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Abstract

Sparse distributed memory is an auto-associativeang
system that stores high dimensional Boolean vectdese
we present an extension of the original SDM, thedar
SDM that uses modular arithmetic integer vectothama
than binary vectors. This extension preserves nwdnye

desirable properties of the original SDM: auto-a&sovity,

content addressability, distributed storage, arfmlistness
over noisy inputs. In addition, it improves thenegentation
capabilities of the memory and is more robust eaamali-

zation. It can also be extended to support fonggténd re-
liable sequence storage.

I ntroduction

Sparse distributed memory (SDM) (Kanerva, 1988) is
based on large binary vectors, and has severatabési
properties. It is distributed, auto-associativenteat ad-
dressable, and noise robust. Moreover, this mesysiem
exhibits interesting psychological characteristas well
(interference, knowing when it doesn’t know, the df the
tongue effect), that make it an attractive optiathwhich

to model episodic memory (Baddeley, Conway & Aggle-
ton, 2001; Franklin et al, 2005). ImplementatiofisSBM
are ongoing for various applications (e.g., Furberal,
2004; Meng et al, 2009; Mendes, Coimbra & Crisostom
2009; Jockel, 2009). Several improvements and tiains

colleagues (2004) created a combined version ofdleek-
el's hyperplane design and a correlation matrix @gm
using sparkling neurons.

The original SDM uses binary vectors for both addes
and data, i.e. words. This usage results in seviengh-
tions. First, real data is not always Boolean, mgkiepre-
sentations using more than two values desirablpogsi-
ble solution is to use several dimensions of thedweec-
tors to represent one feature, but this approaels dot fit
very well with the structure of SDM. In the distancalcu-
lation, difference in any dimension weights the saas
any other dimension, but if several bits, i.e. disiens, are
used to represent a single feature, the weightefhits
should not be the same.

Mendes and colleagues (Mendes, Coimbra & Crisosto-
mo, 2009) evaluated several binary encodings towige
SDM in robot navigation tasks, and reported théfiodil-
ties and limitations. Using Natural BC coding soimesi-
tions have Hamming distances that incorrectly oeftbe
difference between the features. For example, then-H
ming distance between seven (0111) and eight (1i809)
instead of 1, which is desired. They also repottetiper-
formance of the Gray code, which only partially igates
this effect. The best solution that they proposetbiuse a
sum code, that is a base one code where, for eraBp$
represented as 111 and 5 as 11111. This codintpsiias
ly increases the dimensionality of the memory. regéng-

have been proposed for SDM; for example Ramamurthy ly, they report that grouping bits and processingnt as

and colleagues introduced forgetting as part afir@super-
vised learning mechanism (Ramamurthy, D'Mello &
Franklin, 2006). The same authors also proposedsbef
ternary vectors, introducing a “don’t care” symiad a
third possible value for the dimensions of the w@esct
(D'Mello, Ramamurthy & Franklin, 2005). Also Jaetcke
(1989a, 1989b) proposed two variations of the pabi
SDM, the selected coordinate design and the hyaeepl
design. Both designs modify the way that hard iooat
(see next section) are selected. These desigrglglig-
prove the signal to noise ratio of the memory. Eurénd
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integers produces excellent performance. Howevair t
implementation diminishes some of the desirablg@ro
ties of SDM. The extension proposed in this pajercty
uses integers vectors, achieving similar perforraabot
without the disadvantages reported by Mendes.

Another disadvantage of binary vectors is the tifsg-
formation due to the noise introduced into the espnta-
tion by the normalization used in combining vectdfsc-
tors can be summed up dimension by dimension ffier t
operation, vectors belonging to {-1; +lhre used). This
operation produces a vector belongingztb The normali-
zation process reduces the resultant to a vectdrighalso
in {-1; +1}" but with significant loss of information. See
for example (Kanerva, 2009; Snaider & Franklin, 201



Here we propose a new version of SDM, the Integer
Sparse Distributed Memory (Integer SDM). This vensis
based on large vectors where each dimension hasge r
of possible integer values. The memory has progedim-
ilar to the original one, noise robustness, autmeigtivity
and being distributed. In addition, this memory idgahe
limitations imposed by binary representation, ascdbed
above.

Sparse Distributed Memory

Being based in the structure and behavior of thgirai

SDM, it is better to describe Integer SDM using cpts
from that original. In this section, we first biiefdescribe
the components of SDM that are similar to thosed uise
Integer SDM. For more information about SDM, bleth

surely descriptions (Franklin, 1995, pp. 329-344J &igh-
ly detailed descriptions (Kanerva 1988) are avéglab

SDM implements a content addressable random access

memory. Its address space is of the order'®2r even
more. Both addresses and words are binary vectbosev
length equals the number of dimensions of the spane
important property of such high dimensional spasdbhat
two randomly chosen vectors are relatively far afrayn
each other, meaning that they are uncorrelatecbutrex-
ample, we will think of bit vectors of 1,000 dimémrss. To
calculate distances between two vectors in thisespthe
Hamming distance is used. To construct the memary,
sparse uniformly distributed sample of addressesthe
order of 2° of them, is chosen. The number of addresses
selected to construct the memory is denotedrbyrhese
addresses are called hard locations. Hard locatiomshe
units of storage of the memory. Only hard locaticas
store data. For this purpose, each hard locatienchan-
ters, one for each dimension. To write a word vettoa
hard location, for each dimension, if the bit atdimen-
sion in the word is 1, the corresponding counteincse-
mented. If it is O, the counter is decremented.rdad a
word vector from a hard location, we compute a mect
such that, for each dimension, if the correspondimgnter
in the hard location is positive, 1 is assignethte dimen-
sion in the vector being read, otherwise 0 is aEsig

A hard location can store several words but asnabé
nation of them. In order to be able to reconstthetorigi-
nal word, many hard locations participate in tlerisg and
retrieving of any single word of data. To read framad-
dress in SDM, the output vector is a compositénefread-
ings of several hard locations. To determine wiiatd lo-
cations are used to read or write, an access sphele-
fined. The access sphere for an address vectosjhere
with center at this address, enclosing, on averageopor-
tion p of the memory’s hard locations; in our example
0.1% is used. To write a word vector in any addadghe
memory, the word is written to all hard locationside the
access sphere of the address. To read from angssjdill
hard locations in the access sphere of the addeestsr are
read, and a majority rule for each dimension idiagdp

In general, the SDM is used as an auto-associative
memory, so the address vector is the same as titewgo-
tor (but see Snaider & Franklin, 2011). In thise;aafter
writing a word in the memory, the vector can beiegtd
using partial or noisy data. If the partial veci®tinside a
critical distance from the original one, and iused as ad-
dress with which to cue the memory, the outputaresill
be close to the original one. This critical dis@mtepends
on the number of vectors already stored in the nngmnib
the process is repeated, using the first recoveeetbr as
address, the new reading will be even closer tothgnal.
After a few iterations, typically less than tene tteadings
converge to the original vector. If the partialmmisy vec-
tor is farther than the critical distance away frtiva origi-
nal one, the successive readings from the itersitioifl
rapidly diverge.

Integer Sparse Distributed Memory

The structure of Integer SDM is similar to that SIDM.
The words and addresses used by Integer SDM age lar
vectors of integers, i.e. vectors with a large nemif di-
mensions. The possible values for each dimensierinaa
defined integer range. For example, the range lolegacan

be [-8, 7] or [0, 15]. Any range of values is pt#si For
simplicity, we will work with ranges with 0 as lowbound
andr - 1 as upper bound. There is no limit for the sife
the range. However, the storage requirement inescio-
portionally with the size of the range. More forigalnte-

ger SDM works within multidimensional space withcve
torsv € Z}, wheren is the number of dimensions of the
space and is the size of the range of values for each di-
mension. The dimensions of the space follow modular
arithmetic, i.e. the values wrap around afteFhe greatest
possible value for a dimensionris 1 and the next value
afterr - 1is 0.

Integer SDM is composed of hard locations. Asiivg
a small, uniformly distributed, fraction of all ®iksle ad-
dressesa € Z! are chosen for the addresses of the hard lo-
cations. Each hard location has a fixed addresscand-
ters, resembling the structure of SDM. Howeveredetr
SDM has a different arrangement of counters: eatiert
sion has counters, one for each possible value in that di-
mension. We defing as the group of counters correspond-
ing to the dimensiom, andc" as the counter correspond-
ing to dimension and valuev € {0,...,r—1}. The pro-
cedures to read from or write to the memory ardlaino
the ones used for SDM.

To read or write a word, first the access sphere of the
address is determined. The distance used here égtan-
sion of the Euclidean metric. The distance betwten
vectors is defined as:

dw,v)= [ (A)?

where: A;= min(mod,(u,- —v;), mod,.(v; — ul-))



Since each dimension in the space follows modular less than in the original SDM for the same numbkr o

arithmetic, each dimension is like a circle and¢here two
possiblepaths in dimension between the valuag andyv..
Notice thatA; is the smaller length of these two paths.

The radius of the access sphere is defined in aughy
that on average it encloses a small proponpiarf the total
number of hard locationms. The access sphere enclopes
hard locations. This valug is also the probability of acti-
vation of one hard location, i.e. the probabilifyoae hard
location participates in one particular readingwaiting
operation. For writing the word in the memory, the coun-
ters of every dimension of each hard location s dbcess
sphere are updated using the following rule:

ci(U) is incremented & v=w;
wherew; is the value of the dimensiomf the wordw. No-
tice that only one counter out ofof each dimension of
each hard location in the access sphere is increahen

To read from the memory, first the hard locationshe
access sphere are determined. Then the countezacbf
value of each dimension of all hard locations ia #tcess
sphere are summed up:

) _ ®)
Si = Z Cl.

HLeA.S.
wheres™ is the sum of the counters for dimensicand

valuev. Finally, for each dimension a majority rule is ap
plied among the values:

1

z; = idx(v) of max(sgo). . s(.r_l))

wherez is the value of dimensionof the output vector.

This vectorz can be used as an address to read again from

the memory, iterating in the same way that was rileest
for the original SDM.

The fidelity of the memory, i.e. the probability oe-
trieving a written word, is better than the oridifgDM.
This improvement in the fidelity is due to the morecise
storage in each hard location. Suppose the stalee: or
dimensioni of word w is k, that isw; = k. To incorrectly
readw; from memory, at least one of the sug!8 for the
incorrect valuesu(# k), must be greater tha. The val-
ue of the sums for incorrect values is due to thtriou-
tion of other words written in the memory that shaome
of the same hard locations used to steréAssuming the
other words written in the memory are uniformlytdizut-
ed in the spacethe noise produced by the interference of
these written words is distributediirpossible values. This
diminishes the expected value and variance ofthdor v
# k. Then the probability of having at least a8 > s® is

This assumption is reasonable to give an estimatidhe capacity of the
memory. However, the memory can store vectors éubey are not uni-
form distributed, but the capacity will be diminggh See (Kanerva, 1988)
for a similar analysis for SDM.

words stored in the memory. This increment in idelity
of the memory also increments its capacity: moredao
can be stored before the effect of interferencaoisced.
This compensates for the additional requirements of
memory storage of this memory compared to SDM.

The complexity of the reading (or writing) opecatiof
the memory iO(mn + prmn). The first term corresponds
to the calculation of the distance framto each hard loca-
tion, and the second term corresponds to the rga@in
writing) of the counters in the hard locations. c®ipr <<
1, the first term dominates. Since the number ofl haca-
tions m can be large, the implementation could be slow.
However, the algorithm is easily parallelizablebi® exe-
cuted in multithreading or SIMD (e.g. using GPUs)h&
tectures. Moreover, other methods to activate tre fo-
cations, instead of the access sphere, were studied
SDM, and can be used with Integer SDM also. Seexer
ample (Jaeckel, 1989a, 1989b). These alternativaddw
greatly reduce the time complexity of the algorithm

Experimentsand Results

Several simulations were performed to test thegrer
age of errors in the output words. We used an &nt&pM
with 100,000 hard locations and a word length @0Q,
dimensions, where = 16 (i.e. range: [0 — 15].) We used a
probability of activationp = 0.001, that corresponds to a
radius of the access sphere of 188. The size ah#mory
(i.e. number of hard locations) was chosen to fen@igh
hard locations in the access sphere for each neadite to
support the desired properties of the Integer SB, to
be as small as possible so as to limit the numbeeauls
and writes required to perceive the effects of ilngdhe
memory. A total of 5,000 random vectors were stdred
the Integer SDM. The vectors were also preserved in
separate database so they could be used as cuesner
pared with the retrievals from the Integer SDM.

The simulation was performed in four stages. Inhea
stage, one hundred vectors were randomly selected f
the set of 5,000 stored vectors, and the memoryowed
using these vectors with some amount of noise,ishatth
some number of randomly selected dimensions that we
changed from the original. The amount of noise gednrn
each stage was: 5, 10, 20, and 30 percent reselgctin
stages 1 and 2, 100% of the vectors were retriecvedie 3
had only one retrieval error, and stage 4 produgs¥
correct retrievals. The same experiment using thahat-
tan distance had similar results: 100% of the vsctor-
rectly retrieved in stages 1, 2, and 3, and 65%tage 4.
The graceful degradation in the performance showthé-
se experiments is similar to the one observedearotiginal
SDM (Kanerva, 1988).

Another experiment demonstrated the generalization
characteristics of the memory. Figure la. depiatsivie
gray scale (16 levels) images of 33 x 33 pixelshe&or
each image, one vector of 1,089 dimensions reptiagen
the information of the image was stored in the mgmo



Each of these vectors was saved in the memory andeg.
The memory used for this experiment is similar hatt
used in the previous experiment. It has 100,000 lwva-
tions with addresses of 1,089 dimensians, 16 andp =

0.001. The memory was then cued using the new wvecto

corresponding to figure 1b. The image of the outator
displayed in figure 1c, which is not in the traigiset ei-
ther, is the result of the interference of the exfovectors.
Based on this and other characteristics of the mgnho-
teger SDM is a good candidate to model various nigs0o
in cognitive architectures (Ramamurthy & Frank2011).
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Figure 1. Generalization and pattern formation. a: Imageseco
sponding to the training set vectors. b: Imagéehef vector use
as a cue. c¢: Image corresponding to the outpator using (b) ¢
cue. Vectors of images (b) and (c) are not in taming set (a).

Conclusions

Here we have presented a new version of SDM, ttegém
SDM, that overcomes the limitations of the origisidM
resulting from its use of binary vectors. This meynpre-
serves the desirable, biologically inspired, prtipsrof the
original. It is also noise robust, auto-associatwel dis-
tributed. It degrades gracefully when the memory ap
proaches its maximum capacity. It is also ablectioegalize
patterns due to interference of several similatamsc The-

se properties make Integer SDM a good candidate for

modeling episodic memory in autonomous agents.

The integer representation has several advanitagss
the binary one. The encoding of values is simgleojding
undesirable effects of other encodings (MendesmbBa
& Crisostomo, 2009; Jockel, 2009), and it diminishbe
effect of normalization when several vectors analtioed,
for example in the storing and retrieval of seqesnc
(Snaider & Franklin, 2011).

Integer SDM is compatible with other improvemeaits
ready studied for SDM, such as the forgetting meisima
(Ramamurthy, D'Mello & Franklin 2006). Other desigvf
activation of hard locations, like Jaeckel's seddctoordi-
nate design (1989a), can also be implemented hith t
memory. Another extension, which we have already im
plemented, applies the same concepts as in Extepidbtl
(Snaider & Franklin, 2011; Snaider & Franklin, ineps)

that dramatically improve the capability for stayirse-
guences.
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