
LIDA: A Working Model of Cognition 
 

Uma Ramamurthy (urmmrthy@memphis.edu) 
University of Memphis, Memphis, TN 38152, USA 

 
Bernard J. Baars (baars@nsi.edu) 

The Neurosciences Institute, San Diego, CA 92121, USA 
 

Sidney K. D’Mello (sdmello@memphis.edu) 
University of Memphis, Memphis, TN 38152, USA 

 
Stan Franklin (franklin@memphis.edu) 

University of Memphis, Memphis, TN 38152, USA 
 
 

Abstract 

In this paper we present the LIDA architecture as a working 
model of cognition. We argue that such working models are 
broad in scope and address real world problems in 
comparison to experimentally based models which focus on 
specific pieces of cognition.  While experimentally based 
models are useful, we need a working model of cognition that 
integrates what we know from neuroscience, cognitive 
science and AI. The LIDA architecture provides such a 
working model. A LIDA based cognitive robot or software 
agent will be capable of multiple learning mechanisms. With 
artificial feelings and emotions as primary motivators and 
learning facilitators, such systems will ‘live’ through a 
developmental period during which they will learn in multiple 
ways to act in an effective, human-like manner in complex, 
dynamic, and unpredictable environments.  We discuss the 
integration of the learning mechanisms into the existing IDA 
architecture as a working model of cognition. 

Introduction 
Many of the current models of cognition are experimentally 
based models.  Experimental evidence is the standard in 
science, though such experimentally testable models 
provide few variables to accomplish cognitive processes 
such as perception and action-selection. Most of these 
models do not have the broad spectrum to address all 
aspects of cognition. We suggest that workability must be 
combined with empirical evidence in models of cognition. 
Such working models of cognition (WMC) are complex, 
covering a vast breadth of cognitive processes including 
perception, working memory, transient episodic memory, 
action-selection, emotions and feelings, declarative 
memory, and various forms of learning. These working 
models also provide testable hypotheses to assist us in 
building better software agents and cognitive robots that can 
adapt and ‘live’ in complex worlds. Here we present one 
such working model of cognition. 

The Learning Intelligent Distribution Agent (LIDA) 
architecture was designed to be consistent with what is 
known from cognitive science and neuroscience. In addition 
to being a computational architecture, it is a working model 
of human cognition. We’ll describe below the LIDA 
architecture and its human-like learning capabilities. 

The LIDA Technology 
LIDA provides a working conceptual and computational 
model of cognition. She is the learning extension of the 
original IDA system implemented as a software agent. IDA 
‘lives’ on a computer system with connections to the 
Internet and various databases, and does personnel work for 
the US Navy, performing all the specific personnel tasks of 
a human (Franklin 2001). With the help of feelings and 
emotions as primary motivators and learning facilitators, the 
LIDA architecture adds three fundamental, continuously 
active, learning mechanisms to our existing IDA system that 
underlie much of human learning: 1) perceptual learning, 
the learning of new objects, categories, relations, etc., 2) 
episodic learning of events, the what, where, and when, 3) 
procedural learning, the learning of new actions and action 
sequences with which to accomplish new tasks. 

The LIDA Architecture 
The LIDA architecture is partly symbolic and partly 
connectionist with all symbols being grounded in the 
physical world in the sense of Brooks (1990). The 
mechanisms used in implementing the several modules have 
been inspired by a number of different ‘new AI’ techniques 
(Drescher 1991; Hofstadter & Mitchell 1994; Jackson 1987; 
Kanerva 1988; Maes 1989). The architecture is partly 
composed of entities at a relatively high level of abstraction, 
such as behaviors, message-type nodes, emotions, etc., and 
partly of low-level codelets (small pieces of code). 
Describes below are LIDA’s primary mechanisms. 
Perception, episodic memory, procedural memory, and 
action selection will be revisited in greater length later on in 
the paper. 
Perception. LIDA perceives both exogenously and 
endogenously with Barsalou’s perceptual symbol systems 
serving as a guide (1999). The perceptual knowledge-base 
of this agent, called perceptual associative memory, takes 
the form of a semantic net with activation called the slipnet, 
a la Hofstadter and Mitchell’s Copycat architecture (1994). 
Nodes of the slipnet constitute the agent’s perceptual 
symbols, representing individuals, categories, and perhaps 
higher-level ideas and concepts. Pieces of the slipnet 



containing nodes and links, together with perceptual 
codelets with the task of copying the piece to working 
memory, constitute Barsalou’s perceptual symbol simulators 
(1999). Together they constitute an integrated perceptual 
system for LIDA, allowing her to recognize, categorize and 
understand. 
Workspace. LIDA solves routine problems with novel 
content. The current percept (slipnet nodes over threshold 
with their appropriate links) are written to the workspace, 
which roughly plays the same role as the preconscious 
buffers of human working memory. Perceptual codelets 
write to the workspace as do other, more internal codelets. 
Attention codelets (see below) watch what’s written in the 
workspace in order to react to it. Part, but not all, of the 
workspace, called the focus, by Kanerva (1988) is set aside 
as an interface with transient episodic memory (TEM) and 
declarative memory (DM). Items in the workspace decay 
over time, and may be overwritten.  

Another pivotal role of the workspace is the building of 
temporary structures over multiple cognitive cycles (see 
below). Perceptual symbols from the slipnet are assimilated 
into existing relational and situational templates while 
preserving spatial and temporal relations between the 
symbols. The structures in the workspace also decay 
rapidly.  
Episodic Memory. LIDA employs sparse distributed 
memory (SDM) as its major associative memory. SDM is a 
content addressable memory that, in many ways, is an ideal 
computational mechanism for use as a long-term associative 
memory (Kanerva 1988). The LIDA architecture uses 
variants of SDM to implement episodic memory 
(Ramamurthy, D’Mello, & Franklin 2004). 

It has been hypothesized that humans have a content-
addressable, associative, transient episodic memory (TEM) 
with a decay rate measured in hours (Conway 2001, 
Franklin et al 2005). Humans are able to recall in great 
detail events of the current day – where they park their cars, 
whom they met that morning, what they discussed, what 
they had for meals, etc. We hypothesize that for cognitive 
agents to recall such details of episodes while they interact 
with and adapt to their dynamic environments, they need a 
TEM. Therefore episodic memory in LIDA consists of a 
TEM and a declarative memory. 
Consciousness Mechanism. LIDA’s ‘consciousness’ 
module implements Global Workspace theory’s (GWT) 
processes by codelets, small pieces of code each running 
independently. These are specialized for some simple task 
and often play the role of a daemon watching for an 
appropriate condition under which to act.  The apparatus for  
‘consciousness’ consists of a coalition manager, a spotlight 
controller, a broadcast manager, and of attention codelets 
that recognize novel or problematic situations.  

Codelets also have activations. Upon noting a suitable 
situation, an attention codelet will increase its activation as a 
function of the match between the situation and its 
preferences. This allows the coalition (collection of related 
codelets), if one is formed, to compete for ‘consciousness.’ 
Such coalitions are initiated on the basis of mutual 

associations between attention codelets. During any given 
cognitive cycle (see below), one of these coalitions with the 
highest average activation finds its way to ‘consciousness,’ 
chosen by the spotlight controller. GW theory calls for the 
contents of ‘consciousness’ to be broadcast to every codelet 
(Baars, 1988). The broadcast manager accomplishes this. 
Procedural memory. Procedural memory in LIDA is a 
modified and simplified form of Drescher’s schema 
mechanism (1991), the scheme net. Like the slipnet of 
perceptual associative memory, the scheme net is a directed 
graph whose nodes are (action) schemes and whose links 
represent the ‘derived from’ relation. Built-in primitive 
(empty) schemes directly controlling effectors are analogous 
to motor cell assemblies controlling muscle groups in 
humans. A scheme consists of an action, together with its 
context and its result. At the periphery of the scheme net lie 
empty schemes (schemes with a primitive action, but no 
context or results), while more complex schemes consisting 
of actions and action sequences are discovered as one moves 
inwards. In order for a scheme to act, it first needs to be 
instantiated and then selected for execution in accordance to 
the action selection mechanism described next. 
Action selection. The LIDA architecture employs an 
enhancement of Maes’ behavior net (1989) for high-level 
action selection in the service of feelings and emotions. 
Several distinct feelings and emotions operate in parallel, 
perhaps varying in urgency as time passes and the 
environment changes. The behavior net is a digraph 
(directed graph) composed of behaviors (instantiated action 
schemes) and their various links. As in connectionist 
models, this digraph spreads activation. The activation 
comes from three sources: from pre-existing activation 
stored in the behaviors, from the environment, and from 
feelings and emotions. To be acted upon, a behavior must be 
executable, must have activation over threshold, and must 
have the highest such activation. 

The LIDA Cognitive Cycle 
Be it human, animal, software agent or robot, every 
autonomous agent within a complex, dynamical 
environment must frequently and cyclically sample (sense) 
its environment and act on it, iteratively, in what we call a 
cognitive cycle. We suspect that cognitive cycles occur five 
to ten times a second in humans, cascading so that some of 
the steps in adjacent cycles occur in parallel (Baars & 
Franklin 2003, Franklin et al 2005). Seriality is preserved in 
the conscious broadcasts. We now describe the cognitive 
cycle dividing it into nine steps. In each step of the cycle, 
the role of feelings and emotions is emphasized by being 
italicized.  
1) Perception. Sensory stimuli, external or internal, are 
received and interpreted by perception, producing the 
beginnings of meaning. Note that this stage is preconscious. 
Pertinent feeling/emotions are recognized along with 
objects and their relations by the perceptual associative 
memory system, entailing simple reactive feelings based on 
a single input or more complex feelings requiring the 
convergence of several different percepts over multiple 
cycles. 



2) Percept to preconscious buffer. The percept, including 
some of the data plus the meaning, as well as possible 
relational structures, is stored in preconscious buffers of 
LIDA’s working memory (workspace) by perceptual 
codelets. In humans, these buffers may involve visuo-
spatial, phonological (Baddeley & Hitch 1974), and other 
kinds of information. Feelings/emotions are part of the 
preconscious percept written during each cognitive cycle 
into the preconscious working memory buffers. 
3) Local associations. Using the incoming percept and the 
residual contents of the preconscious buffers, including 
emotional content, as cues, local associations are 
automatically retrieved from transient episodic memory 
(TEM) and from declarative memory and stored in long-
term working memory. Feelings/emotions are part of the 
cue that results in local associations from transient episodic 
and declarative memory. These local associations contain 
records of the agent’s past feelings/emotions in associated 
situations. 
4) Competition for consciousness. Attention codelets view 
long-term working memory, form coalitions, and compete to 
bring relevant, urgent, or insistent events to consciousness. 
Present and past feelings/emotions influence this 
competition for consciousness. Strong affective content 
strengthens a coalition’s chances of coming to 
consciousness. 
5) Conscious broadcast. A coalition of codelets, typically 
an attention codelet and its covey of related information 
codelets carrying content, gains access to the global 
workspace and has its informational contents broadcast.  

In humans, this broadcast is hypothesized to correspond 
to phenomenal consciousness. The conscious broadcast 
contains the entire content of consciousness including the 
affective portions. The contents of perceptual associative 
memory are updated in light of the current contents of 
consciousness, including feelings/emotions, as well as 
objects, categories and relations (perceptual learning). The 
stronger the affect, the stronger the encoding in memory. 
Transient episodic memory is also updated with the current 
contents of consciousness, including feelings/emotions, as 
events (episodic learning). The stronger the affect is, the 
stronger the encoding in memory. (At recurring times not 
part of a cognitive cycle, the contents of transient episodic 
memory are consolidated into long-term declarative 
memory.) Procedural memory is updated (reinforced) with 
the strength of the reinforcement influenced by the strength 
of the affect (procedural learning). 
6) Recruitment of resources. Relevant schemes respond to 
the conscious broadcast. These are typically schemes whose 
context is relevant to information in the conscious 
broadcast. Thus consciousness solves the relevancy problem 
in recruiting resources. The affective content 
(feelings/emotions) together with the cognitive content, help 
to attract relevant resources (schemes, processors, neural 
assemblies) with which to deal with the current situation. 
7) Setting goal context hierarchy. The recruited schemes 
use the contents of consciousness, including 
feelings/emotions, to instantiate new goal context 
hierarchies (copies of themselves) into the behavior net, 
bind their variables, and increase their activation. It is here 

that feelings and emotions most directly implement 
motivations by helping to instantiate and activate goal 
contexts, and by determining which terminal goal contexts 
receive activation. Other, environmental, conditions 
determine which of the earlier goal contexts receive 
additional activation. 
8) Action chosen. The behavior net chooses a single 
behavior (scheme, goal context), from a just instantiated 
behavior stream or possibly from a previously active stream. 
This selection is heavily influenced by activation passed to 
various behaviors. This activation was influenced by the 
various feelings or emotions. Each selection of a behavior 
includes the generation of an expectation codelet (see the 
next step). 
9) Action taken. The execution of a behavior (goal context) 
results in the behavior codelets performing their specialized 
tasks, having external or internal consequences, or both. 
LIDA is taking an action. The acting codelets also include at 
least one expectation codelet whose task it is to monitor the 
action, attempting to bring to consciousness any result of the 
action, particularly any failure. 

Perceptual Learning 
Perceptual associative memory (PAM) is implemented in 
the LIDA architecture as a slipnet, a semantic net with 
passing activation (Hofstadter and Mitchell 1994). The 
nodes in the slipnet may represent primitive feature 
detectors (perceptual codelets), individuals (e.g. a person or 
particular object), a category (e.g. chair, woman, animal), or 
a relation (e.g. cup on table). An important aspect of PAM is 
that regardless of the semantics of a particular item 
(whether, conceptually, it is a feature detector, an object, a 
category or an abstract relation or concept) all are 
represented in the slipnet as nodes of identical structure. 
Nodes in the slipnet can also represent relations between 
objects, including spatial, temporal or causal relations. Such 
abstract relation nodes (e.g. on(cup, table)) must include in 
its structure placeholders for arguments for its various roles, 
for example, which cup, which table. Please don’t be misled 
by the symbolism we’ve just used. These nodes are not 
symbolic, but are still grounded in reality by their ultimate 
connection to the primitive feature detectors. They may best 
be thought of as perceptual symbol simulators in the sense 
of Barsalou (1999). In this way they may be viewed as 
templates for structure building in the workspace 
(preconscious working memory buffers) as in the Copycat 
architecture (Hofstadter and Mitchell 1994).  

An incoming stimulus, say a visual image, is descended 
upon by a hoard of perceptual codelets (primitive feature 
detectors). Each of these codelets is looking for some 
particular feature (a certain color, a line at a particular angle, 
etc) or more complex features (a T junction, a red line). 
Upon finding a feature of interest to it, the codelet will 
activate an appropriate node or nodes in the slipnet. 
Activation is passed. The slipnet will eventually stabilize. 
Nodes with activations over threshold, along with their 
links, are taken to provide the constructed meaning of the 
stimulus.



Perceptual learning in the LIDA model occurs with 
consciousness. This learning is of two forms, the 
strengthening or weakening of the base-level activation of 
existing nodes, as well as the creation of new nodes and 
links. Any existing concept or relation that appears in the 
conscious broadcast (Step 5 of the cognitive cycle) has the 
base-level activation of its corresponding node strengthened 
as a function of the arousal of the agent at the time of the 
broadcast. The base-level activation curve of a slipnet node 
is modeled along a saturating, sigmoid curve,  

A new individual item that comes to consciousness 
results in a new node being created, together with links into 
it from the feature detectors of its features. Such a new item 
gets to consciousness by means of some new-item attention 
codelet that notices a collection of active features in the 
percept without a common object of which they are features. 
Such a new item-attention codelet might be looking for such 
features as spatial contiguity, common motion, and 
persistence over time. In this latter case, perceptual learning 
of new objects become somewhat top-down, depending also 
on local associations from transient episodic memory during 
prior cognitive cycles. If this attention codelet succeeds in 
bringing the resulting new item to consciousness, a node for 
it is created in PAM by the perceptual learning mechanism.  

Here’s how a new category may be formed. If a 
similarity-attention codelet notices in long-term working 
memory (see Step 4 of the cognitive cycle) two items with 
several common features, and succeeds in bringing this 
similarity to consciousness, a new category is created by the 
perceptual learning mechanism with is-a links into the new 
category from each of the items.  

New relation nodes occur similarly, in a manner 
suggested by the work of Doumas and Hummel (2005).  
New relations are learned into nodes in PAM from 
structures built in the preconscious working memory buffers 
by perceptual codelets, that instantiate existing relation 
nodes from PAM and bind objects to their arguments. These 
new relation nodes are learned when relation-noting-
attention codelets succeed in bringing the new relations to 
consciousness, that is when the relation ‘pops into mind’ or 
‘occurs to me.’ New links are learned along with the nodes. 
The initial base-level activation of new nodes, be they 
object, category or relation nodes, are assigned as a function 
of arousal at the time of the conscious broadcast (Step 5 of 
the cognitive cycle above). 

One may object that all these new nodes and links, 
sometimes created as often as several times a second, might 
prove computationally intractable. But nature is often 
profligate; witness the vast numbers of acorns or sperm 
produced, so few of which come to any fruition. Here we 
have another example of such profligacy in perceptual 
learning. We are saved from computationally intractability 
by the rapid decay of almost all of the new nodes and links, 
by virtue of their inverse sigmoid decay curves. Only those 
new nodes and links that come to consciousness often 
and/or at high arousal levels have much chance of not 
quickly decaying away. In the AI literature, a similar 
mechanism is referred to as generate and test. In the LIDA 
model, perceptual learning generates trial nodes (combined 
feature detectors, individual items, categories, relations, 

etc.) and links, and rapidly discards those that don’t quickly 
prove useful.   

In keeping with Barsalou’s Perceptual Symbol Systems 
(1999), the nodes and links in LIDA’s slipnet form 
perceptual symbol representations that carry forward 
throughout the entire architecture, including working 
memory, episodic memory (with a detour back through 
perception), long-term working memory, ‘consciousness,’ 
procedural memory (the scheme net) and action selection. 
There are no amodal representations. 

Episodic Learning 
In the LIDA model memory is hypothesized to interact with 
conscious events for its normal functioning. Within the 
context of episodic memory we are concerned with 
interpreting the contents of ‘consciousness’ so as to be able 
to encode the what, where and when of each cognitive cycle 
into episodic memory. LIDA is endowed with two types of 
episodic memories, one with a small capacity for short term 
retention of detailed sensory-perceptual information 
(transient episodic memory, TEM) and the other for long 
term storage of lifelong events and facts (declarative 
memory, DM). In the LIDA model, declarative memory 
(DM) is composed of autobiographical memory, and 
semantic memory. Autobiographical memories are typically 
reexperienced in vivid detail when accessed while semantic 
memories are mainly comprised of fact or belief. Semantic 
memories typically lack a particular source with a time and 
place of acquisition. Semantic memories are believed to 
have lost their association with their original 
autobiographical source. 

Episodic learning in the LIDA architecture results from 
events taken from the contents of ‘consciousness’ being 
encoded in our modified sparse distributed memory (SDM) 
representing TEM. The major modification of SDM consists 
of replacing its binary content space with a ternary content 
space by including a don’t-care symbol, ‘*’, while retaining 
the SDM binary address space. This modification allows 
more efficient encoding of partially specified events, as well 
as more efficient recall using partial cues (Ramamurthy, 
D’Mello, and Franklin 2004).  

Each primitive feature detector in the slipnet corresponds 
to a set of dimensions of the vectors to be stored in SDM. 
Therefore, the dimensionality of the sparse distributed 
memory space is roughly equivalent to the number of 
primitive feature detectors of the agent. Perceptual symbols 
(slipnet nodes) making up an event in ‘conscious’ contents 
are traced back along slipnet links to primitive feature 
detectors. Using their correspondence with dimensions, a 
vector is formed and written to transient episodic memory 
(TEM) implemented as a modified SDM, thus effecting 
episodic learning within each cognitive cycle. The recall of 
events (local associations) from TEM and from DM will 
require routing the read vector through perceptual 
associative memory so as to recover the corresponding 
perceptual symbols. This rerouting is suggested by reverse 
neural pathways from the frontal cortex back to the various 
anterior sensory cortices, found in human nervous systems 
(Koch 2004, p. 245). 



In addition to the encoding of the sensory perceptual 
details of each episode manifested through the contents of 
consciousness, this episodic learning includes the encoding 
of feelings and emotions, and of actions taken by the agent. 

Periodically, and offline, the not yet decayed contents of 
TEM are consolidated into declarative memory (DM) 
(autobiographical memory plus semantic memory) which is 
also implemented as a modified SDM system. Conway 
stipulates that as an aftermath of the consolidation process, 
previously volatile events may acquire high stability and 
durability (2001). This scenario mirrors our view of the still 
controversial question of how human episodic memory 
works. 

Procedural Learning 
Procedural memory in the LIDA architecture bears close 

similarity to perceptual associative memory. Recall that 
objects, categories, and relations in perceptual memory were 
all represented by nodes. In a similar vein, behavior 
codelets, behaviors, and behavior streams all share the same 
representation in what we call a scheme (motivated by 
Drescher’s schema mechanism (1991)). A scheme consists 
of an action, together with its context and its result, as well 
as a base-level activation that estimates the likelihood of 
that result occurring as a result of taking the action in its 
context.  Each scheme should be thought of as a template 
for a behavior codelet, a behavior, or a behavior stream. The 
context of a scheme corresponds to preconditions, its results 
to post conditions. Pre and post conditions of a scheme are 
simply nodes in the slipnet that are appropriately grounded 
to their primitive feature detectors. Just as the primitive 
feature detectors form the periphery of the slipnet in 
perceptual associative memory, primitive schemes, that is 
actions with no specified context or result, constitute the 
periphery of procedural memory (called the scheme net). 
These primitive schemes are also referred to as empty 
schemes. As one moves inwards into the scheme net more 
complicated schemes are discovered that are templates for 
behavior codelets executing in parallel (behaviors) or in 
sequence (behavior streams).  

In accordance with global workspace theory, Step 6 of the 
cognitive cycle serves to recruit internal resources with 
which to deal with the current situation. Procedural 
memory, the scheme net, receives the broadcast of the 
contents of consciousness. Schemes are activated by these 
contents in proportion to how well the contents coincide 
with the context of the scheme, and how well the results of 
the scheme satisfy some current goal as specified by 
feelings and emotions within the contents. After activation 
passes in the scheme net and it stabilizes, those schemes that 
are over threshold are instantiated into behavior codelets, 
behaviors, or behavior streams in the behavior net.  
Instantiation includes the binding of variables in instantiated 
behavior codelets, as well as the assignment of both 
environmental and motivational activation. 

We propose a combination of both instructionalist as well 
as selectionist motivated agendas (not discussed here) for 
procedural learning, with consciousness providing 
reinforcement to actions. Reinforcement is provided via a 

sigmoid function such that initial reinforcement becomes 
very rapid but tends to saturate. The inverse of the sigmoid 
function that produces the reinforcement curve, serves as the 
decay curve. Therefore, schemes with low base level 
activation decay rapidly, while schemes with high 
(saturated) base level activation values tend to decay at a 
much lower rate.  

Empty schemes, each containing only a primitive action 
with no context and results, lie at the periphery of the 
scheme net. Each scheme has two types of activation, a 
base-level activation and a current activation. The base-level 
activation measures the reliability of the scheme, that is, the 
likelihood of its result occurring when the action is taken 
within its context. The current activation measures the 
applicability of the scheme to the current situation. For 
learning to proceed initially, the behavior network must first 
select the instantiation of an empty scheme for execution. 
Since an empty scheme has no context, it is assumed to be 
always applicable to the situation at hand. Before executing 
its action, the instantiated scheme (behavior codelet) spawns 
a new expectation codelet. After the action is executed, this 
newly created expectation codelet focuses on changes in the 
environment as a result of the action being executed, and 
attempts to bring this information to consciousness. If 
successful, a new scheme is created, if needed. If one 
already exists, it is appropriately reinforced. Conscious 
information just before the action was executed becomes the 
context of this new scheme. Information brought to 
consciousness right after the action is used as the result of 
the scheme. The scheme is provided with some base-level 
activation, and it is connected to its parent empty scheme 
with a link.  

Collections of behavior codelets form behaviors. This 
corresponds to collections of processors forming goal 
contexts in global workspace theory. The behavior codelets 
making up a behavior share preconditions and post 
conditions. Certain attention codelets notice behavior 
codelets that take actions at approximately the same time, 
though perhaps in different cognitive cycles. These attention 
codelets attempt to bring this information to consciousness. 
If successful, a new scheme is created, if it does not already 
exist. If it does exist, the existing scheme is simply 
reinforced, that is, its base-level activation is modified. If a 
new scheme has to be created, its context is taken to be the 
union of the contexts of the schemes firing together. The 
result of the new scheme is the union of the results of the 
individual schemes. Additionally, this new scheme is 
provided with some base-level activation and is connected 
by links to the original schemes it includes. If this 
composite scheme executes in the future it will pass 
activation (positive or negative) along these links. 

Collections of behaviors, called behavior streams, with 
activation passing links between them, correspond to goal 
context hierarchies in global workspace theory. They can be 
thought of as partial plans of actions. The execution of a 
behavior in a stream is conditional on the execution of its 
predecessor and it directly influences the execution of its 
successor. When an attention codelet notices two behavior 
codelets executing within some small time span, it attempts 
to bring this information to consciousness. If successful, it 



builds a new scheme with links from the first scheme to the 
second, if such a scheme does not already exist, in which 
case the existing scheme is simply reinforced. If a new 
scheme has to be created, its context is the union of the 
contexts of the first scheme and the second, excluding the 
items that get negated by the result of the first. Similarly the 
result of the new scheme formed will be the union of both 
results, excluding the results of the first that are negated by 
the result of the second.  Using such a learning mechanism 
iteratively, more complex streams can be built. Again, these 
newly created schemes can decay and disappear rapidly if 
they don’t prove useful. It’s another example of generate 
and test at work. 

Discussion 
With the design of three continually active incremental 
learning mechanisms we have laid the foundation for a 
working model of cognition that produces a cognitive 
architecture capable of human like learning. The 
architecture can be applied to control autonomous software 
agents as well as autonomous robots “living” and acting in a 
reasonably complex environment. The perceptual learning 
mechanism allows each agent controlled by the LIDA 
architecture to be suitably equipped so as to construct its 
own ontology and representation of its world, be it artificial 
or real. And then, an agent controlled by the LIDA 
architecture can also learn from its experiences, via the 
episodic learning mechanism. Finally, with procedural 
learning, the agent is capable of learning new ways to 
accomplish new tasks by creating new actions and action 
sequences. With feelings and emotions serving as primary 
motivators and learning facilitators, every action, exogenous 
and endogenous taken by an agent controlled with the LIDA 
architecture is self-motivated.  

The LIDA architecture has vast breadth covering many 
aspects of cognition including perception, memory 
processes, emotions and action-selection. It is a complex 
model with many parameters. While it may not be possible 
to test so many parameters of a working model, we argue 
that such working models are needed to address real world 
problems. In such a working model, we have been able to 
integrate three type of learning modulated by feelings and 
emotions, illustrating how cognitive science principles can 
be applied towards the hard problems of AI. Several tasks 
could be learned concurrently with transfer of knowledge to 
new tasks. A number of the old, hard AI problems would 
potentially be solved. 

References 
 
Baars, B. J. 1988. A Cognitive Theory of Consciousness. 

Cambridge.: Cambridge University Press. 
Baars, B., and Franklin, S. 2003. How conscious experience 

and working memory interact. Trends in Cognitive 
Science 7:166-172. 

Baddeley, A.D., & Hitch, G.J. 1974. Working memory. In 
G.A. Bower (Ed.), Recent advances in learning and 

motivation (Vol. 8, pp. 47–90). New York: Academic 
Press. 

Barsalou, L. W. 1999. Perceptual symbol systems. 
Behavioral and Brain Sciences 22:577–609. 

Brooks, R. A. 1990. "Elephants Don't Play Chess", Robotics 
and Autonomous Systems (6), 1990, pp. 3–15. 

Conway, M. A. 2001. Sensory-perceptual episodic memory 
and its context: autobiographical memory. In Episodic 
Memory, ed. A. Baddeley, M. Conway, and J. Aggleton. 
Oxford: Oxford University Press. 

Doumas, L. A. A., and J. E. Hummel. 2005. A Symbolic-
Connectionist Model of Relation Discovery. In 
Proceedings of the XXVII Annual Conference of the 
Cognitive Science Society.  

Drescher, G. 1991. Made Up Minds: A Constructivist 
Approach to Artificial Intelligence, Cambridge, MA: 
MIT Press. 

Hofstadter, D. R., and M. Mitchell. 1994. The Copycat 
Project: A model of mental fluidity and analogy-making. 
In Advances in connectionist and neural computation 
theory, Vol. 2: logical connections, ed. K. J. Holyoak, 
and J. A. Barnden. Norwood N.J.: Ablex. 

Franklin, S. 2001. Automating Human Information Agents. 
Practical Applications of Intelligent Agents, ed. Z. Chen, 
and L. C. Jain. Berlin: Springer-Verlag. 

Franklin, S., B. J. Baars, U. Ramamurthy, and M. Ventura. 
2005. The Role of Consciousness in Memory. Brains, 
Minds and Media 1:1-38, pdf. 

Jackson, J. V. 1987. Idea for a Mind. Siggart Newsletter, 
181:23–26. 

Kanerva, P. 1988. Sparse Distributed Memory. Cambridge 
MA: The MIT Press. 

Koch, C. 2004. The Quest for Consciousness: A 
neurobiological approach. Englewood, Colorado: 
Roberts & Co. 

Maes, P. 1989. How to do the right thing. Connection 
Science 1:291-323. 

Ramamurthy, U., D'Mello, S., and Franklin, S.,. 2004. 
Modified Sparse Distributed Memory as Transient 
Episodic Memory for Cognitive Software Agents. In 
Proceedings of the International Conference on Systems, 
Man and Cybernetics. Piscataway, NJ: IEEE. 


	Introduction
	The LIDA Technology
	The LIDA Architecture

	References

