = 100
for both). Since the errors are random, the exact correspon-
dence between the two changes. The linear interpolation of
the model errors explains R2 = 0.38. The correspondence be-
tween the data and the model substantiates the hierarchical
storage of positions instead of a global reference frame.

smoothed subject error
model - linear interpolation
smoothed model error

Figure 3: The average squared building position errors, de-
pending on the area of the cluster the building is part of. Blue
line: moving average of position error data from all subjects.
Green line: moving average of model position errors (with
the same smoothing parameter S = 100 for both). Black line:
linear interpolation of model errors

Working memory capacity
The model predicts that map errors should increase linearly
with each new building (after each block), since the addition
of a new position to be recalled adds a new source of error,
and the total error is a linear function of the individual build-
ing errors. However, the working memory capacity limit of
4±1 (Cowan, 2010) implies that there should be a non-linear
increase in errors when the number of entities on the map ex-
ceeds four. In this case we would expect a guessing behaviour
which ensures guesses to be farther than a minimum distance
D from other buildings. Thus, with each guess, the space
available for further guesses is constrained by a constant fac-
tor, leading to an exponential increase in error.

Figure 4 shows the map errors depending on the number of
buildings. Additionally, the following model formalizing the
constrained guessing idea is fitted to this data using a least-
squared errors approach (x being the number of buildings):

M(x) =

{
k ∗ x+d if x <= 5
a∗ xb + c if x > 5

(1)

To aid visualization, the linear part is plotted in red, and
the exponential part in green. The fitted model explains R2 =
0.982 proportion of the variance on average (σ= 0.017). This
suggests that the spatial working memory capacity limit used

in the model is realistic (and that constrained guessing might
explain the behaviour beyond the limit).

In LIDA, conscious broadcasts are limited to C node struc-
tures (a model parameter). The C node structures with the
highest activation are broadcast consciously. Node structures
beyond C get omitted; no spatial information is available to
the model beyond C buildings, forcing it to guess (the con-
strained guessing strategy is not part of the LIDA framework
implementation). This is illustrated by the horizontal black
lines in Figure 4, which show the error rates under random
guessing (approximated numerically). Performance is sta-
tistically indistinguishable from random guessing when the
number of buildings exceed 5, in accordance with previously
suggested working memory capacity limits (Cowan, 2010).

number of buildings
er
ro
r (
*1
0̂
5)

Figure 4: Map errors depending on the number of buildings.
The blue errorbar plot and blue circles show the map error
(sum of squared position errors of buildings), the other colors
show the fitted nonlinear function (eq. (1)), consisting of a
linear component (red; increasing because with more build-
ings there are more distances to misjudge) and an exponential
component (green; increasing superlinearly because above 4
buildings, the spatial information exceeds the capacity limit
of spatial working memory). Horizontal dashed line: random
guessing performance. Vertical dashed line: limit of the num-
ber of recallable buildings with better than random accuracy

Travelling Salesman Problem errors
The described model can solve the TSP with its simple nav-
igation heuristic, the nearest neighbor strategy, by spreading
activation from the self node and from the place nodes as-
sociated with buildings, across the network of place nodes
(Figure 1). The links connecting the place nodes propagate
a fraction of the activation determined by the link weight.
Thus, place nodes being on the shortest path between two
buildings, or between a building and the self node, receive
the highest amount of activation, can be selected by an atten-
tion codelet, and be included in the conscious broadcast for
action selection (Franklin et al., 2012). Although this process
would yield a better performance if performed hierarchically
(starting with a rough solution and then refining it), the sim-
ple, flat nearest neighbour strategy explained the subjects data
well, with R2 = 0.92 (σ = 0.05) across trials (the Percentage-
Above-Optimal metric was used to compare the subjects - and
the models - performance against the optimal solution). The



success of this simple heuristic might be due to the TSP be-
ing more difficult in navigation space than in the usual visual
setting (Wiener, Ehbauer, & Mallot, 2009). There was no sig-
nificant performance difference between the trial types.

Conclusion
We have presented a partially implemented, biologically in-
spired model of allocentric spatial working memory, argued
for its robustness, and strengthened its major assumptions (ro-
bust modular coding, hierarchical representation using intrin-
sic reference frames, and limited capacity) using a simulation
and subject data from a virtual reality experiment.
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