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Abstract 

Kugele, Sean Christopher, Ph.D., The University of Memphis, May 2023. Embodied, 

Simulation-Based Cognition: A Hybrid Approach. Major Professor: Stanley P. Franklin. 

Embodied cognition is a paradigm in cognitive science that emphasizes the fundamental role of 

bodies, environmental interactions, situational contexts, and sensory and motor systems in 

cognitive processing. Much of the research in embodied cognition has focused on online 

cognitive activities (such as reactive, overt behaviors) that are directly coupled to environmental 

stimuli. Such research fails to explain offline cognitive activities (such as planning, deliberation, 

and mental imagery) that are spatially or temporally decoupled from one’s immediate sensory 

experiences. Embodied, simulation-based theories of cognition attempt to address this 

shortcoming by proposing a mechanism—modal simulations—by which sensory and motor 

systems can directly support offline cognitive activities. However, while purely modal, 

simulation-based theories, such as perceptual symbol systems, have more explanatory power 

than their purely online counterparts, they also suffer from their own shortcomings. These 

include largely untenable explanations of abstract concepts and a conspicuous lack of well-

specified and well-developed computational models. To address these challenges, I develop a 

hybrid (modal/amodal) account of embodied, simulation-based cognition based on a neuro-

symbolic implementation of the LIDA cognitive architecture. My implementation focuses on (1) 

grounded, multimodal perception and perceptual learning; (2) action selection and procedural 

learning; and (3) mental imagery and simulation-based reasoning. This account advances LIDA’s 

conceptual commitments to embodied principles and grounded cognition; contributes to the 

ongoing scientific discourse on embodied, simulation-based cognition; and advances a 
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computational framework for realizing simulation-based, autonomous, agential software 

systems. 
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Chapter 1 

Introduction 

I date the moment of conception of cognitive science as 11 September, 1956, the second 

day of a symposium organized by the ‘Special Interest Group in Information Theory’ at 

[MIT]... The morning began with a paper by Newell and Simon on their ‘logic machine’. 

(Miller, 2003, p. 142) 

From its inception, cognitive science1 and artificial intelligence (AI) have existed in a symbiotic 

relationship. Practical approaches in AI have inspired new cognitive theories (e.g., the 

computational theory of mind and connectionism). Similarly, scientific discoveries about the 

mechanisms of natural minds have inspired new engineering practices (e.g., convolutional neural 

networks and reinforcement learning). This dissertation exemplifies the mutually beneficial 

relationship between cognitive science and AI. I design intelligent systems based on cognitive 

theories, and I attempt to understand the principles and mechanisms governing natural minds by 

engineering and studying artificial minds. 

Cognitive theories are attempts to explicate how minds work. They make claims about 

the existence and properties of mental representations; the innate or experiential basis of 

knowledge; the relationship between mind, body, and environment; and the nature of thought 

and cognitive processes (among other things). This manuscript focuses on a specific class of 

cognitive theories that I refer to as embodied, simulation-based cognition (see Barsalou, 1999, 

 

1 Cognitive science is an inter-disciplinary scientific effort that seeks to understand minds and cognitive processes. 

Cognitive scientists have traditionally come from psychology, computer science, neuroscience, philosophy, 

linguistics, and anthropology (see Miller, 2003). 
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2008, 2010; Bergen, 2012, 2015; Gallese, 2005, 2007; Goldman, 1992, 2012, 2013; Grush, 2004; 

Jeannerod, 2006; Rizzolatti et al., 1996; Rizzolatti & Sinigaglia, 2016; Shanton & Goldman, 

2010; Zwaan, 2004). Embodied, simulation-based theories of cognition fall within the broader 

paradigm of embodied cognition (EC), which emphasizes an interdependence between minds, 

bodies, environmental interactions, and situational contexts. A central tenet of EC is that 

“cognition is for action” (M. Wilson, 2002, p. 632)—the overriding purpose of cognition is the 

production (i.e., selection and execution) of actions (Franklin, 1995, Chapter 16) and answering 

the question “What do I do next?” 

Research within the EC paradigm has focused on explaining minds using online control 

processes. These processes are said to be directly “coupled” to an environment (e.g., the physical 

world). Online control processes operate by mapping the current and immediate sensory inputs 

(environmental stimuli) available to a cognitive system to motor outputs (overt behaviors). These 

“behavior generating modules” (Brooks, 1990, p. 3) are characterized as being situated2, 

reactive, and requiring little cognitive processing. They are also often described as being non-

representational (see Chapter 2). While these perspectives are important, views of cognition that 

only include online control processes fail to explain cognitive activities that seem to be 

“detached” from immediate sensory inputs and motor activity. These activities include (but are 

not limited to) planning, reasoning, introspection, problem solving, and mental imagery, as well 

 

2 Situated cognition is a school of thought associated with the embodied cognition paradigm. Roth and Jornet (2013) 

stated that the central hypothesis of situated cognition is that intelligent behavior arises from a dynamic coupling 

between individuals and their environments rather than from their minds (e.g., brains) only. According to this view, 

information does not exist in minds prior to environment interactions, but, instead, emerges from those interactions.  
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as more pedestrian ones like the recall of long-term memories and daydreaming. In these cases, 

offline control processes appear to be needed. 

Embodied, simulation-based theories of cognition attempt to address this shortcoming by 

proposing a mechanism by which offline control processes can take on an embodied and 

“situated” character. That mechanism is sensorimotor simulations: mental simulations3 based on 

the (re-)activation of sensorimotor systems and their grounded (see Chapters 2 and 8) 

representational derivatives. In other words, the cognitive subsystems most directly responsible 

for interfacing with the world are recruited when reasoning about the world. 

Perceptual Symbol Systems 

Barsalou’s (1999, 2008, 2010) theory of grounded cognition—known as Perceptual Symbol 

Systems (PSS)—is arguably the most influential and well-developed theory of embodied, 

simulation-based cognition. According to this theory, the patterns of (neural) activation that 

occur in sensorimotor systems during perception and action can be learned into long-term 

memory (albeit in a partial and attenuated form). If later recalled from long-term memory, the 

associated (re-)activations of sensorimotor systems can function as perceptual symbols: 

grounded mental proxies for entities, objects, and events in the world.  

Barsalou (1999) characterized perceptual symbols as being analogical and modal.4 They 

are analogical because they share properties with, or in some way resemble, their originating 

 

3 Consciously accessed mental simulations are referred to as “mental images,” and the cognitive processes 

associated with them are collectively referred to as “mental imagery” (see Kosslyn, 1994; Kosslyn et al., 2006). 

Mental imagery and imagistic processes are the topics of Chapter 7. 

4 These representational properties are discussed in detail in the Appendix. 



 

4 

 

sensory and perceptual (mental) states. They are modal because “they are represented in the 

same systems as the perceptual states that produced them” (Barsalou, 1999, p. 578). Moreover, 

they are often multimodal, accounting for content originating in multiple sensory and motor 

modalities. 

Perceptual symbols that correspond to instances of the same concepts (e.g., categories of 

things) can eventually become integrated into simulators. Simulators are described by Barsalou 

as combinations of generative processes, empirical knowledge, and genetic predispositions that 

allow an individual to adequately represent concepts during offline cognition (Barsalou, 1999, 

sec. 2.4.3). Specifically, simulators generate (modal) mental simulations of the concepts they 

represent. These mental simulations can then be integrated with other mental simulations to form 

rich, contextualized, virtual scenes (i.e., situated conceptualizations; Barsalou, 2016b). Critically, 

the same perceptual processes that operate on external environmental stimuli must be able to 

operate on these internal virtual scenes. 

According to Barsalou’s (1999) theory, grounded representations and mental simulations 

are sufficient to implement a “fully functional conceptual system” without the need for amodal 

(ungrounded) symbols, such as those used in classical symbolic AI and related cognitive theories 

(e.g., the computational theory of mind [CTM] and language of thought hypothesis [LOTH]; see 

Chapter 2). Specifically, Barsalou (1999) claimed that a perceptual symbol system can, in theory, 

support the following cognitive functions: the distinction between types (i.e., categories) and 

tokens (i.e., instances of categories); categorical inference (i.e., assigning categorical 

membership to instances); combinatorial and recursive productivity (i.e., binding and nesting 

concepts within concepts to generate new conceptual structures); propositions; and abstract 
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concepts. While Barsalou (1999) provided an intriguing, albeit extremely high-level argument to 

support each of these, his account of abstract concepts is arguably the weakest aspect of his 

theory. Consequently, it has been the subject of a great deal of criticism and controversy. 

On Abstract Concepts 

Abstract concepts are notoriously difficult to explain in terms of embodied principles. Concrete 

concepts (such as chairs, cats, and bicycles) have “bounded, identifiable referents that can be 

perceived with our senses” (Borghi et al., 2017, p. 1). In contrast, abstract concepts (such as 

truth, time, and transfinite numbers) lack bounded, perceivable referents. Given these definitions, 

Barsalou’s (1999) purely perceptual and empirical account of abstract concepts meets immediate 

resistance.  

Briefly, Barsalou contended that abstract concepts are always grounded (see Barsalou, 

1999, p. 577) and can be learned via three cognitive mechanisms—framing, selectivity, and the 

use of introspective perceptual symbols (see Barsalou, 1999, p. 600). He described this empirical 

learning process as follows: First, abstract concepts are framed against a simulated, background 

event sequence. Second, selective attention identifies the content corresponding to those abstract 

concepts against their simulated backgrounds. Finally, introspective states and proprioceptive 

events are incorporated with the perceptual symbols for those abstract concepts, eventually 

culminating in simulators for those concepts.  

Unfortunately, this idea seems flawed in principle, regardless of the specific perceptual 

mechanisms involved. As one peer commentator observed, “abstract concepts are not typically 

associated with any particular event sequences or introspections” (Ohlsson, 1999, p. 631). In 

another peer commentary, Toomela stated,  
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[Barsalou’s] perceptual theory of knowledge is not very convincing regarding abstract 

concepts… [because] there exists a kind of knowledge that must be amodal in essence: 

the knowledge about a world which is qualitatively out of reach of our senses. Humans 

do not possess perceptual mechanisms for perceiving electromagnetic fields, [for 

example]… How such knowledge is constructed is not explained in Barsalou’s theory. 

(Toomela, 1999, p. 633) 

Other peer commentaries, such as one by Adams and Campbell, also concluded that Barsalou’s 

account of abstract concepts fails because—by definition—there are no perceivable exemplars 

for abstract concepts. For example, how does one simulate and perceive the differences between 

“chiliagons” (1000-sided polygons) and “myriagons” (10,000-sided polygons)? How does one 

simulate or perceive “the infinity of parallel lines in a Lobachevskian space” (Adams & 

Campbell, 1999, p. 610)? These concepts appear to depend on amodal definitions. Similar 

arguments have led others to contend that abstract and concrete concepts are different in kind, 

requiring different representational frameworks (Crutch & Warrington, 2005; Dove, 2009), and 

there is some neuroscientific evidence that has been interpreted in support of this claim (e.g., see 

Binder et al., 2005; Desai et al., 2018; Wang et al., 2010). 

Barsalou’s more recent work has attempted to shift the focus away from the concrete 

versus abstract conceptual dichotomy. For example, Barsalou et al. (2018) stated, “we 

increasingly doubt whether terms like ‘concrete’ and ‘abstract’ are ultimately useful and 

informative in describing concepts” (Barsalou et al., 2018, p. 5), and they suggest replacing this 

distinction with other conceptual dichotomies (e.g., “external” versus “internal” situational 

elements, and situational “elements” versus situational “integrations.”) While these ideas may 
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prove to be useful, they do not obviate the need to explain the nature of concrete and abstract 

concepts, or the need to understand their acquisition and processing within cognitive systems. 

Arguably, Lakoff and Johnson (1999, 1980/2008) provided the most compelling 

embodied account of abstract concepts. They suggested that we think about abstract concepts 

through metaphors and analogies with concrete concepts. Thinking of time in terms of motion 

(“time flies like an arrow”), or similarity in terms of physical proximity (“orange is closer in 

color to red than blue”), or categories in terms of physical containers (“humans are primates in 

the genus Homo”) are examples of this metaphorical mode of thought.  

While Lakoff and Johnson are undoubtedly correct—humans often use analogical 

thinking when grappling with abstraction—this is still not the whole story. Humans also have a 

capacity to learn, use, and communicate abstract concepts in the absence of relevant concrete 

metaphors. This frequently happens in abstract domains such as mathematics, where many 

concepts can only be adequately expressed by their relationship with other abstract concepts. If 

analogies between abstract and concrete concepts do emerge, they often reflect deep insights that 

only come from rare genius or following extensive experience (such as those of a professional 

mathematician). A more expansive explanation of abstract concepts is needed. 

On the Need for Computational Accounts of Embodied, Simulation-Based Cognition 

Abstract concepts aside, Barsalou’s theory of perceptual symbol systems is arguably the most 

comprehensive and compelling simulation-based cognitive theory to date. And yet, despite its 

conceptual appeal and the growing neuroscientific and experimental support for many of its 

assertions (see Barsalou, 2008), the computational mechanisms for implementing Barsalou’s 

vision have remained elusive. Barsalou (2009) stated, 
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Perhaps the most pressing issue surrounding this area of work is the lack of well-

specified computational accounts. Our understanding of simulators, simulations, 

situated conceptualizations and pattern completion inference would be much 

deeper if computational accounts specified the underlying mechanisms. (Barsalou, 

2009, p. 1287) 

Pezzulo et al. (2013) reiterated this urgent need for computational accounts when they stated, 

Despite its growing popularity, the full potential of [modal, grounded cognition] has not 

yet been demonstrated; and this is not only a matter of obtaining new empirical 

demonstrations of the importance of grounding for cognition. The framework is 

empirically well-established, but the theories are relatively underspecified. A real 

breakthrough might result from the realization of explicit computational models that 

implement grounding in sensory, motor and affective processes as intrinsic to cognition 

[emphasis added]. (Pezzulo et al., 2013, p. 2) 

Unlike the computational theory of mind, which has well-established mechanisms in classical 

symbolic AI and connectionist systems (see Chapter 2), theories of embodied, simulation-based 

cognition are still searching for their computational footing. 

A New Hybrid Account of Embodied, Simulation-Based Cognition 

To address these challenges, I develop a new hybrid (modal/amodal) account of embodied, 

simulation-based cognition based on a neuro-symbolic implementation of the LIDA cognitive 

architecture (Franklin et al., 2016). Neuro-symbolic systems combine neural networks and 

symbolic AI. A sentiment shared by many researchers (including myself) is that these systems 
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have the potential to be more robust, transparent, interpretable, and capable than techniques 

based solely on connectionist or symbolic AI alone (e.g., see Garcez & Lamb, 2020; Mao et al., 

2019; Marcus, 2020; Sarker et al., 2021).  

One common neural-symbolic design pattern uses neural networks to transform non-

symbolic inputs (e.g., images) into symbolic representations (e.g., words) which are then 

manipulated by a symbolic reasoning system. Kautz (2022) referred to this as a “Neuro | 

Symbolic system”5. The neuro-symbolic implementation presented here could be seen as a 

variant of this basic design; however, it also deviates from that design by employing a non-

symbolic (imagistic) reasoning system (see Chapter 7), and a combined symbolic and non-

symbolic associative memory that is grounded in a multi-dimensional latent vector space (see 

Chapter 5).  

Throughout the remainder of this manuscript, I will refer to the cognitive theory 

developed here as ES-Hybrid (Embodied Simulation-Hybrid). ES-Hybrid draws a great deal of 

inspiration from Barsalou’s theory of Perceptual Symbol Systems (PSS). Indeed, it developed 

out of an initial effort to implement a perceptual symbol system within the LIDA (Learning 

Intelligent Decision Agent; Franklin et al., 2016) cognitive architecture; however, in doing so, it 

became clear that Barsalou’s theory could only serve as a partial account of cognition. In 

particular, PSS’s inability to provide an adequate account for abstract concepts is indicative of a 

deeper theoretical limitation. Unfortunately, this issue cannot be addressed within the confines of 

 

5 Kautz’s characterization of Neuro | Symbolic systems is consistent with the hybrid (symbolic/connectionist) 

architecture suggested by Harnad (1990) as a solution to the symbol grounding problem. Both this architecture and 

the symbol grounding problem are discussed in Chapter 2. 
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that theory because Barsalou expressly eliminates that which is needed: amodal representations. 

Addressing this issue requires a hybrid (modal/amodal) account of cognition. Furthermore, many 

researchers (other than Barsalou) have made important contributions to embodied, simulation-

based cognition (both experimentally and theoretically). For example, Jeannerod’s “theory of 

motor cognition” (see Jeannerod, 1995, 2001, 2006) was particularly influential in the 

implementations of action selection and action-based mental imagery developed here (see 

Chapters 6 and 7). 

While there are many aspects of ES-Hybrid that need to be addressed, the work here 

focuses on several foundational conceptual and computational issues: 

(1) grounded, multimodal representations and bottom-up perception,  

(2) an implementation of action selection and procedural memory compatible with 

simulation-based theories of cognition, 

(3) the fundamental operations of mental imagery and imagistic cognitive processes, and  

(4) a more complete account of abstract concepts. 

Other contributions include advancing LIDA’s implementations of procedural learning, 

motivational learning, action selection, grounded and ungrounded representations, (preconscious 

and never conscious) mental simulations, and (conscious) mental imagery. Many of these 

contributions are currently limited to high- or mid-level designs; however, several low-level 

designs and software implementations are also developed. For example, software 

implementations that utilize 𝛽-variational autoencoders (Higgins et al., 2017) and a modified 

version of Drescher’s (1991) Schema Mechanism. 
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The remainder of this manuscript has the following structure: Chapter 2 surveys the 

cognitive theories and the “symbol grounding problem” (Harnad, 1990) that motivated the 

development of embodied, simulation-based cognition. Chapter 3 provides an overview of ES-

Hybrid, including its mental representations and cognitive processes. Chapter 4 provides 

background on the LIDA cognitive architecture (Franklin et al., 2016), including its cognitive 

cycle, modules and processes, modes of action selection, and the conscious learning hypothesis. 

The next three chapters develop specific ES-Hybrid functionality within a neuro-symbolic 

implementation of LIDA: Multimodal perception, mental simulation, and grounded, modal 

representations are developed in Chapter 5; action-based mental simulation and motor cognition 

is developed in Chapter 6; and mental imagery and imagistic processes are the topic of Chapter 

7. Chapter 8 concludes the manuscript with closing remarks and directions for future work.
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Chapter 2 

Background  

if the meanings of symbols in a symbol system are extrinsic, rather than intrinsic like the 

meanings in our heads, then they are not a viable model for the meanings in our heads: 

Cognition cannot be just symbol manipulation. (Harnad, 1990, p. 339) 

While this manuscript focuses on a class of cognitive theories that I refer to as embodied, 

simulation-based cognition, these theories did not develop in a vacuum. To fully appreciate their 

significance, they need to be examined with respect to the historical contexts that shaped and 

motivated their development. Moreover, since cognitive theories often develop in response to the 

perceived failings of their predecessors, they are often best understood in contrast to their 

predecessors.  

With this in mind, I devote this chapter to outlining the cognitive theories and challenges 

(e.g., symbol grounding) that gave rise to embodied, simulation-based theories of cognition. In 

so doing, I introduce terminology and concepts that will be used throughout this manuscript. 

Moreover, many of the ideas presented in this chapter have been incorporated into ES-Hybrid—

the hybrid account of embodied, simulation-based cognition developed throughout this text. 

Therefore, a basic familiarity with these ideas will be beneficial for understanding the chapters 

that follow. Whenever possible, cognitive theories are presented alongside pertinent engineering 

approaches that illustrate aspects of those theories in practice. 
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What is Cognitive Science? 

Cognitive science emerged in the 1950s in response to the perceived failings of behaviorism. 

Behaviorism attempted to establish psychology as an empirical, natural science (akin to physics 

and chemistry) by focusing exclusively on the relationship between observable behaviors and 

their antecedent environment stimuli. Minds and mental phenomena, such as consciousness and 

mental states, were largely treated as pseudo-scientific concepts. John Watson, one of the chief 

architects of psychological behaviorism, envisioned experimental psychology as a science that 

shunned terms such as consciousness, mental states, mind, mental content, and mental imagery 

(Watson, 1913, p. 166), and was instead focused on explicating animal behaviors in terms such 

as stimulus and response, habit formation, and habit integrations (Watson, 1913, p. 167). 

Behaviorism dominated psychological thought for the first half of the twentieth century, 

but this approach proved to be too restrictive and eventually gave way to the “cognitive 

revolution.” Miller (2003) described the cognitive revolution as a “counter-revolution” that 

“brought the mind back into experimental psychology” (Miller, 2003, p. 142). This inter-

disciplinary movement eventually gave rise to the field of study known as cognitive science—an 

approach to understanding minds and behaviors in terms that include mental phenomena in 

additional to environmental stimuli and situational (e.g., physical, social, cultural) contexts. 

Mental Representations and Cognitive Processes 

Thagard (2020) stated that “the central hypothesis of cognitive science is that thinking can best 

be understood in terms of representational structures in the mind and computational procedures 

that operate on those structures.” In my opinion, this characterization is only partially accurate. 

While these concepts are fundamental to many cognitive theories, some theories are non-
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representational (see Braitenberg, 1986; Brooks, 1991b; Dreyfus, 2002; Gallagher, 2008, 2017) 

and others intentionally avoid computational analogies (Port & Van Gelder, 1995; see Thelen & 

Smith, 1994). That said, a cognitive theory’s account of mental representations and cognitive 

processes—even if that account ultimately denies their existence—is a useful dimension for 

understanding and categorizing most, if not all, cognitive theories. Therefore, understanding 

what is meant by “mental representations” and “cognitive processes” is requisite knowledge for 

understanding cognitive science and its theories. 

 According to many cognitive theories (including the computational theory of mind and 

connectionism, which are described later in this chapter), mental representations are the means 

by which information and knowledge are represented within a cognitive system (e.g., a nervous 

system). Mental representations are often said to be internal (mental) states that are “about”1 the 

objects, situations, and events (etc.) that one’s thoughts are directed towards. In other words, 

mental representations stand-in for the things they refer (i.e., their referents), and they can serve 

as proxies for those referents when thinking about them in their absence (e.g., during offline 

cognition). Mental representations are commonly compared to the data structures (graphs, trees, 

linked lists, arrays, pixel maps, etc.) that are used to arrange and depict data within a computer.  

 Cognitive processes, on the other hand, are “control structures” (Newell, 1973) that 

implement and/or support the mental capabilities hypothesized to exist in natural minds; these 

might include perception, attention, action selection, motor control, and mental simulation. 

Collectively, these control processes govern how minds operate within a given situational 

 

1 In the philosophical literature, this capacity for a mental state to be about, or stand in for, something is referred to 

as its “intentionality” (see Brentano, 1874/2012; Jacob, 2020; Searle, 1980). 
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context. Newell (1973) explained the idea of a control structure through a computer 

programming analogy. Specifically, he described them as input-dependent sequences of 

computational instructions (such as function calls and input/output operations) that are used to 

implement mental competences. More generally, control structures can be defined as those 

mechanisms that enable autonomous agents (see Franklin & Graesser, 1997) to answer the 

question, “What do I do next?” Given this broader definition, minds can be conceptualized as the 

“control structures of autonomous agents” (Franklin, 1995, p. 412). 

Mental representations cannot be adequately understood in isolation of the cognitive 

processes that operate on them2. By analogy: records require record players, CDs require CD 

players, and MP3s require media players (with an MP3 codec). While records, CDs, and MP3s 

are capable of representing the same contents—for example, the same song—their 

representational formats are largely different and incompatible with other devices. In other 

words, it is only the right combination of representational medium (e.g., a record) and consuming 

device (e.g., a record player) that will produce the intended result: in this case, music. Similarly, 

in the absence of an appropriate cognitive process to operate on them, mental representations are 

inert and incomprehensible within a cognitive system. Therefore, cognitive theories that posit the 

existence of mental representations are obligated to detail the cognitive processes that operate on 

them. 

 

2 See Anderson (1978) for a more detailed discussion about the interdependence between representations and 

processes, and its significance in evaluating cognitive theories.  
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Icons, Indexes, and Symbols 

Semiotics is the study of signs, sign processes, and the production of meaning. Loosely speaking, 

a sign is anything (e.g., words, events, visual depictions, physical objects) that conveys the 

“meaning” of something (other than itself) to someone (an interpreter of that sign). Therefore, 

semiotics broadly encompasses the study of anything that intentionally or unintentionally “stands 

for” something else in the mind of an interpreter (see Chandler, 2022). Consequently, semiotics 

can be used to characterize mental representations and cognitive processes: mental 

representations are (internal) signs that signify their (external and internal) referents for the 

benefit of an interpreting cognitive process. Indeed, Peirce—a founder of the field of semiotics—

believed that all thoughts could be understood in terms of mental signs (see Peirce, 1893–

1913/1998, p. 10). 

Peirce’s theory of semiotics includes three types of signs—icons, indexes, and symbols 

(Peirce, 1867–1893/1992, pp. 225–228). Icons signify their referents by resemblance. That is, 

they are “likenesses” of their referents, sharing one or more distinctive qualities with them. For 

example, a drawing of a chair can be used as an icon for the concept of “chairs” (or some 

particular chair). Geometric diagrams and topographical maps are other common iconic signs. 

Crucially, an icon’s form must convey enough informational content to an observer for them to 

recognize the thing being signified. 

Indexes signify their referents through observable or inferable connections with their 

referents; in other words, indexes imply the existence of their referents by their very presence. 

Smoke can be an index of fire, yelling can be an index of anger, and pain can be an index of an 
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injury. Indexes “point to” their referents’ existence, drawing attention to them like fingers 

pointing to objects in a scene. 

Finally, symbols signify their referents through social or cultural conventions. For 

example, mathematicians in the eighteenth century established the convention of using the 

symbol 𝜋 to refer to the ratio of a circle’s circumference to its diameter. There is nothing 

inherent in 𝜋’s form to indicate its relationship to that concept, and any other symbol could have 

served this purpose. As another example, consider the English word “chair.” The word CHAIR is 

a symbol that could refer to “an object designed to be sat on” or, alternately, “a person with a 

particular position of authority or prestige in an organization.” In this case, the sign’s meaning is 

ambiguous in the absence of an appropriate linguistic or situational context. Furthermore, SILLA 

(Spanish), STOL (Danish), and 椅子 (Chinese) are linguistic symbols that are also used to refer 

to chair-like objects, but they are based on different (linguistic) conventions. 

Symbolic AI and the Symbol Grounding Problem 

Symbolic AI refers to any approach to engineering intelligent systems that is primarily based on 

the explicit, rule-based manipulation of symbolic representations. In their most basic form, 

symbolic representations (such as tokens and variables) are atomic (i.e., irreducible) 

representations that can be used to signify any imaginable concept, object, entity, or situation. 

However, symbolic representations can also be organized into composite (or structured) 

representations that contain two or more distinct symbols. Simple examples include 

mathematical relations (𝑥 > 𝑦), logical statements (𝑃 → 𝑄), and predicates 

(IS_SISTER(ALICE, BOB)). More complex examples include semantic networks (see Sowa, 

1991/2014), frames (see Minsky, 1975), and ontologies (see Gruber, 1995).  
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By applying various rule-based computations to manipulate these symbolic 

representations (such as, mathematical or logical operations), symbolic AI systems are able to 

make inferences, answer queries, and solve a variety of problems. Built-in symbolic knowledge3 

can be represented using propositions or statements in first-order logic. And symbolic reasoning 

can be implemented using search algorithms and clever heuristics (e.g., see Coulom, 2006 

[Monte Carlo Tree Search]; Hart et al., 1968 [A*]; Newell & Simon, 1961 [means-ends 

analysis]). 

Based on the initial successes4 of these approaches (particularly in abstract problem 

domains such as strategy games, logic, and theorem proving), Newell and Simon (1976) 

conjectured that any system exhibiting “general intelligence”5 will necessarily be based on 

symbol manipulation. This hypothesis is known as the “physical symbol system hypothesis” 

(PSSH). Note that the PSSH is not merely a statement about engineering intelligent software. It 

is a claim that artificial and natural systems exhibiting general intelligence must be based on 

symbolic manipulation. The PSSH, along with the language of thought hypothesis (LOTH; 

Fodor, 1975, 2008), helped establish the computational theory of mind (CTM; see Rescorla, 

 

3 The Cyc project, started in 1984, is a long-running attempt at hand-engineering “common sense” in software to 

facilitate the construction of symbolic expert systems. As of this writing, Cyc’s knowledge base is said to contain 

“10,000 predicates, millions of collections and concepts, and more than 25 million assertions” (Cyc’s Knowledge 

Base – Cycorp Inc., n.d.). According to Cycorp, it has taken over 4 million hours to develop this knowledge store 

and its associated inference engine. 

4 These successes included the “Logic Theorist” (Newell et al., 1957) and the “General Problem Solver” (Ernst & 

Newell, 1969), which were the basis for the Soar cognitive architecture (Laird, 2012). 

5 Newell and Simon (1976) characterized “general intelligence” as the ability to perform actions that show the same 

“scope of intelligence” as human actions, are “appropriate to the ends of the system,” and are “adaptive to the 

demands of the environment… within some limits of speed and complexity” (p. 116). Other definitions of general 

intelligent include one from Goertzel and Pennachin (2007) who stated that “[a] general intelligence must be able to 

carry out a variety of different tasks in a variety of different contexts, generalizing knowledge from one context to 

another, and building up a context and task independent pragmatic understanding of itself and the world” (p. 74). 
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2020) as a dominant cognitive theory. This theory holds that minds reason and effect the 

execution of intelligent behaviors through the rule-based manipulation of symbolic mental 

representations. 

The Symbol Grounding Problem 

An issue that can occur with purely symbolic approaches to AI and related theories of mind is 

that it is not obvious how (internal) symbols can be meaningfully connected to the objects, 

entities, and events in a non-symbolic (external) environment based solely on their relationship 

with other (internal) symbols. Recall that the connection between symbols and their referents are 

based on pre-assigned conventions and their associated, bounding contexts. Unless those 

conventions and contexts are built into a system a prior, how can they be established? 

This issue is often glossed over in practice because humans are generally “in the loop” to 

interpret the symbolic results of a machine’s computational efforts, effectively connecting 

symbols with their meanings exogenously and after the fact. Harnad (1990) illustrates this 

symbol grounding problem by offering, as an example, the formidable task of trying to learn 

Chinese as a second language (or more appropriately, a first language) when the only 

information at your disposal is a Chinese-to-Chinese dictionary: “[using] the dictionary would 

amount to a merry-go-round, passing endlessly from one meaningless symbol… to another… 

never coming to a halt on what anything meant” (Harnad, 1990, p. 339).  

Harnad’s argument is reminiscent of Searle’s (1980) Chinese room thought-experiment, 

which he used to argue against the possibility of Strong AI (artificial general intelligence) and 

machine understanding based on symbolic manipulation. Searle’s thought experiment asks us to 

imagine Searle locked in a little room with several stacks of Chinese documents and a book 
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written in English. Searle is unable to read Chinese, so the Chinese documents are completely 

incomprehensible to him. However, he does know English, so he can read and comprehend the 

contents of the book. The book (which corresponds to the room’s current “program”) contains a 

set of instructions that describe how to map the characters in the Chinese documents (i.e., the 

room’s “inputs”) to corresponding responses. While Searle does not understand Chinese, he can 

recognize the forms of the Chinese characters in the documents well enough to find the 

appropriate entry in the English rule book. Therefore, using this rule book, Searle can produce 

the correct “output” symbols (also in Chinese) based on whatever the rule book was intended to 

do by its author (i.e., a programmer).  

From the perspective of an outside observer, it may appear like the room understands 

Chinese. However, despite this outward appearance of understanding, Searle argued that it is an 

illusion since the processes responsible for these symbolic manipulations lack intentionality. 

That is, with respect to the “mind” of the room (i.e., Searle and his instruction book), the Chinese 

symbols are not directed towards (i.e., about) the objects and states of the world that they 

represent (Searle, 1980, p. 424). Instead, they are only directed internally to more symbols, and 

this disconnect cannot be resolved intrinsically by the system. 

According to Searle, the Chinese Room described above operates on the same principles 

as computers running symbolic AI programs. Therefore, Searle concluded that understanding 

was extrinsic to purely symbolic systems. The meaning (intentionality) of their symbols (inputs 

and outputs) and the purposes behind their symbolic manipulations exist entirely outside of those 

systems. In particular, their meaning depends on the interpretations provided by the users of 

those systems and the intentions of those that programmed them. In Harnad’s words, meaning is 
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“parasitic on the fact that the symbols have meaning for us” (Harnad, 1990, p. 339). Solving this 

disconnect between symbols and their referents intrinsically rather than extrinsically is the 

essence of the symbol grounding problem. 

Nativism and The Language of Thought Hypothesis 

The language of thought hypothesis (LOTH; Fodor, 1975, 2008) is a cognitive theory that falls 

within the computational theory of mind and, by extension, symbolic AI. The LOTH argues that 

thoughts are represented using an innate, private mental language often referred to as Mentalese. 

Fodor (1975, 2008) compared Mentalese to a built-in “machine language” that contains the 

symbolic primitives necessary for thought. Like acquired, natural (i.e., spoken and written) 

languages, Mentalese is assumed to have syntax and compositional semantics. Mentalese 

“words” correspond to worldly concepts (such as, cats, zebras, umbrellas, and liberty) that can be 

structured into complex expressions that depend on the semantic properties of their parts. Fodor 

(1975, 2008) further suggested that these unlearned conceptual symbols could be connected to 

worldly experiences using a compilation/decompilation-like translation process. The purpose of 

this process is to map to and from Mentalese and the concepts, objects, entities, situations, and 

events that Mentalese symbols and expressions refer in the world6. The LOTH advocates for the 

view that it is possible, in theory and in practice, to create a formal symbol system with an 

intrinsic understanding of worldly concepts by virtue of a fixed, built-in set of symbols and a 

translation process. And it is the role of the translation process to connect internal Mentalese 

symbols to their corresponding referents in the external world. Unfortunately, implementing such 

 

6 Proponents of the LOTH are careful to note that Mentalese does not include a 1-to-1 mapping between the 

apparently unlimited variety of possible worldly concepts and Mentalese symbols. Instead, Mentalese consists of a 

static, finite set of internal symbols that can be productively combined to represent all worldly phenomena. 
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a built-in translation process for a complex or realistic environment seems all but impossible, 

since this process must be able to express the worldly “essence” of every conceivable concept in 

Mentalese, and simultaneously recognize their sensory signatures in the world. All of this 

without the benefit of worldly experiences. As such, its existence in natural systems seems both 

implausible and unverifiable. As a result, the LOTH has been widely criticized (Rescorla, 2019), 

and by Fodor’s own admission, his account of concept acquisition is underdeveloped (see Fodor, 

2008, sec. 5.4). 

In general, purely symbolic approaches (like LOTH) tend to be excellent at implementing 

offline cognitive processes such as problem solving, planning, and deliberation, but perform 

poorly on complex perceptual tasks (e.g., object recognition) and tasks requiring fine motor 

control. Symbolic AI requires a separate translation (transduction) process to map non-symbolic 

inputs (environmental stimuli) to internal symbols, and internal symbols to non-symbolic outputs 

(motor commands). Explicating the cognitive processes that exist at the interface between 

symbolic reasoning systems and their environments is arguably symbolic AI’s greatest challenge. 

Non-Representationalism 

One strategy for solving the symbol grounding problem is to do away with representations 

entirely. In such systems, the symbol grounding problem is irrelevant since there are no symbols. 

However, the more general issues of explicating intrinsic meaning still apply. This non-

representational approach was championed (from a computational perspective) by Rodney 

Brooks in the 1980s and 1990s. 

Brooks (1990) argued that the “physical symbol system hypothesis” (Newell & Simon, 

1976)—which bases intelligence on the explicit rule-based manipulation of symbolic 
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representations—is “fundamentally flawed” (Brooks, 1990, p. 3). Instead, he proposed the 

“physical grounding hypothesis” (PGH), which stood in direct opposition to mental 

representations and the computational theory of mind. Brooks argued that “explicit 

representations and models of the world simply get in the way” (Brooks, 1991b, p. 139); “the 

world is its own best model… the trick is to sense it appropriately and often enough” (Brooks, 

1990, p. 5). Specifically, the PGH states that intelligent systems must have their representations 

grounded in the physical world. Physical grounding, for Brooks, is not simply the linkage 

between mental representations and the things they signify, but something much more 

fundamental to the way an agent interacts with its environment. According to this way of 

thinking, knowledge and understanding is inseparable from environmental interactions and the 

situational contexts in which they occur7.  

Brooks’s (1990) approach was also inspired by Minsky, who claimed that intelligence is 

the product of a collection of simple, hierarchically organized, individually unintelligent, mental 

agents (Minsky, 1986). Each of these agents (i.e., cognitive processes) is only capable of “some 

simple thing that needs no mind or thought at all,” (Minsky, 1986, p. 17) but when joined 

together in “societies” they are capable of producing behaviors that appear intelligent. In 

accordance with this view, Brooks (1991a) stated, “we hypothesize that all human behavior 

[emphasis added] is simply the external expression of a seething mass of rather independent 

[behavior generating modules] without any central control or representations of the world” 

(Brooks, 1991a, p. 226). 

 

7 This viewpoint is often referred to as “situated cognition” (see M. Wilson, 2002, pp. 626–627). 
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These ideas led to the development of the “subsumption architecture” (see Brooks, 1986) 

and its implementation in a number of simple, autonomous robots (see Brooks, 1990). The 

subsumption architecture’s individual “task achieving behaviors” (Brooks, 1986) are 

implemented using “augmented finite state machines” (AFSMs)8 that operate asynchronously 

and without the need for centralized control. These behaviors are connected together in a fixed, 

layered architecture, where each layer represents a “level of competence” (Brooks, 1986). These 

competences become progressively more sophisticated as one progresses higher in its vertical 

stack of layers. The name “subsumption” is based on the fact that each layer can “subsume” (that 

is, inhibit or suppress) the inputs and outputs of its connected lower layers when it wishes to 

send actuator commands or signals to other layers. In this way, subsumption provides a 

mechanism for decentralized conflict resolution.  

The subsumption architecture side-steps the symbol grounding problem by implementing 

minds using reactive, stimuli-driven, behavior generating modules. “There are no variables… 

There are no rules… There are no choices to be made. To a large extent the state of the world 

determines [an agent’s next] action” (Brooks, 1991b, p. 145). In other words, the subsumption 

architecture is based exclusively on online control processes that are directly coupled to the 

physical world: they take environmental stimuli as inputs and produce motor commands as 

outputs, without the use of intervening mental representations or internal models of the world. 

 

8 Brooks (1990) defined an AFSM as a simple finite state machine that is “augmented” with a set of registers 

(memory buffers for message passing) and a set of timers (that function as alarm clocks). 
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While the subsumption architecture is capable of producing some seemingly goal-

directed behaviors9, it is not clear how purely online control processes can implement offline 

cognitive activities (e.g., deliberation, planning, mental imagery, reminiscing, and dreaming). 

The direct coupling of environmental stimuli to overt behaviors seems to preclude introspectable 

mental states or any cognitive process that is spatially or temporally decoupled from immediate 

sensory stimuli. In many ways, the physical grounding hypothesis and its subsumption 

architecture embody behaviorist ideals: mental phenomena seemingly vanish under this 

conceptualization of mind. 

Apart from the subsumption architecture, there are other engineering approaches and 

cognitive theories that could be categorized as non-representational. For example, model-free 

reinforcement learning (RL) algorithms (e.g., Q-learning; Watkins & Dayan, 1992) employ 

machine learning techniques to optimize behavioral policies—i.e., functions that map 

environmental states to actions—without the use of internal environmental models. The 

intelligent systems produced by model-free RL are consistent with Brooks’s notion of physical 

grounding.10 Dynamical systems theory (DST) approaches to cognition, which are based on 

modeling minds using systems of differential equations, are further examples of non-

representational cognitive theories (e.g., see Chemero, 2013; Port & Van Gelder, 1995; Thelen & 

Smith, 1994). 

 

9 For example, Herbert was an autonomous robot built using the subsumption architecture that could wander through 

busy office areas, pick up (i.e., steal) soda cans from cluttered desks, and carry them off to be deposited in a trash 

can near its “home.” (Brooks, 1990 describes Herbert along with many other such robot examples.) 

10 The more recent and capable versions of model-free RL employ function approximators (e.g., neural networks); 

therefore, they are not strictly “non-representational.” Examples include Deep Q Networks (DQN; Mnih et al., 2015) 

and Proximal Policy Optimization (PPO; Schulman et al., 2017). 
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Connectionism 

Connectionist AI (or Connectionism) refers to approaches to building cognitive systems, or 

explaining mental processes, that are based primarily on artificial neural networks (ANNs). 

ANNs are computational systems inspired by the biological neural networks that occur in brains. 

And some of the same principles (e.g., distributed representations, parallel processing, and 

empirical learning) and mechanisms (e.g., activation, activation propagation, and 

inhibitory/excitatory connections) apply to both artificial and biological neural networks. 

ANNs are typically composed of layered sets of computational units called artificial 

neurons. Artificial neurons are highly simplified, mathematically idealized versions of their 

natural counterparts. Each artificial neuron functions as a computational unit that performs a 

calculation (e.g., weighted summation) over its inputs (“artificial synapses”). A threshold value 

(called a bias) is typically added to this intermediate value, and the result is then passed into a 

non-linear activation function to determine an artificial neuron’s output (i.e., its activation). 

These activations may then propagate (spread) over weighted connections (“artificial axons”) to 

other artificial neurons. While numerous computational elements have been added to this basic 

design—such as pooling (see Boureau et al., 2010), dropout (see Hinton et al., 2012), 

convolutions (see Fukushima, 1980; LeCun & Bengio, 1995), and attention (Vaswani et al., 

2017)—the components described above appear in most, if not all, modern neural network 

architectures. 

In theory, ANNs (with various architectures) have been shown to be universal 

approximators for many classes of functions (Cybenko, 1988, 1989; Hanin, 2019; Hornik, 1991; 

Leshno et al., 1993; Lu et al., 2017). However, in practice, there is no single network architecture 
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that performs well on all tasks. As a result, many special-purpose network architectures have 

been devised that are optimized for particular input modalities (e.g., visual, auditory, or text) and 

tasks (e.g., categorization or semantic segmentation). Convolutional neural networks (CNNs; 

Fukushima, 1980; Krizhevsky et al., 2012; LeCun & Bengio, 1995)—which were inspired by 

Hubel and Wiesel’s work on receptive fields in the visual cortex (Hubel & Wiesel, 1968)—

typically work well for visual inputs (e.g., images and videos). While recurrent neural networks 

(e.g., LSTM; Hochreiter & Schmidhuber, 1997) and transformers (Vaswani et al., 2017) are 

often used with sequential (or time series) data (e.g., written language, speech, and music). 

Residual networks (ResNets; He et al., 2016) are optimized for image classification; U-Nets 

(Ronneberger et al., 2015) for the semantic segmentation of medical images; WaveNets (Oord et 

al., 2016) for generating speech and music; and Generative Pre-trained Transformer 3 (GPT-3; 

Brown et al., 2020) for text-based natural language processing (NLP) and language 

comprehension tasks. 

Connectionist approaches typically require computationally intensive training processes 

that optimize an ANN for a given task. During training, ANNs are repeatedly exposed to training 

examples (inputs), which are often randomly selected from carefully procured (i.e., cleansed) 

datasets. An ANN’s parameters (e.g., weights and biases) are then updated based on the 

network’s performance on those inputs, with respect to a given task. In cognitive science terms, 

ANNs learn from experience, and the goal of these learning processes is to improve an ANN’s 

overall performance without overfitting to their training data. That is, the network’s performance 

should generalize from a limited set of experiences (i.e., “seen” inputs) to the broader population 

from which they were sampled (i.e., “never-before-seen” inputs).  
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ANN training can be broadly classified as either supervised or unsupervised. Supervised 

learning uses labeled training data. For example, MNIST (see LeCun et al., 1998) is a well-

known dataset for supervised learning that pairs images of handwritten digits (inputs) with their 

corresponding numerical values (labels). Labels (desired outputs) provide a training signal that 

ANNs can use to determine the network’s performance on a given task. Network performance is 

quantified using a loss function (such as, “mean squared error” or “cross entropy”), where loss—

the loss function’s output—is the basis for updating an ANN’s parameters (i.e., learning). Both a 

network architecture and a loss function are needed to fully specify an ANN’s operation and 

intent. 

Unsupervised learning, on the other hand, uses datasets containing unlabeled training 

examples—that is, only the ANN’s inputs11. Consequently, the primary challenge in 

unsupervised learning approaches is in defining a useful training signal; that is, how does one 

specify a network’s learning objective in the absence of an explicitly provided, target output 

value (such as a category label) in the training data? Custom loss functions and network 

architectures are needed to support this style of learning. 

Autoencoders are one type of ANN architecture that can learn in an unsupervised fashion. 

While there are many types of autoencoders12—such as, sparse autoencoders (SAEs), denoising 

autoencoders (DAEs), and variational autoencoders (VAEs)—all of them can be described as the 

combination of (1) an encoder network, (2) a decoder network, and (3) a loss function based, in 

 

11 In an autonomous agential system, these inputs might correspond to an agent’s sensory experiences of its 

environment (e.g., visual, tactile, auditory, gustatory, olfactory, proprioceptive, nociceptive, etc.). 

12 See Bank et al. (2021) for a survey of different types of autoencoders. 
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part, on reconstruction error. The encoder network transforms its inputs into (typically) lower-

dimensional representations—called latent representations13 or embeddings. And the decoder 

network then attempts to reconstruct the autoencoder’s original inputs from these latent 

representations. An autoencoder’s loss function encourages its encoder and decoder networks to 

work together towards the shared goal of minimizing the differences between the original and 

reconstructed inputs—that is, to minimize the autoencoder’s reconstruction error. How well 

autoencoders achieve this objective is a function of (1) how effectively the encoder network 

learns generative features (e.g., shape, size, position, orientation, color) that characterize an 

autoencoder’s inputs, and (2) how effectively the decoder network can transform those 

generative features (i.e., latent representations) into likenesses of those original inputs. 

Unsupervised learning techniques can be used for feature learning (Bengio et al., 2012), 

data compression, learning environmental models (Eslami et al., 2018), or training generative 

processes (among other things). Generative processes are functional components that can render 

“likenesses” of learned concepts in various modalities (e.g., images, speech, and text). 

Variational autoencoders (VAEs; Kingma & Welling, 2013) and generative adversarial networks 

(GANs; Goodfellow et al., 2014) are two types of generative ANNs that are trained using 

unsupervised learning. 

 

13 Latent representations typically refer to vector encodings of an ANN’s inputs. They are called “latent” because 

they are usually associated with a network’s hidden layers, rather than its inputs or outputs. For example, the latent 

representations of autoencoder ANNs are generated in an autoencoder’s (internal) “bottleneck” layer. Latent 

representations are closely related to “word embeddings”; however, latent representations refer to a broader class of 

inputs. Latent representations can be thought of as points in a latent (vector) space, where points that are close in this 

latent space tend to correspond to similar input values. 
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Having introduced artificial neural networks (ANNs), the question remains: “Can they be 

used to solve the symbol grounding problem?” The answer to this question is a qualified “Yes.” 

Internally, ANNs can learn distributed, non-symbolic representations that bear a non-arbitrary 

relationship to their inputs.14 As a result, ANNs can potentially avoid the infinite regression of 

symbolic associations—i.e., Harnad’s (1990) “merry-go-round”—that can occur in purely 

symbolic systems. Moreover, an ANN’s non-symbolic representations can function as feature 

detectors that are sensitive to objects, events, properties, and contextual cues occurring in an 

environment. The collective patterns of activation occurring over these feature detectors can be 

used to establish concept-referent connections (i.e., grounding connections), which can later be 

used to identify the concept instances to which those patterns of activation correspond. These 

representational properties of ANNs can be exploited to implement grounded cognitive processes 

and systems. (I examine two strategies for doing so later in this chapter.) 

Despite these useful properties, if ANNs are trained exclusively on symbolic inputs and 

outputs (such as words), then their learned internal representations will be ungrounded. That is 

not to say that these representations are “meaningless.” There is often a great deal of information 

in symbolic contexts (e.g., language) that can be exploited by ANNs. And large language models 

(LLMs), such as BERT (Devlin et al., 2018) and GPT-3 (Brown et al., 2020), offer compelling 

evidence that contextual information alone can produce intelligent behaviors. That said, in such 

cases the network’s knowledge will be “about” those symbols and their uses, not their referents. 

 

14 In Peirce’s terminology, an ANN’s representations can function as icons or indexes. As icons, an ANN’s 

representations preserve some of the properties of their inputs (i.e., their features). This can be used, for example, to 

support categorization and categorical inference. As indexes, an ANN’s representations can point to the existence of 

objects, entities, and events in the environment. This can be used to support predictions about the environment 

(among other things). 
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Therefore, the connections between those symbols and their referents will be extrinsic to the 

system (cf. Searle, 1980). I discuss ungrounded, contextual meaning in more detail later in this 

chapter (see the section on Distributional Semantics). 

ANNs excel at implementing what has been referred to (in dual process theory) as 

System 1 cognitive processes (Kahneman, 2011; Stanovich & West, 2000). System 1 processes 

have been characterized as being fast, automatic, heuristic-based, primarily unconscious, and 

relatively undemanding of computational capacity (Stanovich & West, 2000, pp. 658–659). 

Perception and intuitive/associative reasoning are System 1 cognitive processes (Kahneman, 

2011). On the other hand, ANNs are less adept at implementing System 2 processes, which have 

been characterized as being slower, analytical, rule-based, primarily conscious, and effortful 

(Stanovich & West, 2000, pp. 658–659). Algorithmic problem-solving and deliberative 

reasoning are System 2 cognitive processes (Kahneman, 2011). While, in principle, ANNs 

should be able to implement both System 1 and System 2 processes, System 2 processes remain 

more challenging to implement in practice.  

ANNs have been criticized for being uninterpretable “black boxes” that require massive 

amounts of data and computational power to train, and for being slow to adapt to nonstationary 

environments (see Marcus, 2018 for a summary of these issues). They also suffering from other 

issues, such as “catastrophic forgetting” (see Goodfellow et al., 2015; McCloskey & Cohen, 

1989; Ratcliff, 1990), that frustrate their progress towards general intelligence. As a final note: 

even if generally intelligent cognitive systems are developed based entirely on ANNs, it is likely 

that their operations will be largely incomprehensible to us, and they will almost certainly 
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“think” in distinctly non-human-like ways. Consequently, such intelligent systems may be of 

limited use to cognitive science. 

Hybrid Systems 

Harnad (1990) suggested a possible solution to the symbol grounding problem based on the 

creation of hybrid symbolic/non-symbolic systems (see Figure 1). Harnad reasoned that symbolic 

and non-symbolic (e.g., connectionist) approaches have complementary strengths and 

weaknesses, and that, rather than considering them competing theories of mind, we should 

combine them. According to Harnad, symbolic systems are incapable of connecting symbols 

with their referents in the world (i.e., establishing grounding), while connectionist systems lack 

the compositionality, productivity, and systematicity of symbolic systems (see Harnad, 1990, p. 

344). By combining the two, he argued that we not only solve the symbol grounding problem but 

also retain the benefits of these respective subsystems. One of Harnad’s (1990) central 

conjectures was that symbols must be grounded from the bottom-up, by first learning non-

symbolic representations from sensory experiences of objects in the world, and then creating and 

associating symbolic representations with them. 

According to Harnad (1990), symbolic representations must be grounded in two kinds of 

non-symbolic representations: iconic and categorical.15 Iconic representations are non-symbolic 

representations that serve as internal “analogs” of the “sensory projections”16 of objects in the 

world. These analogs selectively encode many of the distinctive features (e.g., aspects of shape, 

 

15 Harnad’s iconic and categorical representations are both species of icons (Peirce, 1867–1893/1992, p. 226) that 

are distinguished only by their degrees of selectivity and invariance. 

16 The transduction of light in an eye’s retinal cells is an example of a sensory projection. Sensory projections occur 

when sensory stimuli (from an environment) impinge on a sensor. 
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color, or brightness) of worldly objects, allowing them to be compared with one another based 

on the similarity of their corresponding iconic representations. Categorical representations, on 

the other hand, are non-symbolic representations that capture the most important invariant 

features corresponding to categories of objects. In particular, they encode the relative weighting 

of features based on their importance in determining category membership. For example, color 

may be irrelevant for determining that an object is a chair but highly relevant for determining 

that a banana is ripe. Harnad (1990) argued that while iconic representations are useful for 

discriminating between sensory inputs they are insufficient for identifying categories (i.e., types) 

from category instances (i.e., tokens). In other words, Harnad (1990) contended that categorical 

representations are needed to support categorical inference.  

Harnad (1990) suggested that both iconic and categorical representations should be 

encoded within the architecture’s connectionist (ANN) subsystem. While these representations 

are useful for identifying and discriminating between sensory stimuli, Harnad (1990) argued that, 

by themselves, they are an “inert taxonomy” (p. 343) that does not “mean” anything. In Harnad’s 

view, meaning requires that a symbol be assigned to each categorical representation (serving as 

its “name”), and that these symbols be composed into symbolic propositions; for example, 

symbol strings such as “An X is a Y that is Z” (p. 343). These symbolic representations could 

then to be manipulated based on symbolic rules, as well as the non-symbolic features encoded in 

iconic and categorical representations.  

Harnad’s hybrid architecture seems to allow for the best aspects of symbolic and 

connectionist approaches; however, Harnad’s vision leaves open to interpretation many of its 

details, such as the nature of non-symbolic cognitive operations, how the symbolic and 
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connectionist components interact, the mechanisms by which iconic and categorical 

representations influence symbol manipulation, and the functional relationship between iconic 

and categorical representations (e.g., do categorical representations use or functionally depend on 

iconic representations in some way?). 

 

 
Figure 1. High-level depiction of Harnad’s hybrid architecture. Symbolic representations are grounded 

(bottom-up) in two kinds of non-symbolic representations: iconic and categorical. Each categorical 

representation is assigned a symbol that serves as its identifier. These symbolic representations are 

composed into symbolic propositions that can be manipulated by rule-based processes to generate new 

knowledge. 
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Distributional Semantics 

Distributional semantics is a family of approaches that bases the meaning of words on the 

contexts of their use. This idea manifests itself as a cognitive theory called the distributional 

hypothesis (DH; Harris, 1954; Lenci, 2008).  

Latent sematic analysis (LSA; Landauer & Dumais, 1997) is perhaps the best known and 

most influential DH theory in cognitive science. According to the LSA theory, it is the 

relationships between words that create verbal meaning. Landauer (2007) argued that it is 

primarily these abstract relations between words that make thinking, reasoning, and interpersonal 

communication possible. As such, Landauer (2007) believed that LSA was a candidate theory for 

explaining how verbal meaning is learned, used, and communicated by human minds. 

Computationally, LSA describes an algorithm that learns “semantic vectors” for the terms 

(words) and documents (sequences of words) in a corpus (a set of documents). These vectors can 

be thought of as specifying locations in a semantic (vector) space. And by using similarity 

measures (e.g., cosine similarity), same/difference judgments can be made about these vectors. 

Lenci (2008) characterized the semantic vectors learned by LSA (and other DH 

algorithms) as context-based, distributed, quantitative, and gradual. They are context-based 

because the context of their occurrence determines their semantic interpretation. They are 

distributed because the global distribution of word inter-relations determines their meaning. 

They are quantitative because their semantic interpretation is derived from a statistical analysis 

over a corpus of language data, rather than a set of qualitative properties. And they are gradual 

because their locations in semantic space gradually update as the global distribution of word 

contexts in a corpus change. 



 

36 

 

The mechanics of the LSA algorithm, as described by Landauer and Dumais (1997), are 

relatively simple. First, a term-document matrix is constructed, where each row corresponds to a 

term in a corpus and each column corresponds to a document in that corpus. The number of 

times each term appears in a document determines the matrix’s values. Documents are, therefore, 

encoded as unordered “bags of words,” reflecting only the number of occurrences of each word 

in a document, not their surrounding linguistic context. For example, if the word “car” appeared 

17 times in a document, then 𝑎𝑖𝑗 = 17; where 𝑖 is the row corresponding to “car,” 𝑗 is the 

column corresponding to that document, and 𝐴 is the term-document matrix. The singular value 

decomposition (SVD; see Strang, 2016) is then calculated for the matrix 𝐴, resulting in the 

factorization of 𝐴 into three matrices: 𝐴 = 𝑈Σ𝑉𝑇 . The matrix 𝑈 contains the semantic (singular) 

vectors for terms, the matrix 𝑉 contains the semantic (singular) vectors for documents, and Σ 

contains singular values that determine the relative weights of the vectors’ dimensions. The 

dimensions that account for the most variance in the data have the largest singular values. 

Typically, the resulting matrices are truncated by selecting only a subset of each semantic 

vector’s dimensions (e.g., the 100 dimensions with the largest singular values). This truncated 

SVD17 captures the most important aspects of the corpus’s underlying structure while 

simultaneously removing noise from the dataset. 

Landauer and Dumais (1997) were able to show that, given a large enough corpus, LSA 

can often determine the semantic similarity of words from contextual statistics alone. Thus, they 

were able to convincingly demonstrate that there is a great deal of information contained within 

 

17 The truncated SVD is also the basis for Principal Component Analysis (PCA), which is widely used in statistics 

and machine learning for multivariate data analysis and visualization. 
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the context of language usage alone. When thought of as a cognitive model, LSA’s ability to 

infer semantic relationships from contextual statistics raises questions about how humans learn 

linguistic (and perhaps non-linguistic) concepts. Landauer and Dumais (1997) stated,  

the model employs a means of induction—dimension optimization—that greatly 

amplifies its learning ability, allowing it to correctly infer indirect similarity relations 

only implicit in the temporal correlations of experience. The model exhibits humanlike 

generalization… that does not rely on primitive perceptual or conceptual relations or 

representations [emphasis added]. (p. 212) 

This idea appears to be in direct opposition to Harnad (1990)’s contention that learning must 

proceed in a bottom-up fashion from sensory and motor experiences. It also casts doubt on the 

primacy of non-symbolic, perceptual representations in the learning of verbal meaning. Landauer 

(2007) addressed these points directly, stating 

Some assert that meanings are abstract concepts or properties of the world that exist prior 

to and independently of any language-dependent representations… A sort of corollary of 

this postulate is that what we commonly think of as the meaning of a word has to be 

derived from, ‘grounded in,’ already meaningful primitives in perception or action… Of 

course, strings of words must somehow be able to represent and convey both veridical 

and hypothetical information about our inner and outer worlds… However, once the 

mappings [between words and worldly concepts] have been obtained through the cultural 

evolution of a language [emphasis added], there is no necessity that most of the 

knowledge of meaning cannot be learned from exposure to language itself. (Landauer, 

2007, p. 7) 
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This line of thought led Landauer to conclude that sensory and perceptual experiences might be 

attached to word meanings after the fact, or as he stated it, 

This puts the causal situation [i.e., regarding the formation of semantic representations] in 

a different light. We may often first learn relations of most words and passages to each 

other from our matrices of verbal experiences and then attach them to perceptual 

experience by embedding them in the abstract word space. (Landauer, 2007, p. 7) 

In Landauer’s view, this abstract word space (i.e., semantic space) is the “primitive substrate” 

that gives words meaning. He goes on to suggest that semantic spaces could also be constructed 

for percepts, and that, after “only a comparatively few correlations” between perceptual and 

linguistic experiences, all of the connections between these semantic spaces will be aligned “to a 

close approximation” (Landauer, 2007, p. 24). 

To sum up, the distributional hypothesis (DH) is a cognitive theory based on the idea that 

contextual relationships are the primary mechanisms by which we acquire verbal meaning (and 

perhaps other types of meaning; see Landauer, 2007). And latent semantic analysis (LSA) is one 

of the best-known and influential of these theories. As a computational approach, LSA has 

conclusively demonstrated that the co-occurrence patterns of words in a corpus can be used to 

infer the semantic similarities between those words given a large enough structured corpus. As a 

cognitive theory, LSA predicts that concept and word acquisition is largely a function of learning 

the semantic relations between words through repeated exposure to language. In this view, 

language is seen as already containing most of the necessary information for learning these 

concepts. Landauer (2007) hypothesized that perceptual experiences could then be associated 

with these linguistic forms, once the underlying semantic spaces have been learned. 
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I contend that DH-based algorithms, such as LSA, learn a form of “associative meaning” 

that captures the inter-connectedness of things, not the things themselves. In particular, I believe 

that these approaches demonstrate that it is possible to learn how and when to use words without 

knowing what they refer to in the world. A similar phenomenon has been seen with recent 

massive-scale18, neural network-based, language models—like Generative Pre-trained 

Transformer 3 (GPT-3; Brown et al., 2020)—that have demonstrated human-level performance 

on various language comprehension tasks without the use of grounded representations. 

While distributional semantics will likely have some part—perhaps a large part—to play 

in explaining how humans learn language, it does not solve the symbol grounding problem. And, 

in my opinion, it does not obviate the need to do so. In particular, LSA and distributional 

semantics say very little about the nature of non-linguistic thought (e.g., non-symbolic 

perception and action, and cognitive processes like mental simulation). Consequently, 

distributional semantics, by itself, does not explain the thought processes of non-human animals 

and pre-verbal humans. That said, the combination of distributional semantics with grounded 

approaches to cognition is a promising research direction worth exploring. And numerous 

researchers have advanced theories of cognition that suggest that humans may use a combination 

of grounded representations and distributional semantics (e.g., Barsalou et al., 2008; Landauer, 

2007; Louwerse, 2018; Louwerse & Jeuniaux, 2008). 

 

18 GPT-3 has 175 billion model parameters, and was trained on half-a-trillion encoded linguistic tokens. It received a 

great deal of media attention because it has been claimed that the synthetic news articles generated by the model are 

practically indistinguishable from real news articles. For example, Brown et al. (2020) noted, “mean human 

accuracy at detecting articles that were produced by the [GPT-3] 175B parameter model was barely above chance.”  
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Embodied, Simulation-Based Cognition 

Embodied cognition (EC) refers to a set of related though distinct ideas that emphasizes the 

fundamental role of bodies and environmental interactions in shaping minds. Rather than 

conceptualizing minds as abstract information processing machines that are distinct from bodies, 

EC theories contend that mental activities are inseparable from the sensory and motor 

mechanisms of the body. In general, many of the fundamental characteristics of EC can be seen 

as emerging in response to, and in opposition of, the computational origins of cognitive science. 

Margaret Wilson (2002) identified six distinct perspectives that characterize embodied 

cognition:  

(1) “Cognition is Situated,”  

(2) “Cognition is Time Pressured,”  

(3) “We Off-Load Cognitive Work onto the Environment,”  

(4) “The Environment is Part of the Cognitive System,”  

(5) “Cognition is for Action,” and  

(6) “Off-Line Cognition is Body Based.”  

I will focus here on the first and sixth of these perspectives, as they motivate the development of 

embodied, simulation-based cognition. However, the fifth of these perspectives (“Cognition is 

for Action”) is also of critical importance to this work, and it appears both explicitly and 

implicitly throughout. 
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“Cognition is Situated,” refers to the idea that cognitive activity takes place with respect 

to the task-specific and context-sensitive demands of an environment. Situated agents are said to 

be tightly coupled to their environments, and their cognitive processes are continually influenced 

by incoming sensory stimuli and the effects of their actions on their environments. Proponents of 

situated cognition tend towards a view of the action-perception cycle (Cutsuridis et al., 2011; T. 

M. H. Dijkstra et al., 1994; Fuster, 2004) that is rapid and reactive, minimizing or eliminating 

many notions of offline cognition, such as inference, planning, and deliberative thought. Sensory 

stimuli (inputs) are more or less directly connected to corresponding behavior producing 

modules (outputs) that allow agents to act on their environments. “Any cognitive activity that 

takes place ‘off-line,’ in the absence of task-relevant input[s] and output[s], is by definition not 

situated” (M. Wilson, 2002, p. 626). By contrast, situated activity occurs online. 

Computationally, situated cognition is well-exemplified by Rodney Brooks’s subsumption 

architecture (see the section on Non-Representationalism presented earlier in this chapter). 

While situated cognition is an important perspective within embodied cognition, it fails to 

provide a convincing explanation for the many cognitive activities that appear to occur offline, 

decoupled from immediate sensory inputs and motor activity. Offline cognitive activities, such as 

planning, deliberation, prediction, inference, imagination, and even more pedestrian activities 

like the recall of long-term memories, are decoupled from an agent’s immediate inputs and 

outputs that are occurring “right now.” Even though these cognitive activities are commonplace, 

and seemingly indispensable for humans (and likely other animals), much of the embodied 

literature has chosen to deny them, ignore them, or downplay their importance. This is likely 

due, at least in part, to the antagonistic relationship that exists between embodied views and 
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more traditional cognitive theories (e.g., the CTM and the LOTH) that have focused almost 

exclusively on offline activities using ungrounded, symbolic representations. However, the 

difficulty of explaining these processes in a way that is grounded and consistent with embodied 

principles is almost certainly a contributing factor to their relative neglect in the embodied 

cognition literature. Margaret Wilson’s sixth perspective, “Off-Line Cognition Is Body Based,” 

corresponds to an effort within embodied cognition to explain how agents’ bodies and 

environmental interactions can be integral to these offline cognitive processes. 

Researchers in cognitive science, linguistics, neuroscience, and philosophy (including 

Lawrence Barsalou, Benjamin Bergen, Vittorio Gallese, Arthur Glenberg, Alvin Goldman, 

Germund Hesslow, Marc Jeannerod, Jesse Prinz, and Giacomo Rizzolatti) have advanced various 

theories about how embodiment can be extended to offline cognition through the use of some 

form of mental simulation. I generically label these efforts with the term embodied, simulation-

based cognition, which is the central topic of this manuscript. According to this view, 

sensorimotor mental simulations, and the processes that operate on them, can be viewed as 

mechanisms for realizing “grounded cognition” (Barsalou, 2008) in natural and artificial minds. 

Margaret Wilson (2002) summarized this idea, stating that the 

[m]ental structures that originally evolved for perception or action appear to be co-opted 

and run ‘off-line,’ decoupled from the physical inputs and outputs that were their original 

purpose, to assist in thinking and knowing…. In general, the function of these 

sensorimotor resources is to run a simulation of some aspect of the physical world, as a 

means of representing information or drawing inferences. (M. Wilson, 2002, p. 633) 
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In other words, these theories propose a view of cognition based on grounded, non-symbolic 

representations, mental simulations, and imagistic processes (e.g., image generation, 

transformation, and introspection; see Chapter 7). 

Many theories have been advanced within this tradition. Some focus on specific cognitive 

functions, such as language comprehension (Bergen & Chang, 2005; Bergen & Wheeler, 2010; 

Zwaan, 2004; Zwaan & Taylor, 2006), action and motor cognition (Jeannerod, 1995, 2006; 

Jeannerod & Frak, 1999), and “theory of mind” (Gallese, 2003, 2007; Iacoboni et al., 2005; 

Rizzolatti & Sinigaglia, 2016; Shanton & Goldman, 2010). Other theories are more 

comprehensive, proposing that mental simulation underpins most, if not all, cognitive functions 

(Barsalou, 1999, 2008, 2009; Grush, 2004; Hesslow, 2002, 2012; Prinz, 2004). I will primarily 

focus on Barsalou’s (1999) theory of perceptual symbol systems and Jeannerod’s (1994, 1995, 

2001) theory of motor cognition here, as they heavily influenced the theory and computational 

implementations developed in later chapters. 

Perceptual Symbol Systems 

According to the theory of perceptual symbol systems (PSSs), the patterns of activation that 

occur in sensory and motor systems during perception and action can be stored into long-term 

memory and, if later recalled, function as grounded representations of entities and concepts in the 

physical world. Barsalou referred to these re-instantiations of sensorimotor patterns of activation 

as perceptual symbols (or modal symbols). Despite their name, perceptual symbols are actually 

non-symbolic representations. 



 

44 

 

Barsalou (1999) outlined numerous properties that he believed would characterize 

perceptual symbols.19 Perceptual symbols are modal, because “they are represented in the same 

systems as the perceptual states that produced them,” (Barsalou, 1999, p. 578) and, potentially, 

multimodal, accounting for content originating in multiple sensory modalities. They are 

analogical because they share properties with, and likely bear some structural resemblance to, 

their originating perceptual states. In contrast, amodal symbols typically have an arbitrary 

relationship with the phenomena to which they refer. 

Perceptual symbols are not complete “recordings” of an individual’s entire mental state 

during perception, but instead capture salient aspects of their corresponding sensory and motor 

experiences. Barsalou characterizes the information represented in perceptual symbols as 

“relatively qualitative and functional (e.g., the presence or absence of edges, vertices, colors, 

spatial relations, movements, pain, heat)” (Barsalou, 1999, p. 582), and he is careful to point out 

that perceptual symbols should not be thought of as physical “pictures.” Further consequences of 

this are that perceptual symbols may contain aspects that are partial and indeterminate; for 

example, the perceptual symbol for a bicycle wheel may have an unspecified number of spokes. 

The same perceptual symbol can be used to designate multiple referents since 

resemblance, by itself, is not enough to establish intentionality (i.e., the aboutness of a mental 

representation). Rather, mechanisms external to perceptual symbols must be used to establish 

their relationships to specific referents (e.g., contextual information). To illustrate this, consider 

attending a dinner party where all of the guests have wine glasses of identical design. In such a 

 

19 The Appendix contains a much more detailed review and analysis of various representational properties ascribed 

to perceptual symbols. 
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scenario, the designation of “my wine glass” is established both by its appearance and its context 

(for example, its placement on the table), not resemblance alone. 

Perceptual symbols are dynamic; that is, they are sensitive to differences in external and 

internal (i.e., mental) contexts, as well as changes in nearby regions of associative memory. As a 

result, the reactivation of a perceptual symbol has dynamical properties that result in a degree of 

variability in their reconstructions from long-term memory. Barsalou stated that perceptual 

symbols can be viewed as “attractors” (see Norton, 1995, p. 56) in a connectionist network: “As 

the network changes…the attractor changes. As the context varies, activation of the attractor 

covaries” (Barsalou, 1999, p. 584). 

Barsalou (1999) equated the capacity to mentally simulate a concept with an 

understanding of that concept: “Once individuals can simulate a kind of thing to a culturally 

acceptable degree, they have an adequate understanding of it” (Barsalou, 1999, p. 587). In 

particular, he argued that once an agent has enough conscious experience with some entity, 

object, or event, the set of perceptual symbols corresponding to that concept can become 

integrated into a simulator. These simulators constitute “the knowledge and accompanying 

processes that allow an individual to represent some kind of entity or event adequately” 

(Barsalou, 1999, p. 587), and their purpose is to produce mental simulations that are non-

symbolic instantiations of some conceptual “type” (e.g., category). These sensorimotor 
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simulations are typically preconscious20 representations that occasionally become conscious. 

When they do become conscious, they are referred to as mental images. 

Just as “a pile of bird features does not make a bird” (Murphy, 2004), a set of perceptual 

symbols does not define a concept. To solve this problem, Barsalou suggested that simulators 

must structure their perceptual symbols within (background or reference) frames21. The role of 

such a frame is to arrange a simulator’s perceptual symbols in “just the right way” so that their 

relationships to one another (in the context of a particular concept) are adequately specified and 

constrained. For example, a frame for the concept of a stationary bicycle might include the 

spatial relationships between each of its subcomponents (for example, the bicycle’s wheels, 

frame, seat, and handlebars) in relation to its overall volumetric extent. To represent dynamic 

concepts, such as a bicycle in motion or a song, frames may also need to include a temporal 

dimension. Barsalou’s frames have some functional overlap with what Kosslyn et al. (2006) 

called object maps (or spatial images); however, Barsalou’s frames include additional properties, 

such as “predicates” and “constraints,” that extend beyond Kosslyn et al. (2006)’s relatively 

simple conceptualization of object maps. 

 

20 I use the convention established by Franklin and Baars (2010) of referring to unconscious representations that 

have the potential to become conscious as “preconscious” and those that do not as “never-conscious.” 

21 Barsalou’s frames are similar in spirit, but different in kind, to Minsky’s (1975) frames. Where Minsky’s frames 

are amodal, symbolic representations, Barsalou envisions frames as modal, non-symbolic representations. 
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Barsalou (1999) was adamantly opposed to amodal symbols22, even if they could be 

grounded as Harnad (1990) proposed using a hybrid symbolic/non-symbolic architecture. 

Barsalou criticized Harnad’s approach saying, 

One solution [to the symbol grounding problem] is to postulate mediating perceptual 

representations. According to this account, every amodal symbol is associated with 

corresponding perceptual states in long-term memory… During symbol grounding, the 

activation of the amodal symbol in turn activates associated perceptual memories, which 

ground comprehension. Problematically [emphasis added], though, perceptual memories 

are doing all of the work, and the amodal symbols are redundant. Why couldn’t the 

system simply use its perceptual representations…, both during categorization and 

reasoning [emphasis added]? 

Consequently, Barsalou (1999) has argued that modal representations and mental simulations are 

sufficient to implement a “fully functional conceptual system” without the need for amodal (i.e., 

ungrounded) symbols, such as those used in classical symbolic AI and CTM. Specifically, 

Barsalou (1999) attempted to demonstrate that a PSS could support types and tokens, categorical 

inference, productivity, propositions, and abstract concepts. 

Barsalou (1999) further criticized amodal approaches saying that they (1) “failed to 

provide a satisfactory account of the transduction process that maps perceptual states into amodal 

 

22 Goldstone and Barsalou (1998) characterized perceptual symbol systems as an “eliminativist position” on the 

uniting of perception, action, and cognition, that attempts to establish an “existence proof that a completely 

perceptual approach is sufficient for establishing a fully functional symbolic system” (Goldstone & Barsalou, 1998, 

p. 235). They argued that, if this position is determined to be well-founded, it is grounds for eliminating amodal 

symbols as unnecessary theoretical baggage. 
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symbols” (p. 580); (2) “have not fared well in implementing… spatio-temporal knowledge” (p. 

580); (3) are not supported by neuroscientific and cognitive evidence; and (4) can only provide 

post hoc explanations of mental phenomena (such as timing effects in mental rotation and 

scanning) that modal theories predict a priori.  

Moreover, Barsalou contended that linguistic symbols are not amodal symbols, “nor does 

an amodal symbol ever develop in conjunction with [them]” (Barsalou, 1999, p. 592). Instead, he 

viewed linguistic symbols as modal, corresponding to sensory experiences of word forms (e.g., 

how they look and sound). These become associated with other simulators corresponding to their 

referents (i.e., what these linguistic elements correspond to in the world), and it is this 

combination of word form and referent simulators that allow “linguistic control over the 

construction of simulations" (Barsalou, 1999, p. 582). Finally, he stated that while it is often 

argued that amodal symbols acquire meaning by associations with other amodal symbols (cf. 

Distributional Semantics), this approach ultimately fails without grounding, terminal symbols. 

Conceptually, the theory of PSSs makes several important theoretical innovations: 

(1) It suggests an operational definition of (modal) understanding based on an 

individual’s capacity and facility at simulating concepts. 

(2) It provides a mechanism by which new knowledge can be produced offline using 

modal representations, mental simulation, and imagistic thought processes. 

(3) It pushes the boundary on what can be accomplished with modal, analogical 

representations, suggesting that non-symbolic, imagistic thought could be the 

backbone of natural, and perhaps one day artificial, intelligent systems. 
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Unfortunately, to date, the theory of PSSs has failed to compellingly demonstrate that modal, 

non-symbolic representations alone can account for all cognitive phenomena (e.g., abstract 

concepts; see Dove, 2009). As such, the onus still falls on Barsalou to demonstrate the 

redundancy of amodal symbols. Furthermore, like Harnad’s (1990) hybrid architecture, PSS is a 

high-level theory that is intuitively appealing but underspecified, and it requires more 

computational accounts to determine the feasibility of implementing this theory in practice 

(Barsalou, 2009; Pezzulo et al., 2013). 

Motor Cognition 

Jeannerod (1994, 1995, 2001) advanced a simulation-based theory of cognition that attempts to 

unify the production of actions and action-oriented thought. According to this theory, action 

production involves both an overt stage, in which actions are executed, and a covert stage, in 

which actions are mentally simulated. Jeannerod claimed that covert actions (motor simulations) 

are the cognitive precursors of overt actions, and that motoric mental imagery occurs through the 

enactment of covert actions without a subsequent overt action execution stage (Jeannerod, 2001, 

p. S103)23. Jeannerod hypothesized that the convert stages of action production generate mental 

representations that include an action’s goal (i.e., its intention), a means to reach that goal (i.e., 

an action plan), and the action’s environmental consequences. 

There is a wealth of psychological and neurophysiological evidence suggesting that 

thinking about acting (i.e., imaging oneself performing external activities) and actually acting 

 

23 This raises the question of the mechanism by which action execution is prevented during motoric mental imagery. 

Recent evidence suggests that biological systems have neural circuits that directly inhibit motor activity during 

motor simulation, thus actively preventing overt action execution (Angelini et al., 2015; Rieger et al., 2017; Scheil 

& Liefooghe, 2018). An alternate hypothesis, which argued that covert actions lack sufficient activation to engage 

motor execution, has been largely discredited. 
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(i.e., performing external activities) engage similar cognitive mechanisms and utilize shared 

neural pathways. For example, when subjects were asked to imagine themselves performing an 

action (e.g., walking), they typically required an amount of time that is proportional to the time 

required to physically perform that action (Bakker et al., 2007; Decety et al., 1989; Frak et al., 

2001). Furthermore, neuroimaging studies—based on fMRI, PET, and near-infrared 

spectroscopic (NIRS) topography—have demonstrated that similar patterns of neural activity 

occur in subjects’ primary and pre-motor cortices when imagining and performed activities such 

as moving one’s fingers, toes, and tongue (Decety et al., 1994; Ehrsson et al., 2003; Lotze et al., 

1999; Porro et al., 1996; Sharma & Baron, 2013). Taken together, these results suggest that 

motoric mental imagery and physical activity operate using similar cognitive processes and a 

shared neural substrate. 

Building on these findings, researchers have noted that simply observing the actions of 

others can elicit a pattern of neural activity that resembles the mental simulation of one’s own 

actions (Buccino et al., 2013; Calvo-Merino et al., 2005, 2006; Gallese et al., 1996; Rizzolatti et 

al., 1996; Rizzolatti & Sinigaglia, 2016). The neurons that perform this dual function are often 

referred to as “mirror neurons” (Rizzolatti & Craighero, 2004) and their associated cognitive 

processes as “mirror mechanisms” (Rizzolatti & Sinigaglia, 2016). Rizzolatti and Sinigaglia 

stated, 

The functional properties of the mirror mechanism indicate that the motor processes and 

representations that are primarily involved in generating and controlling a given 

behaviour can also be recruited in an individual who is observing someone else 

displaying that behaviour. By means of this recruitment, the individual may take 
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advantage of his or her own processes and representations to understand others’ actions 

and emotions, as well as their corresponding vitality forms. (Rizzolatti & Sinigaglia, 

2016, p. 7) 

It has been shown that these “mirror mechanisms” can also be engaged when trying to 

understand the intentions of others (Iacoboni et al., 2005), and during the comprehension of 

motoric, action-oriented language (Jirak et al., 2010; Zwaan & Taylor, 2006). 
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Chapter 3 

A Hybrid Approach to Embodied, Simulation-Based Cognition 

Symbols grow. They come into being by development out of other signs, particularly 

from likenesses or from mixed signs partaking of the nature of likenesses and symbols…. 

These mental signs are of mixed nature. (Peirce, 1893–1913/1998, p. 10) 

This chapter is an overview of ES-Hybrid (Embodied Simulation-Hybrid)—a hybrid 

(symbolic/non-symbolic) approach to embodied, simulation-based cognition (ES). It is intended 

to serve as a roadmap for contextualizing the work in subsequent chapters. 

A fundamental assumption shared by all ES theories is that individuals conceptualize, 

understand, and act upon their environments using representations and processes that are 

grounded in their sensory and motor systems. That is, the mental representations and cognitive 

processes used to interact with the world are recruited to reason about the world. Consequently, 

offline cognition in ES largely entails the re-enactment and transformation of prior sensorimotor 

states and their representational derivatives. Given this, all ES theories should minimally specify 

(1) how knowledge can be grounded in sensory and motor systems; (2) how knowledge can be 

acquired, both empirically and through reason; (3) how knowledge can be brought to bear in 

support of simulation-based offline cognition; and (4) how simulation-based cognition can 

support the production (i.e., the selection and execution) of actions. Developing ES-Hybrid’s 

perspective on these basic questions is the focus of this manuscript. 

In this chapter, I discuss the circumstances that led to and motivated ES-Hybrid’s 

creation, acknowledge the theories and ideas that influenced its development, and discuss some 



 

53 

 

of its limitations which will be addressed in subsequent chapters. Following this, I provide a 

high-level overview of the theory—a narrative that introduces ES-Hybrid’s mental 

representations and cognitive processes and describes how they collaborate to realize a hybrid 

conceptualization of ES. Many of ES-Hybrid’s components are then individually discussed and 

elaborated on. I conclude the chapter with brief discussions on intentionality, intrinsic meaning, 

and language in the context of ES-Hybrid. 

Preliminaries 

Origins and Motivations 

ES-Hybrid developed from an initial attempt to implement Barsalou’s theory of perceptual 

symbol systems within the LIDA cognitive architecture (e.g., see Kugele & Franklin, 2020b). As 

a result of that exercise, I came to regard Barsalou’s theory as both deeply inspired and 

conspicuously flawed. The fundamental principles of embodied, simulation-based cognition that 

developed out of that theory are intuitively appealing and well-supported empirically (see 

Barsalou, 2008, pp. 623–631). Nevertheless, Barsalou’s “eliminative position” (see Goldstone & 

Barsalou, 1998) regarding amodal and ungrounded representations seems largely indefensible.1  

As Toomela (1999) observed, there is knowledge about the world that is qualitatively out 

of the reach of our senses. We will never directly observe the “strings” from string theory, 

gravitational singularities, transfinite numbers, or consciousness. These concepts are 

 

1 A strict implementation of a perceptual symbol system is also largely incompatible with LIDA, which is a hybrid 

(symbolic/non-symbolic) cognitive architecture. Moreover, Stan Franklin (the creator of LIDA) thought it likely that 

some concepts (e.g., transfinite numbers) are ungrounded, though he regarded them as far less common than their 

grounded counterparts (S. Franklin, personal communications, 2020-2022). 
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permanently ungrounded by the nature of their content. Nevertheless, this does not imply that 

such things are beyond the reach of our thoughts.  

Moreover, we can think about objects, entities, and events for which grounding is 

possible in principle, but it has yet to be established empirically within one’s own mind. These 

are hypotheticals (i.e., predicted objects, entities, situations, and events). They have yet to be 

directly observed, therefore, they lack grounding content. And yet we are capable of reasoning 

about them as well. 

Consider, for example, the mental representations for events that have unknown causes 

(e.g., idiopathic diseases), words that have unknown meanings (e.g., 

“floccinaucinihilipilification”), and objects that have no known properties (e.g., “dark matter”). 

The existences of these unknown referents can be inferred—in the absence of any direct 

observations—from their indexical relationships with other things. Diseases have causes, words 

have meanings, and objects have properties; therefore, we assume those same principles must 

also apply in these instances. While these inferred mental representations initially lack specific 

identities and tangible properties, we can, nevertheless, think about such things. Therefore, 

distinct mental representations must exist in our minds for these referents. 

According to the theory of perceptual symbol systems (PSSs), all mental representations 

are modal, analogical, and grounded (Barsalou, 1999). But what sensorimotor experiences can be 

constitutive of these unknown referents? What properties or structures exist in their 

corresponding perceptual states that could be used to establish an analogical (resemblance-based) 

relationship with those referents? How might these representations be grounded at the time of 

their creation when their existences were inferred, not observed? Contrary to the theory of PSSs, 
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I contend that such representations are non-analogical, amodal, and initially ungrounded. In 

other words, they are symbolic (in the Peircian sense; see Chapter 2).  

Furthermore, I contend that these initially ungrounded, amodal symbols are not fringe 

phenomena. They are the pervasive byproducts of top-down, predictive processing. Amodal 

symbols are created (or otherwise allocated) by a cognitive system whenever the existence of an 

object, entity, or event is inferred.2 These amodal representations can then be used as “cognitive 

placeholders” within that system’s associative machinery. 

Such ungrounded symbols are not functionally inert. Their very existence can influence 

one’s actions, demanding answers to the epistemic questions they pose—e.g., “what does 

floccinaucinihilipilification mean?” More specifically, ungrounded representations can exert 

pressure on a cognitive system that encourages the selection of “epistemic actions” (see Kirsh & 

Maglio, 1994) that are intended to ground them. And, in most cases, these amodal, symbolic 

representations can eventually be grounded via active exploration and speculative reasoning.  

ES-Hybrid’s approach to abstract concepts is a simple extension of these ideas. The only 

difference being that the representations for abstract concepts are ungroundable. It is not simply 

a matter of acquiring the right sensorimotor experiences—grounding experiences do not exist for 

these concepts. Therefore, their meanings must be established through non-grounding 

associations. 

 

2 I also suspect that amodal representations may more generally support multimodal binding (similar to Damasio’s 

convergence zones or hub-and-spoke representational models; see Damasio, 1989; Patterson et al., 2007; Ralph et 

al., 2010, 2017). 
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I contend that amodal (symbolic) representations are ubiquitous in concept 

representation. However—perhaps counter-intuitively—I also contend that they are always 

associated with supporting modal (non-symbolic) representations. This necessitates a conceptual 

shift. Rather than thinking about concepts in terms of atomic representations, we need to think in 

terms of composite representations. Rather than asking whether a concept’s representation is 

symbolic or non-symbolic, we should assume that all concept representations contain elements 

of both.3  

Using combinations of modal and amodal representations, ES-Hybrid can represent 

concrete and abstract concepts, support unknown referents, perform multimodal sensorimotor 

bindings, and implement contextual disambiguation (i.e., solve the designation problem; see 

Barsalou, 1999, sec. 2.2.3). Furthermore, these hybrid representations naturally support “active 

perception” and “cognitive indirection.”4 Finally, ES-Hybrid’s amodal representations can serve 

as “scaffolding” for its modal representations, and vice versa. 

As a further motivation for ES-Hybrid, the action-oriented aspects of cognition are 

generally glossed over by Barsalou. According to the tenets of embodied cognition, cognition is 

ultimately in service of action (Franklin, 1995, Chapter 16; M. Wilson, 2002, pp. 631–632); 

therefore, this aspect of cognition should be addressed. Moreover, many offline cognitive 

 

3 Michel (2021) made a similar case when he argued that the modal/amodal dichotomy should be 

reconceptualization as a graded representational property. (In particular, see Michel, 2021, sec. 6.2 for a good 

discussion of this idea.) 

4 I define cognitive indirection as the ability to rapidly adjust a mental representation’s referential and non-

referential associations, while maintaining any dependent associations (i.e., the other representations that refer to it). 

In this way, a representation’s properties, grounding, and intentionality can be fluidly changed while simultaneously 

maintaining other previously established associative relationships. Cognitive indirection is useful for considering 

alternate explanations for unknown referents, among other things. (I discussed this again in the context of an 

example later in this chapter.) 
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processes can be modeled as the simulated execution of internalized overt behaviors and their 

environmental consequences (Gallese et al., 1996; Jeannerod, 2001; Rizzolatti et al., 1987). In 

this sense, cognition is action, and thinking can be modeled as a skill (Bartlett, 1958). 

Influences 

ES-Hybrid incorporates ideas from Barsalou’s theory of perceptual symbol systems (Barsalou, 

1999), Harnad’s (1990) hybrid grounded architecture, and Jeannerod’s (2001) theory of motor 

cognition. Lakoff and Johnson’s (1999, 1980/2008) embodied theory of analogical thought 

inspired portions of ES-Hybrid, and situated, online control processes (Brooks, 1986, 1990, 

1991b) also figure into this theory. (Many of these ideas were covered in Chapter 2.) 

Finally, it is hard to overstate LIDA’s (Franklin et al., 2016) influence on ES-Hybrid. ES-

Hybrid was conceived of and developed with respect to an eventual implementation within the 

LIDA cognitive architecture. As a result, ES-Hybrid can be viewed as an abstraction over LIDA, 

and it naturally reflects LIDA’s conceptual commitments and its assumptions about the nature of 

cognition. 

Limitations 

ES-Hybrid is as a high-level hybrid account of embodied, simulation-based cognition (ES). It is 

intended to serve as a “meta-architecture” that informs the modeling and implementation of 

specific aspects of ES. As such, it leaves many details unspecified (for example, attention and 

learning mechanisms) and others underspecified (for example, motivational systems and action 

selection). It makes no strong commitments to any modular organization of mind (e.g., short- and 

long-term memory modules, or perceptual systems). Nor does it mandate specific 
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implementations for many of its cognitive processes. Consequently, ES-Hybrid is too abstract to 

serve as a “unified theory of cognition” (see Newell, 1994).  

 

Figure 2. Illustration of ES-Hybrid’s major components and their interactions. 

This partly reflects the fact that ES-Hybrid was always intended to be implemented 

within a cognitive architecture, specifically LIDA.5 However, this also reflects a desire to avoid 

overly constraining its implementations through unnecessary design choices. In general, ES-

Hybrid is intended to be a minimalistic system specification in order to maximize the flexibility 

and extensibility of its future applications. 

 

5 The primary focus of the remainder of this manuscript will be the conceptual and computational implementations 

of fundamental ES-Hybrid components within the LIDA cognitive architecture. 
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Overview 

Figure 2 shows the major components of ES-Hybrid, including its basic mental representations, 

cognitive processes, and their high-level relationships to one another. Many of these will be 

described in the text below. 

Sensory stimuli, originating from an agent’s (external) environment, are transduced by an 

agent’s sensors, activating modality-specific feature detectors. The resulting patterns of 

activation are encoded as sensorimotor representations that can serve as “sensory signatures” for 

those environmental stimuli. Resemblance-based generalization processes can then operate on 

these sensorimotor representations to construct increasingly invariant grounded representations. 

Grounded representations signify sense-able objects, entities, and situations in an agent’s 

(external or internal) environment. These representations can vary in their perceptual/conceptual 

specificity, from viewpoint-specific, context-sensitive, sensory experiences (e.g., a sunset viewed 

in a particular moment from the window of a plane) to more general concrete concepts (e.g., 

sunsets at large). However, they are always grounded in sets of modality-specific, sensorimotor 

representations.  

Ungrounded representations are created when predictive processes infer the existence of 

“unknown referents”—hypothesized objects, entities, situations, and events that have yet to be 

directly observed. While these representations are initially ungrounded, they are always 

associated with supporting modal content (via non-referential associations, which are described 

later). This modal content serves an indexical relationship with those ungrounded amodal 

components, pointing to their existence rather than depicting their content. In most cases, these 

ungrounded structures are eventually grounded through direct observation or speculative 
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reasoning. However, in a minority of cases, a structure may be inherently ungroundable; that is, 

the things to which these representations refer can be inferred but not directly sensed in an 

environment. This is how ES-Hybrid models abstract concepts. 

An important aspect of ES-Hybrid is its distinction between referential and non-

referential associations. Referential associations are grounding associations that establish links 

between representations and the things to which they refer. Non-referential associations are non-

grounding associations that represent non-correspondence-based relationships such as causality, 

co-occurrence, and sequential ordering. Non-referential associations between concrete and 

abstract concept representations can enable analogical (e.g., metaphorical) reasoning. 

Simulation-based, offline cognitive processes manipulate active representations6 for the 

purpose of generating new knowledge and the representational precursors of action (e.g., beliefs, 

desires, intentions, and situational contexts). A fundamental assumption of this theory is that 

offline cognition is primarily based on imagistic, epistemic (knowledge-generating) processes 

and the execution of internal (covert) actions (Jeannerod, 2001). These cognitive processes are 

not based on explicit, rule-based, symbolic computations, but on the generation, transformation, 

and inspection (see Kosslyn, 1994; Kosslyn et al., 2006) of internally perceivable, sensory-like 

content (i.e., mental simulations). 

An action selection mechanism selects external or internal actions based on the action 

precursors resulting from offline cognition. Jeannerod (2001) referred to externally directed 

 

6 Active representations are situationally relevant representations that are “activated”—i.e., made available or more 

salient to cognitive processes—based on the situational elements embedded within an agent’s internal and external 

environment. While I generally assume that perception, memory recall, and mental simulation contribute to these 

activations, the details are left unspecified here. 
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actions as “overt” actions and internally directed actions as “covert” actions. Covert actions 

generate action-based mental simulations that can be used to predict the consequences of an 

agent’s actions. They can also be used to understand the actions and intentions of others (see 

Gallese et al., 1996; Iacoboni et al., 2005; Rizzolatti et al., 1996). More generally, this capability 

to execute covert actions is the basis for “motor cognition” (see Jeannerod, 2001, 2006) and the 

volitional aspects of mental imagery (see Chapter 7). Covert actions can be thought of as 

effecting changes in an agent’s internal environment—a transient, internal model of an agent’s 

current situation.7 

The execution of overt (external) actions occurs through a process of situated, online 

control (cf. Brooks, 1990, 1991b). These online cognitive processes directly receive the patterns 

of activation induced in sensory systems by environmental stimuli, and they send appropriate 

low-level motor commands to an agent’s actuators (e.g., exciting muscle fibers). That is, they are 

directly coupled to an agent’s environment through its sensory and motor systems. Once an 

action is selected, online cognitive processes continue to fulfill the execution of that action until 

changes in an agent’s internal state result in the selection of a different action. In general, offline 

cognition can be seen as orienting or disposing a cognitive system towards fulfilling a proximal 

intention, while online cognition fulfills that proximal intention through overt behaviors.  

 

7 While an agent’s internal environment can be spatially and temporally decoupled from its external environment, it 

often mirrors and augments the recently observed portions of an agent’s external environment. 
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Figure 3. ES-Hybrid’s representational system. Representations are broadly divided into concept 

representations and sensorimotor representations. Several labeled examples are given in the diagram and 

described below: (a) contains an ungrounded concept representation (e.g., the unknown meaning of a 

word) with a non-referential association to a grounded representation (e.g., a word form); (b) contains an 

ungrounded concept representation with a referential association to another ungrounded representation 

and a non-referential association to a grounded representation (which may support analogical thinking); 

(c) contains a grounded concept representation corresponding to a generalization over several grounded 

concepts—(d) and (e) depict these concepts. Note that (d) has a non-referential connection to (e) and that 

(e) is multimodal. (Not all grounding, referential associations are depicted in the diagram.) 

Mental Representations 

Sensorimotor Representations 

Sensorimotor representations are non-symbolic representations that emerge from the collective 

activity of a set of modality-specific, often hierarchically organized, feature detectors. These 

feature detectors are selectively receptive to “sense-able” aspects of an environment, for 
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example, olfactory or gustatory chemical signatures, acoustic vibrations, visible patterns of 

electromagnetic radiation, joint pressures, or nociceptive (i.e., pain) stimuli. 

Each sensory modality may have drastically different characteristics and representational 

needs. For example, vision may require topographically organized photoreceptors, while 

olfaction may require combinations of highly specific chemoreceptors. Therefore, sensorimotor 

representations are typically segregated by sensory modality—that is, they will be primarily 

unimodal. However, multimodal representations can be formed from them through later 

associative bindings. 

Sensorimotor representations are summaries of the patterns of activation that occur in 

sets of modality-specific feature detectors while sensing environmental stimuli. The resulting 

modal summaries characterize the most important low-level features of environmental stimuli. 

As such, sensorimotor representations are fundamental for many perceptual and simulation-

related capabilities. They can also serve as the grounding constituents of grounded concept 

representations. Sensorimotor representations combine aspects of Harnad’s (1990) iconic 

representations and Barsalou’s (1999) perceptual symbols. 

ES-Hybrid’s sensorimotor representations possess the following properties: 

(1) They are modal, composed from the activity originating in sensory and/or motor systems. 

(2) They are analogical, bearing a resemblance to the things they signify. 

(3) They are generative, supporting modal mental simulations. 

(4) They are perceptual, capable of activating and being interpreted by perceptual systems. 
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Grounded Concept Representations 

Sensorimotor representations are like the syllables or phonemes of modal meaning, while 

grounded concept representations are its words, phrases, and sentences. Like syllables and 

phonemes, sensorimotor representations are not directly meaningful, but they can become 

meaningful as the modal constituents of grounded concept representations. Elementary grounded 

concepts are formed when sensorimotor representations are bound together into (potentially) 

multimodal representations that can “stand-in” for specific sensory experiences. Binding occurs 

through the association of one or more modality-specific sensorimotor representations with a 

coordinating amodal representation that functions like a “convergence zone” (Damasio, 1989). 

These basic grounded concepts are viewpoint- and context-specific. They form the basis for 

resemblance-based discrimination (e.g., same/different judgments) and modal simulations. 

Through the coordination of generalization and predictive processes, these “snapshots” 

of experience can lead to increasingly invariant and multi-part, grounded representations that 

correspond to particular objects, entities, situations, and events. And continued generalization 

can result in a hierarchy of categorical representations. Consequently, grounded concept 

representations exist in a spectrum of generality that extends from viewpoint-specific, sensory 

experiences to highly generalized categorical representations. Grounded concept representations 

can also grow into highly complex, hybrid representational structures—for example, structured, 

composite representations like Kosslyn et al.’s (2006) “object maps” (see Figure 4). 
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Figure 4. Grounded concept representations as object maps. A spatial object map (Left Panel) depicts 

the spatial extent of a bicycle with referential connections to grounded representations that correspond 

to its parts. A temporal object map (Right Panel) depicts a portion of a song with referential 

connections to grounded representations that correspond to individual notes. 

All grounded concept representations are capable of being compared (e.g., by 

resemblance) and associated with other grounded concept representations (e.g., via referential 

and non-referential associations). They can also be mentally simulated due to their (direct or 

indirect) grounding in sensorimotor representations, which allows the partial re-enactment of 

these sensory experiences (e.g., how a particular sunset “looked”). Additionally, grounded 

representations functioning as concrete concepts support categorical inferences (i.e., identifying 

types from tokens) and the ability to instantiate (e.g., mentally simulate) specific instances of a 

category. Grounded concept representations reside within an associative network of referential 

and non-referential links (see Figure 3). 

ES-Hybrid’s grounded concept representations possess the following properties: 

(1) They are analogical, bearing a resemblance to the things they signify. 

(2) They are generative, supporting modal mental simulations. 

(3) They are grounded, either directly or indirectly, in sensorimotor representations. 
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(4) They are perceptual,8 capable of activating and being interpreted by perceptual systems. 

These properties are discussed in more detail in the Appendix. 

Ungrounded Concept Representations 

Ungrounded concept representations are representational structures that are, at least initially, 

ungrounded. They are symbolic representations, which enables them to refer to any imaginable 

concept (concrete or abstract). However, taken as a whole, ungrounded concept representations 

are not “arbitrary” due to their associated indexical (contextualizing) grounded content.  

Ungrounded concept representations result when predictive processes infer the existence of 

something that cannot, as yet, be identified with a grounded concept. For example, sensing a blur 

of motion out of the corner of one’s eye indicates that something exists that caused that visual 

blur, but it is not clear what that something may have been. Based on the hypothesized existence 

of this unidentified entity or event, predictive processes will 

(1)  create an amodal symbol, and 

(2)  create a non-referential association between the newly created amodal symbol and a 

grounded concept representation that corresponds to the sensory experience that initiated 

the causal speculation (e.g., the brief glimpse of an unidentified object in motion). 

These amodal symbols serve as associative anchors that exert “pressure” on a cognitive system 

to establish their grounding. Their influence manifests in the selection of actions that seek to 

 

8 “Perceptual” grounded concepts implies that perceptual and conceptual systems can share (i.e., operate on) the 

same representations, and this terminology often appears in the grounded cognition literature (e.g., see Barsalou, 

1999, 2016a; Goldstone & Barsalou, 1998; Haimovici, 2018). Therefore, I use the term “shared” when discussing 

this representational property in the Appendix. 
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ascertain the identity of these unknowns. The resulting actions may focus an agent’s attention or 

re-orient its body towards sensory stimuli of interest (e.g., towards a perceived motion). In other 

words, the awareness of these unknowns can compel agents towards active exploration.  

The identity of these unknowns can often be determined either empirically (e.g., via 

exploratory external actions) or through speculative reasoning (e.g., via exploratory internal 

actions). In either case, if a real or hypothesized causal entity or event is determined, then offline 

cognitive processes will create a referential association to that causal entity or event. Crucially, 

without these initially ungrounded amodal symbols, we would have nothing to organize our 

empirical evidence and speculative reasoning around. In other words, they serve as “scaffolding” 

that support the eventual acquisition of modal meaning. 

In most cases, ungrounded concept representations are eventually grounded. This occurs 

when referential associations are established (learned) with grounded concept representations. 

However, if an amodal symbol refers to an abstract concept, it will remain permanently detached 

from an agent’s sensory systems. In some cases, concrete metaphors may exist (e.g., “time flies 

like an arrow”), allowing non-referential associations to be created between these ungroundable 

concept representations and grounded concept representations. 

Though permanently ungrounded, the amodal symbols for abstract concepts can, by non-

referential associations with other modal and amodal representations, carry contextual and 

relational information (e.g., supporting distributional semantics; see Chapter 2). They can also 

establish referential associations with other amodal symbols (e.g., X IS A Y). However, they will 

always lack “modal meaning” since they are incapable of being grounded, and, by extension, 

they cannot support non-metaphorical, modal simulations. 
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ES-Hybrid’s ungrounded concept representations possess the following properties: 

(1) They are symbolic, bearing no resemblance to the things they signify. 

(2) They are ungrounded, having no direct or indirect referential associations with 

sensorimotor representations. 

(3) They are non-generative, unable to support modal mental simulations. 

(4) They are non-perceptual, incapable of activating and being directly interpreted by 

perceptual systems. 

Notice that most of these properties are negations: They are not grounded; They are not 

generative; They are not perceptual. Consequently, their referents are also largely unconstrained. 

This makes ungrounded concept representations incredibly powerful: they can represent almost 

anything. 

Referential and Non-Referential Associations 

Associations (i.e., “links”) between representations are broadly characterized as either referential 

or non-referential. Note that while it is often convenient to discuss these associations in terms of 

graph-theoretic concepts (i.e., nodes and links), this should not be interpreted as a constraint on 

implementations. Any mechanisms by which two representations can be associated—for 

example, synaptic connections or cross-frequency (e.g., theta-gamma) coupling—is fair game. 

Referential associations are thus named because they directly support the establishment 

of a representation’s referent; that is, they establish what it corresponds to or signifies in the 

world. For example, “this smell corresponds to garlic” or “this feeling corresponds to pain” or 

“this mathematical symbol signifies the ratio of a circle’s circumference to its diameter.” For 
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elementary grounded representations, this relationship takes the form of a constitutive 

association with sensorimotor representations; that is, sensorimotor representations directly 

comprise those representations. For categorical concepts, referential associations can take the 

form of “is a” (i.e., set membership) relationships; for example, “Mr. Muggles is a Pomeranian” 

or “a Pomeranian is a type of dog” or “𝜋 is a transcendental number.” Here, a categorical 

instance (i.e., “token”) signifies a category (i.e., “type”). In both cases, the representational 

nature of the referential associations is identical. However, their semantic interpretations—which 

depend on the cognitive processes that use them—may subtly differ. 

Non-referential associations broadly encompass all non-grounding associative 

relationships. These could include causality (e.g., “gravity caused the apple to fall”); indexical 

correlations (e.g., “smoke indicates the presence of fire”); sequential orderings (e.g., “A occurs 

before B in the English alphabet”); relational operators (e.g., “10 < 11”), etc. In general, any 

association that does not establish an iconic or symbolic signifier/signified relationship between 

two representations can function as a non-referential association, and the nature of an agent’s 

offline cognitive processes will largely determine which non-referential associations are needed 

and how they are established. 

Non-referential associations between abstract and concrete concepts allow nebulous 

(abstract) ideas to be conceptualized through analogy with more tangible concrete concepts. This 

contrasts with referential associations between concept representations which can allow 

ungrounded representations to become concrete concepts through “indirect grounding.” 
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Figure 5. Intuitive depiction of direct and indirect grounding. Arrows indicate referential associations. 

Referential associations between purely symbolic representations are not sufficient to establish grounding. 

Only referential associations that are terminated in a non-symbolic representation can ground a symbolic 

representation. Symbolic representations can be indirectly grounded if a chain of referential associations 

connects the symbolic representation to a non-symbolic representation.   

Grounding 

A concept representation is minimally grounded9 if and only if there exists a chain of referential 

associations from it to a sensorimotor representation. A concept representation is directly 

grounded if and only if there exists a single-link referential chain (i.e., a direct association) from 

it to one or more sensorimotor representations. And a concept representation is indirectly 

grounded if and only if it is not directly grounded, and a referential chain exists (of length two or 

more) between it and one or more sensorimotor representations. Figure 5 attempts to illustrate 

these grounding relationships using the more intuitive notions of symbolic and non-symbolic 

representations. Figure 3 depicts these relationships within the context of ES-Hybrid’s 

conceptual system. 

 

9 “Minimally grounded” was chosen instead of “grounded” to reinforce the notion that grounding is not marked by a 

singular “grounding” event, but rather the gradual establishment of referential associations between conceptual 

representations and sensorimotor representations. 
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Grounding is often portrayed as a Boolean (true or false) property of representations—

like establishing a grounding connection in an electrical circuit. In this view, a representation is 

either grounded, or it is not. However, such metaphors are misleading. Instead, I contend that 

grounding is a continual activity that involves incrementally establishing referential connections 

between concept representations and their corresponding sensorimotor representations. The more 

referential connections (i.e., referential chains) to sensorimotor representations, the more 

grounded a concept representation can be said to be. For example, a concept representation that 

is grounded in visual, auditory, and tactile sensorimotor representations can be said to be more 

grounded than one that is only grounded in visual sensorimotor representations (ceteris paribus). 

Cognitive Processes 

Generalization 

Automatic, bottom-up generalization processes10 use the similarities between sensorimotor 

representations and grounded concept representations to cluster related representations. This can 

support the formation of more general concept representations by distilling the commonalities 

over those exemplars. For example, generalization processes might organize the viewpoint-

specific sensory experiences of a single cat into a viewpoint-invariant representation for that cat. 

Similarly, grounded representations corresponding to many individual cats can be generalized 

into concrete concepts for cats at large. 

 

10 The generalization processes I refer to in this section are unconscious, bottom-up, and resemblance-based. This 

contrasts with conscious and deliberative generalization processes that can construct more general concepts based on 

conscious feature inspection and categorization. The taxonomic classification of organisms into kingdoms, phyla, 

families, genera, and species by phylogenetic characteristics is an example of the latter (which will not be covered). 
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Gradually, the representations generated by these processes can become selectively 

sensitive to the activity of some grounded concept representations but not others (cf. Harnad’s 

categorical representations). In this way, grounded concepts for subordinate (e.g., apple), basic 

(e.g., fruit), and superordinate (e.g., food) categories can be formed (see Cognition and 

Categorization, 1978). The specifics of these generalization processes and the conceptual depth 

of the learned ontology will depend on the needs of the agent and the tasks it endeavors to 

complete. Generalization processes can work in conjunction with perceptual and predictive 

processes to identify part-whole relationships in order to form structured representations, such as 

“object maps” (Kosslyn et al., 2006).  

Prediction 

ES-Hybrid’s predictive processes are imagistic and associative processes that make inferences 

about the objects, entities, situations, and events that active representations signify. For example, 

they may be used to infer causal relationships (e.g., a spilled drink caused the puddle on the 

kitchen table) or predict action consequences (e.g., neglecting to water a houseplant may cause it 

to wilt and die). These predictive processes support the creation of referential and non-referential 

associations, and they can be used to identify unknown referents. More generally, the primary 

function of mental simulation may be the generation of experience-based predictions (Moulton & 

Kosslyn, 2009). And numerous researchers have noted a relationship between prediction, 

perception, and mental simulations (Barsalou, 2009; Clark, 2013; Jeannerod, 2001). 

Mental Simulation 

Mental simulation proceeds by iteratively re-activating grounded representations in a top-down 

fashion. This process terminates when modal sensorimotor representations have been reactivated 
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and used by generative processes to create modal simulations. Generative processes create modal 

simulations by inducing patterns of activation in an agent’s sensory and motor systems that 

correspond to grounded concepts. These simulations are then integrated into “virtual scenes” 

within an agent’s internal environment. 

Mental simulation is a largely learned capability that is directly supported by the 

acquisition of sensorimotor representations and referential (grounding) associations. Loosely 

speaking, the more referential associations exist between a concept representation and its 

corresponding sensorimotor representations, the greater one’s capacity to mentally simulate 

those concepts. Furthermore, since grounded representations are required for mental simulation, 

the extent of one’s learning about a (concrete) concept might be quantifiable through one’s 

capacity to mentally simulate it (Barsalou, 1999, sec. 2.4.3). Conversely, the failure to 

adequately simulate an object, event, or the consequences of one’s actions indicates a predictive 

failure that can be exploited by a cognitive system—for example, to orient one’s attention 

towards “surprising” environmental stimuli11. 

Action Selection 

Offline cognitive activities culminate in the activation and/or generation of the representational 

precursors of action selection. These representations may correspond to an agent’s current 

beliefs, desires, and intentions (Bratman, 1987), elements of its ongoing plans, or aspects of its 

current situation (among other things).  

 

11 This idea is exploited in Chapter 5 to direct an agent’s attention during perceptual learning. The same mechanism 

could be used to support procedural learning as well. 
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ES-Hybrid is generally agnostic to the details of this action selection mechanism; however, it 

is crucial that selected actions should serve as high-level, goal-oriented directives (e.g., hitting a 

tennis ball with a forehand swing) rather than low-level, actuator commands (e.g., the excitation 

of collections of muscle fibers). These actions should “predispose” a cognitive system towards a 

particular mode of situated online control (see the next section), rather than dictate the execution 

of individual motor commands. That is, selected actions should specify what should be done 

rather than how it should be done. 

Actions can be selected for internal (covert) or external (overt) execution. Internal actions 

affect an agent’s internal environment, while external actions affect its external environment. 

Internal environments are composed of affectable and introspectable mental states. External 

environments are composed of sense-able objects and events that are assumed to exist beyond an 

agent’s private mental states. 

Action Execution 

Once an action is selected, its overt execution is fulfilled through a process of situated online 

control. This control mechanism proceeds in parallel and largely independent of offline cognitive 

processes, and it continues until another action is selected. This situated control subsystem is 

envisioned as being largely non-representational and reactive (cf. the subsumption architecture; 

Brooks, 1986, 1990). It is tightly coupled to the environment, continually influenced by 

incoming sensory stimuli and the environmental effects of ongoing action execution. 

In dynamic, rapidly changing environments, such a parallel and largely independent 

mechanism of situated online control is essential. Offline cognitive processes are often too slow 

to react to the changing demands of such environments. Therefore, ES-Hybrid incorporates 
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multiple control loops. The offline control loop’s raison d'être is to periodically (re-)orient the 

online control loop’s situated activity towards some proximal intention. 

One final note: it has been hypothesized that the outflowing motor signals sent to 

actuators during action execution produce “corollary discharges” (Crapse & Sommer, 2008; 

Jeannerod et al., 1979; Sperry, 1950). Corollary discharges can result in inflowing copies of 

outflowing motor signals that can be used to influence an agent’s sensory and perceptual 

systems.12 In particular, they can be used to predict the anticipated sensory consequences of 

motor command execution (e.g., using a forward model; see D. M. Wolpert et al., 1995) and 

adjust the patterns of activation in sensory systems accordingly. Such predictive sensory 

feedback is a form of low-level motor simulation; therefore, it has been included in ES-Hybrid’s 

conceptual framework for completeness. 

Amodal Representations for Grounded Cognition 

Amodal representations have been mischaracterized by focusing, almost exclusively, on a single 

class of amodal representations, namely those that appear in formal symbolic systems like 

mathematics, logic, and human languages. For example, Barsalou stated 

[a]modal symbols bear an important relation to words and language. Theorists typically 

use linguistic forms to represent amodal symbols… [and] symbolic thought is assumed to 

be analogous in many important ways to language. Just as language processing involves 

the sequential processing of words in a sentence, so [amodal] conceptual processing is 

 

12 Depending on the context, corollary discharges are referred to as “efference copies” (Von Holst, 1954), though 

these concepts are subtly different. 
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assumed to involve the sequential processing of amodal symbols in list-like or sentence-

like structures. (Barsalou, 1999, p. 579) 

This characterization assumes that amodal representations require rule-based, symbolic 

manipulations for them to serve a purpose within a cognitive system. However, I contend that 

this assumption is fallacious, and it is largely based on their historical uses rather than their 

potential. 

While humans may acquire amodal representations in support of activities such as 

mathematics and language, I contend that such human-centric use cases are derivative of a more 

fundamental class of amodal representations that are shared with non-human animals. 

Specifically, I contend that amodal representations are generated by an agent’s top-down, 

predictive processes when the existence of an unknown entity, object, concept, or event is 

inferred. These amodal representations can facilitate numerous cognitive functions without 

resorting to classical rule-based symbolic manipulation. Moreover, these amodal representations 

can directly support grounded cognition, rather than standing in opposition to it. In the 

subsections that follow, I review some of the use cases for amodal representations that do not 

require rule-based symbolic manipulation. 

Unknown Referents  

Consider the following scenario: Alice, our agent, is taking a stroll through the woods, when she 

hears the sound of leaves rustling behind her. Startled by the unexpected sound, she turns in the 

direction of its source in search of a cause. One plausible cognitive account of these events is the 

following: 
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(1) Alice heard a sound behind her, which she recognized as the sound of leaves rustling. 

(2) Alice predicted that this rustling of leaves had a cause, though this cause is initially 

unknown (but presumably knowable). 

(3) As a result of this prediction, Alice re-oriented her body to acquire additional 

evidence (i.e., sensory stimuli) in an attempt to identify the cause of the rustling 

leaves. 

Figure 6 depicts a knowledge structure (in two different formats) that could support these 

activities by representing the existence of a hypothesized, but initially unknown, cause of the 

rustling leaves.  

Figure 6, Panel (a) shows a purely symbolic (amodal) representation of this knowledge 

structure. The variable 𝑐1 is introduced to represent the unknown cause of the leaves rustling. A 

Caused relation associates 𝑐𝑖 to what it caused—i.e., the leaves to rustle, which is depicted using 

the atomic symbol LEAVES_RUSTLING. The Caused relation, when combined with these 

specific arguments, is intended to convey the idea, “the rustling of the leaves was caused by 

some currently unknown (but likely knowable) entity or force.” 
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Figure 6. Depiction of a hypothesized unknown entity. Panel (a) depicts a purely symbolic 

representation corresponding to an unknown entity that is hypothesized to have caused the event of 

leaves rustling. Panel (b) depicts the same knowledge using a simulation-based knowledge structure. 

(Rectangular regions with double-line borders represent simulators, rectangular regions with dashed 

borders represent simulations, and rectangular regions with thick borders represent modal percepts 

corresponding to incoming sensory stimuli.) 

Figure 6, Panel (b) shows the same knowledge encoded using an integrated set of 

simulations and modal representations13. A simulator (see Chapter 2, “Embodied, Simulation-

Based Cognition and Perceptual Symbol Systems”) corresponding to Alice’s concept of 

“unknown entity” generates a simulation capable of designating the existence of an unknown 

 

13 The depictive style used in Figure 6, Panel (b) was based on Barsalou’s (1999) figures depicting the integration of 

perceptual symbols into composite representations (e.g., see Barsalou, 1999, fig. 5). 
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entity (or force). Another simulator, corresponding to Alice’s concept of “causality,” generates 

the simulation of a causal event representing “some unknown entity caused the leaves to rustle.” 

Note that this causal event simulation is itself composed of the previously constructed “unknown 

entity” simulation (i.e., the cause) and a modal percept corresponds to the “leaves rustling” (i.e., 

the effect). Its function is to associate the “unknown entity” with the event of the leaves rustling 

via a causality relationship. 

Question: Is the simulation generated for the “unknown entity” concept, depicted in 

Figure 6, Panel (b), a modal or an amodal representation? Let us consider the necessary 

properties of modal representations (discussed earlier in this chapter).  

(1) Is it composed of modality-specific content (i.e., content originating in the agent’s 

sensory or motor system)? 

(2) Does it bear an analogical relationship with its referent (i.e., does it resemble, share 

observable properties, or a structural correspondence with its referent)? 

(3) Is it grounded (i.e., are there informational conduits in place that could establish a 

correspondence between it and some observable, environmental stimuli)? 

(4) Is it sharable between the agent’s perceptual and conceptual systems? 

Answering “yes” to any of these questions is exceedingly difficult.  

The concept of an “unknown entity” is characterized by its lack of a specific identity and 

the absence of tangible properties. These characteristics make it challenging to determine any 

modal (sensory or motor) content that could be constitutive of this concept or one of its 



 

80 

 

simulations. Furthermore, the lack of known properties undermines its analogical relationship 

with its referent, which does, in fact, have properties. Alice simply does not know what they are. 

Given that Alice has yet to observe the entity that caused the leaves to rustle, she has yet to learn 

any correspondence between the “unknown entity” representation and the thing in the world to 

which it refers. In other words, the representation appears to be ungrounded. Note that the 

“rustling of the leaves” percept that resulted in the generation of the “unknown entity” 

representation does not refer to (i.e., it is not “about”) the unknown entity that may have caused 

the leaves to rustle. Rather, the rustling leaves are indexical of the unknown entity’s existence in 

the same way that smoke indicates the likely existence of a fire, or someone’s finger points to 

something behind you. (I will return to this relationship between indexical context and “unknown 

referents” shortly.) Finally, the “unknown entity” representation does not seem to contain any 

content that would be usable by a perceptual system, in that it seems devoid of perceivable 

content, components, and properties. In summary, this simulation appears to be amodal. 

 One possible objection to the representation in Figure 6, Panel (b) is that the “unknown 

entity” simulation is better modeled as an “unbound” portion of the “causality” simulation. The 

idea being that the absence of a specific causal element in the simulation could be interpreted by 

Alice’s conceptual system as the existence of something to which Alice knows nothing about. 

There are several problems with this interpretation. First, the meaning of a missing element in a 

coordinating simulation is ambiguous. It could mean “nothing,” or it could mean “anything.” 

Second, the agent’s perceptual system should be able to simulate an “unknown entity” (or any 

number of such entities) in the absence of a mediating composite simulation; however, without a 

coordinating simulation or “modal frame” (Barsalou, 1999, sec. 2.5) there is no way to depict 
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this absence. Third, Alice’s representation for the “unknown entity” must be able to serve as an 

associative anchor (i.e., a container, scaffold, or binding agent) that supports the gradual 

acquisition of information about that entity. A coordinating simulation can provide the necessary 

context, but a void in a coordinating simulation is insufficient to serve as the necessary 

associative anchor. Finally, the same “unknown entity” should be referenceable from any 

number of coordinating simulations and contexts, even in the absence of known properties or 

contextual clues. If the only mechanism available to the system is the absence of content, then 

there is no way to indicate that “this absence” refers to the same thing as “that absence.” 

For all of the reasons given above, I contend that coordinating amodal representations are 

needed to represent unknown referents. These amodal symbols serve as cognitive placeholders 

that “point to” (i.e., they are indexical of) the existence of something of interest without initially 

grounding it or specifying its meaning. This leads to a critical observation: these amodal 

representations generally exist in conjunction with an indexical representation. That is, they are 

composite, hybrid (modal/amodal) representations. In effect, these two representations are pair-

bonded. The indexical representation enables an agent to orient its body and cognitive processes 

in order to gather additional information about the unknown referent; it serves as a 

contextualized clue indicating the conditions under which the unknown entity may be observable 

(e.g., when the leaves are rustling). The amodal representation scaffolds the gathering of that 

information and serves as an opaque reference to the unknown entity wherever referential 

consistency is needed. Neither of these representations could stand alone without undermining 

the intent of the representational structure. 
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Cognitive Indirection 

Consider the following example. Suppose that our agent, Alice, is confronted by a man, named 

Bob, that asks whether she has heard about the WUMPUS-ALPHA-PRIME. Uncertain, Alice speculates 

about the possible nature of the WUMPUS-ALPHA-PRIME (based on linguistic similarity). Perhaps 

WUMPUS-ALPHA-PRIME refers to a star system (similar to Alpha Centauri), or the first (prime) 

planetary body in that star system; or the first derivative (in prime notation) of a variable called 

WUMPUS𝛼; or a character in a video game designed by Gregory Yob14?  

Deciding that these explanations are unlikely, Alice interrogates Bob for more details. 

Bob tells Alice that he last saw the WUMPUS-ALPHA-PRIME on a recent expedition to the arctic 

circle. He goes on to say that the WUMPUS-ALPHA-PRIME is a massive creature, nearly twice the 

height of an average person when standing on its hind legs. Its skin is covered by thick, white 

fur; it has huge, sharp claws; and a distinctly bear-like body. After a series of guesses, and some 

creative mental imagery, Alice believes she has converged on the identity for the WUMPUS-ALPHA-

PRIME: it must be a polar bear. However, before Alice can inform Bob of his terminological 

mistake, he continues. Bob tells Alice that the WUMPUS-ALPHA-PRIME has nine tentacles growing 

out of its back, which it uses to catch its prey. And that it speaks fluent Hungarian, but with a 

slightly British accent. 

 

14 Gregory Yob is the software developer who created the text-based adventure game Hunt The Wumpus, which 

subsequently inspired the classical grid world agent environment “Wumpus World” mentioned in Russell and 

Norvig’s book Artificial Intelligent: A Modern Approach (Russell & Norvig, 1995/2010) 
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The mental gymnastics that occurred in Alice’s mind while trying to ascertain the identity 

of the WUMPUS-ALPHA-PRIME is an example of what I am referring to as cognitive indirection15. It is 

the ability to rapidly adjust a mental representation’s referential and non-referential associations, 

while maintaining any dependent associations (i.e., the other representations that refer to it). In 

this way, a representation’s properties, grounding, and intentionality can be fluidly changed 

while simultaneously maintaining other previously established associative relationships. I will 

elaborate on this further in the context of the previous example. 

I contend that upon learning of the existence of the WUMPUS-ALPHA-PRIME, an initially 

ungrounded, amodal representation was created (or otherwise allocated) in Alice’s mind to 

represent this unknown referent. The need for this representation was inferred (predicted) from 

the initial situational and linguistic context. This amodal representation internally symbolizes the 

WUMPUS-ALPHA-PRIME (an initially unspecified and ungrounded concept), allowing it to be 

associated with a specific situational context, as well as a modal representation for an auditory 

word-form (ˈwʌm pəs ˈæl fə praɪm) that externally symbolizes whatever object, entity, or event 

the WUMPUS-ALPHA-PRIME refers. This auditory word-form is a separate concept in its own right: a 

linguistic token grounded in a sequence of modality-specific sensorimotor representations 

(auditory stimuli). Critically, this word-form is indexical of the WUMPUS-ALPHA-PRIME concept. 

Whenever Alice hears this word-form in the future, the WUMPUS-ALPHA-PRIME concept in Alice’s 

mind will likely be activated. 

 

15 Indirection refers to a concept in computer programming where a variable is used as a reference to another 

variable that contains a value, rather than referring to that value directly. 
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Following the creation of this hybrid (amodal/modal) composite representation, a brief 

period of speculation occurred during which Alice internally explored possible referents for the 

WUMPUS-ALPHA-PRIME. For each of these, a referential association was established between the 

mental representation for that hypothesized referent and the amodal representation for the 

WUMPUS-ALPHA-PRIME. These transient associations were then discarded (i.e., the associative 

bounds between these mental representations were dissolved). Despite these structural changes, 

the association between the word-form for the WUMPUS-ALPHA-PRIME and the amodal 

representation corresponding to that concept remain unscathed. I contend that Alice’s ability to 

engage is such speculative reasoning requires a form of cognitive indirection that is facilitated by 

a mediating amodal representation. This situation is depicted in Figure 7. 

 
Figure 7. Illustration of cognitive indirection. 
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Finally, Alice abandoned this internal exploration in favor of external exploration. She 

interrogated Bob for additional information, resulting in a transitory belief that she had identified 

the WUMPUS-ALPHA-PRIME as a polar bear. Then, she immediately discarded this unfounded belief 

when contradictory information emerged (e.g., tentacles and such). Notice that even though 

Alice dismissed her belief that the WUMPUS-ALPHA-PRIME was identical to a polar bear, the new 

property attributions she learned about it (e.g., its thick, white fur; huge, sharp claws; and bear-

like body) must remain. In fact, it is entirely reasonable to suspect that Alice might use the 

concept of polar bears as the basis for analogical reasoning about the WUMPUS-ALPHA-PRIME since 

it is unlikely that she (or anyone else) will directly observe the WUMPUS-ALPHA-PRIME in its natural 

habitat.  

Multimodal Representations 

Amodal representations provide a simple and flexible way of binding multiple, modality-specific 

representations into composite, multimodal representations. For example, elementary grounded 

conceptual representations (described earlier in this chapter) can be formed by binding together 

multiple sensorimotor representations via referential associations. Once bound, these composite 

representations can “stand-in” for specific sensory experiences. 

This mechanism is largely consistent with the “hub-and-spoke” model of mental 

representations (see Patterson et al., 2007; Ralph et al., 2010, 2017). This model states that while 

concepts are largely represented in modality-specific cortical regions of the brain, the inter-

modal interactions between those regions must be at least partially mediated by a trans-modal 

“hubs.”  
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These amodal hubs could also be conceptualized as instances of Damasio’s (1989) 

convergence zones, which are coordinating neural assemblies that support the routing of 

information, the binding of neural patterns of activation, and the cross-modal re-activation of 

sensorimotor representations. Damasio described convergence zones as amodal because they “do 

not map sensory or motor activity in a way that preserves feature-based, topographic and 

topological relations of the external environment as they appear in psychological experience…, 

[and] they are uninformed as to the content of the representations they assist in attempting to 

reconstruct.” (1989, p. 46). Convergence zones have been characterized as “pointers” (e.g., see 

Lallee & Dominey, 2013; Tyler et al., 2004) since they indicate where information is stored, 

rather than representing it directly.  

Designation and Disambiguation 

Frequently, resemblance—e.g., what an object looks like or sounds like—is insufficient to 

establish an object’s (or event’s, situation’s, etc.) unique identity. For example, in Figure 4 (left 

panel) the bicycle’s front and rear wheels appear to be identical (in isolation), and they are 

associated with the same conceptual representation. Nevertheless, they have distinct identities 

despite having identical appearances. 

Designating (see Barsalou, 1999, sec. 2.2.3) that a mental representation refers to a 

specific instance among a class of identical objects requires additional information, and that 

information can include highly fluid—and relatively arbitrary—contextual and historical details. 

For example, returning to the bicycle in Figure 4 (left panel), the front wheel and rear wheel can 

be easily identified as such while they are still attached to its frame. However, if both wheels are 

removed from the bicycle, ancillary details are needed to establish their identities. They continue 
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to be this wheel and that wheel (i.e., distinct wheels), and if someone were to ask—“Was this 

wheel the front wheel or the back wheel?”—it may be possible to answer that question. 

However, one must remember details such as “the front wheel was placed on the work bench” or 

“the rear wheel was placed on the floor.”  

Tracking an object’s persistent identity—despite ever changing contextual and 

resemblance details—requires that something represent for that specific object, and that the 

appropriate ancillary, disambiguating details are associated with it (e.g., last known location). 

Moreover, even if those associated details are lost (e.g., the object’s current location), we can 

still recognize that a distinct object with that identity exists (or did exist)—regardless of whether 

we can ascertain its identity. 

Amodal representations excel at representing distinct objects, entities, situations, and 

events. A unique amodal symbol can be allocated to a specific instance of a class of objects, and, 

even if all details associated with that instance change (e.g., resemblance, context, history), it can 

still function as that object. Moreover, the details associated with two objects could be identical 

(e.g., same appearance, context, history, etc.), any they can still be identified as being distinct. As 

a corollary to this property, amodal symbols can serve as markers (i.e., designators) for 

“whatever thing happens to be here” within a scene, cognitive map (Tolman, 1948), or object 

map (Kosslyn, 1994; Kosslyn et al., 2006). 

Active Perception 

Initially ungrounded, amodal symbols are not fringe phenomena. They are the pervasive 

byproducts of top-down, predictive, cognitive processing. These ungrounded representations 

exert “pressure” on a cognitive system that encourages the selection of actions that seek to 
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ground them. These actions focus our attention. They orient our bodies towards the unknown. 

And they compel us towards active exploration and speculation in order to ascertain the sources 

of these unknowns. In most cases, these initially ungrounded amodal symbols can be eventually 

grounded through learned associations with the tangible. 

Eventual Grounding 

Implicit in most definitions of grounding is the idea that grounding is established through 

bottom-up generalization over non-symbolic representations (cf. Barsalou, 1999; Harnad, 1990). 

However, I contend that grounding can also be initiated by top-down processes. In these cases, 

an initially ungrounded amodal representation—corresponding to an unknown, hypothesized 

referent—is generated by a predictive process. This ungrounded representation can be later 

grounded by establishing a referential association between it and a grounded concept 

representation.  

A common example of this occurs during language acquisition (or other modes of formal 

education) when a learner is presented with an unfamiliar word. The student knows that the word 

must refer to something, but its referent is initially unknown (and the set of possible referents 

may be largely unbounded). Through continued instruction and inquiry, the word’s meaning will 

hopefully be ascertained by the student. In the case of concrete concepts, this initially 

ungrounded amodal symbol may eventually be grounded by creating a referential link to a 

corresponding grounded concept representation. However, if the word signifies an abstract 

concept, grounding may not be possible. 
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On Language 

Language comprehension and production are complex cognitive functions that I cannot do 

justice to here. However, I contend that elements of the theory advanced here could be 

elaborated on to support a theory of language acquisition. For example, upon hearing or seeing 

an unknown word, a predictive process can create an amodal symbol for that inferred, underlying 

concept. This initially ungrounded representation can then be associated (using a non-referential 

association) with the (visual or auditory) word form for that concept. The word form serves an 

indexical function (in the Peircean sense) for the underlying concept, indicating the situational 

contexts in which that concept may be pertinent. After repeated exposure to that word form and 

its associated situational elements, an individual could distill the invariant environment 

components that characterize that concept. 

ES-Hybrid is consistent with the notion that language comprehension could employ a 

combination of perceptual/conceptual knowledge, embodied simulations, and language statistics 

(Barsalou et al., 2008; Louwerse, 2011, 2018; Louwerse & Jeuniaux, 2008). In particular, non-

referential associations between word forms could support context-based sources of meaning 

(e.g., distributional semantics). That said, the decision to avoid language-specific processes is not 

only a practical consideration, but it reflects my belief that a full account of non-linguistic 

processes is a prerequisite to understanding the relatively human-centric experiences entailed by 

language use. As Barsalou et al. (2008) stated, it is likely that conceptual systems evolved 

primarily to process non-linguistic stimuli (e.g., perceptual, motor, and introspective 

experiences), and these non-linguistic experiences are likely more fundamental to human 

cognition than the processing of words. In general, I agree with Newell when he wrote, 
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“Language should be approached with caution and circumspection…. I will take it as something 

to be approached later rather than sooner” (Newell, 1994, p. 16).
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Chapter 4 

Learning Intelligent Decision Agent (LIDA) 

There is nothing so practical as a good theory. (Lewin, 1951, p. 169) 

Much of the current research in embodied, simulation-based cognition (ES) is limited to high-

level theories. Classical cognitive theories, on the other hand, possess a high-level theory as well 

as more detailed cognitive models and computational mechanisms. In order to compete with 

classical cognitive theories, ES must implement complete agential systems1 that make manifest 

the consequences and predictions of those theories in software. 

ES-Hybrid—the hybrid ES theory developed in this manuscript—is too underspecified 

and abstract to be used directly for implementing complete agential systems. It needs to be 

conceptualized within a cognitive architecture to fill in its missing details. Towards this end, I 

will integrate many of the fundamental ideas from ES-Hybrid into the Learning Intelligent 

Decision Agent (LIDA; Franklin et al., 2016) cognitive architecture.  

I will begin this enterprise with a brief introduction to the LIDA cognitive architecture. 

Subsequent chapters will describe how specific ES-Hybrid functionality can be conceptualized 

within LIDA. Chapter 5 will focus on implementing grounded representations, modal 

simulations, and multimodal perception. Chapter 6 will focus on action-based mental simulation 

 

1 Many thought leaders, including Newell (1973), Brooks (1991b), and S. Wilson (1991), have argued that it is 

essential to model complete agential systems rather than isolated competences. While the complexity of 

understanding and building intelligent systems might compel us to focus on more manageable sub-problems (e.g., 

vision or natural language processing), the danger is that the resulting specialized models may be irrelevant in the 

context of a fully functional, autonomous agential system. By modeling complete systems (from sensing to acting), 

we reduce the risk that a system’s individual competences are incompatible with each other and the system at large. 
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and motor cognition. And Chapter 7 will describe the fundamental operations of mental imagery 

and simulation-based, epistemic (knowledge-generating) processes. 

Overview 

LIDA (Learning Intelligent Decision Agent; see Franklin et al., 2016) is a biologically inspired 

cognitive architecture2 that strives to be a “unified theory of cognition” (Newell, 1994) that is 

capable of modeling many, if not all, cognitive activities and processes. Cognition, in this sense, 

broadly encompasses every mechanism of mind, including (but not limited to) perception, 

motivations, action selection, motor control, attention, learning, metacognition, language, sense 

of body and self, and mental simulation. In addition to supporting the analytical modeling of 

cognitive processes, cognitive architectures also facilitate the creation of complete agential 

software systems; therefore, cognitive architectures are useful for both analytical and synthetic 

approaches to understanding minds (see Franklin, 1995, pp. 9–10). 

While LIDA is a biologically inspired cognitive architecture (BICA), it does not attempt 

to model brains3—it models minds (see Chapter 2). Minds, in this context, are defined as 

“control structures for autonomous agents” (Franklin, 1995, p. 412). Where an autonomous agent 

is any natural or engineered system that is “situated within and a part of an environment that 

senses that environment and acts on it, over time, in pursuit of its own agenda and so as to effect 

what it senses in the future” (Franklin & Graesser, 1997, p. 25). According to this definition, 

 

2 See Kotseruba and Tsotsos (2018) for an excellent survey of many of the cognitive architectures that have been 

developed from the early 1980s to present. 

3 LIDA’s modular organization is not directly based on the neural architecture, or the gross anatomy, of brains, but 

on the functional relationships that appear to exist between various cognitive processes (e.g., inferred from 

psychological experiments and functional analysis) and the mental representations they support. LIDA does not 

make any assertions about the modular organization of brains. 
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autonomous software agents differentiate themselves from standard “programs” by their situated 

and embedded relationship with an environment and their selection of actions that further their 

own agenda. 

LIDA differentiates itself from other cognitive architectures in several ways that make it 

ideal for implementing a hybrid account of ES: 

1. LIDA is a hybrid cognitive architecture (see Kotseruba & Tsotsos, 2018, sec. 3) that 

features symbolic and non-symbolic representations, as well as non-representational 

processes. 

2. LIDA has a conceptual commitment to use grounded representations and to follow the 

principles of embodied and situated cognition (see Franklin, Strain, et al., 2013, sec. 4.3). 

This manuscript expands on this commitment, making its implementations and 

ramifications more precise in terms of LIDA’s representations, processes, and modules. 

3. LIDA is a biologically inspired cognitive architecture that incorporates and elaborates on 

numerous psychological theories, including many important aspects of the Global 

Workspace Theory of consciousness (GWT; Baars, 1988). LIDA’s modeling of 

“functional consciousness” is particularly relevant for this work, as the phenomena of 

mental simulation, mental imagery (i.e., consciously accessed mental simulations), and 

simulation-based cognition are best understood with respect to a model of consciousness. 

While the scientific study of consciousness has become more acceptable in recent years, 

research into machine consciousness is limited, and the construction of conscious 
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artifacts (Franklin, 2003) has rarely been attempted. LIDA is one of only a few cognitive 

architectures that attempt to model consciousness. 

4. LIDA attempts to model both human and non-human cognition. Many cognitive 

architectures are more narrowly focused on human-specific cognition and modeling 

human-specific activities. As a result, these architectures tend to focus more on 

declarative memory and propositional, symbolic thought. By contrast, LIDA’s sensory, 

perceptual, and behavior-generating modules can function independently of declarative 

memory. Consequently, non-symbolic, non-propositional, imagistic processes can be 

implemented more naturally as extensions of LIDA’s existing modules and processes.4    

 

4 By comparison, Soar’s implementation of mental imagery and non-symbolic reasoning required the addition of 

several special-purpose, add-on modules (Wintermute, 2012). 
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Figure 8. LIDA’s cognitive cycle diagram. 

 

The LIDA Cognitive Cycle 

LIDA is composed of many short- and long-term memory modules and supporting cognitive 

processes (e.g., “codelets,” consolidation, cueing, learning, and decay)—many of these are 

depicted in Figure 8. All of LIDA’s cognitive activities are conceptualized as occurring within, 

or emerging as the result of, a continual series of potentially overlapping cognitive cycles5. 

LIDA’s cognitive cycles are sub-divided into three phases: (1) perception and understanding, (2) 

attention, and (3) action and learning. Higher-order cognitive processes such as planning, 

deliberation, and problem solving typically require many cognitive cycles. 

 

5 The cognitive cycle corresponds to the “action-perception cycle” referred to by many psychologists and 

neuroscientists (see Dijkstra et al., 1994; Freeman, 2002; Fuster, 2004; Neisser, 1976). 
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During LIDA’s perception and understanding phase, sensory stimuli from an agent’s 

environment activate low-level feature detectors in LIDA’s Sensory Memory module. These, in 

turn, activate higher-level perceptual representations in Perceptual Associative Memory (PAM). 

Perceptual representations receiving sufficient activation can be instantiated as percepts into 

LIDA’s Current Situational Model (CSM)—a sub-module of LIDA’s Workspace. Sensory 

representations, percepts, recalled (cued) long-term memories (e.g., episodes), and the 

representations generated by structure building codelets (e.g., mental simulations) can co-exist in 

LIDA’s CSM—for example, within its current “Perceptual Scene” (McCall, Snaider, et al., 

2010). These preconscious mental representations can influence LIDA’s internal dynamics, and 

they reflect an agent’s “understanding” of its current situation. 

During LIDA’s attention phase, attention codelets attempt to identify preconscious 

representations in the CSM that are of interest to them—based on their individual selection 

criteria (e.g., novelty, surprise, or urgency). If found, attention codelets will bring that content to 

a coalition forming process, which may create one or more coalitions that include that content. 

These coalitions then compete in a winner-take-all competition in LIDA’s Global Workspace, 

and the content of the winning coalition is globally broadcast to all of LIDA’s modules. An agent 

is said to be “conscious” of the mental representations in its global broadcasts.6 

During LIDA’s action and learning phase, content from its global broadcast is received 

by all of its modules. Procedural Memory uses that “conscious content” to activate situationally 

 

6 LIDA currently makes no claims regarding phenomenal consciousness. Rather, LIDA attempts to model the 

functional aspects of consciousness without reference to qualia (i.e., what it is like to experience conscious content). 

This notion of consciousness is similar to what Block (1995) defines as “access consciousness.” 
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relevant schemes. Schemes are mental representations that encode observed correlations between 

situational contexts, actions, and the predicted results of those actions. Each scheme additionally 

has a base-level activation that estimates the likelihood that the scheme’s action will produce its 

expected result (given a similar situational context). Schemes receiving sufficient activation 

(following a conscious broadcast) are instantiated as behaviors. Procedural Memory then sends 

these behaviors to LIDA’s Action Selection module. 

Action Selection chooses at most one behavior from its set of selectable behaviors per 

cognitive cycle.7 This chosen behavior is referred to as the “selected behavior” for that cycle. 

Action Selection then sends this behavior to LIDA’s Sensory Motor System (SMS; see Dong & 

Franklin, 2015) for execution. The SMS is composed of two modules: Sensory Motor Memory 

(SMM) and Motor Plan Execution (MPE). SMM is a long-term memory module that instantiates 

motor plan templates into motor plans based on the current selected behavior. MPE then 

executes those motor plans through a process of situated, online control. During this online 

control process, motor commands are sent to an agent’s actuators in response to its immediate 

“situated” concerns. 

LIDA’s numerous learning mechanisms (see Kugele & Franklin, 2021) can also be 

invoked during its action and learning phase—as a direct result of a conscious broadcast. These 

mechanisms support the learning of new representations and the reinforcement of previously 

learned representations. The former is referred to as “instructionist learning” and the latter as 

“selectionist learning” (see Edelman, 1987). 

 

7 Selectable behaviors may include non-decayed behaviors from a previous cognitive cycle in addition to recently 

instantiated schemes (behaviors) from the current cycle. 
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For a more comprehensive introduction to LIDA, see Franklin et al. (2016). A summary 

of LIDA’s long- and short-term memory modules and codelets is given in Table 6 of the 

Appendix. 

Modes of Action Selection 

LIDA supports four modes of action selection: consciously mediated, volitional, automatized, 

and alarms. Consciously mediated action selection is a non-deliberative, relatively reactive form 

of action selection that requires little cognitive effort, and it typically occurs without an agent’s 

awareness of the intention to pursue some goal (Maes, 1989). In contrast, volitional action 

selection is often deliberative and effortful, and agents are at least partly conscious of the action 

selection process. During volitional action selection, one or more “options” are considered 

(usually over many cognitive cycles). If Action Selection chooses one of these options for 

execution, the agent will typically become consciously aware of that option’s goal (i.e., the 

intention behind that option to action). Automatized action selection only occurs when an agent 

is highly skilled at some activity. It requires that the results of its actions are very predictable, 

such that they can follow, one after another, with little or no conscious oversight. Finally, 

alarms, refer to the unconscious selection and execution of “urgent” actions. This mode of action 

selection occurs under exceptional circumstances that require extremely rapid responses (for 

example, reactively turning the wheel of a car or “slamming on the brakes” while driving to 

avoid hitting a car that has suddenly cut in front of you). 
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The Conscious Learning Hypothesis 

LIDA adheres to the Conscious Learning Hypothesis of Global Workspace Theory (GWT; 

Baars, 1988), which states that all “significant learning” requires consciousness.8 LIDA and 

GWT further contend that learning occurs as a direct result of a conscious broadcast, though 

learning may not occur with every conscious broadcast. This causal relationship between 

conscious broadcasts and learning does not preclude the possibility of a substantial delay 

between the onset of a conscious broadcast and subsequent learning based on that conscious 

content. Such delays occur, for example, during offline consolidation, which supports declarative 

learning. 

Activation 

Activation-related parameters are pervasive properties of LIDA’s mental representations and its 

codelets (see Kugele & Franklin, 2020a). LIDA has historically classified its activations as either 

base-level activations, current activations, or total activations. Base-level activation9 is used to 

describe parameters with relatively slow decay rates that are reinforced based on content in the 

global broadcast. Base-level activations typically represent learned, historical measures of 

frequency, recency, and/or utility. Current activation refers to parameters with relatively rapid 

decay rates that generally reflect transitory, module-specific notions of situational relevance. 

And total activation, or simply activation, is used to describe all other activation parameters. 

 

8 For example, while LIDA acknowledges that priming effects may occur unconsciously, they are not considered 

“significant learning” because they are limited in scope and duration.  

9 LIDA’s base-level activation is roughly (conceptually) analogous to ACT-R’s (Anderson et al., 2004) concept of 

base-level activation, but its meaning is far more varied and module specific. It also has a very different activation 

source, which is based on LIDA’s conscious broadcasts. 
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Total activation is often calculated using activation functions that combination base-level and 

current activations. 

Motivations in LIDA 

LIDA’s motivational system (see McCall et al., 2020) is grounded in feeling nodes—PAM nodes 

with a special parameter called affective valence. Affective valence quantifies an agent’s 

immediate hedonic response to events (e.g., eating ice cream), indicating liking (positive 

affective valence) or disliking (negative affective valence). The magnitude of the affective 

valence is conveyed by the total activation of a feeling node, and its direction (like or dislike) is 

conveyed by its valence sign (either + or −). Feeling nodes can be activated either by feature 

detectors in Sensory Memory (e.g., the presence of sugars in foods) or by cueing from the CSM 

(e.g., recognizing that you have a straight flush in poker). All LIDA agents must be endowed 

with a set of built-in feeling nodes that serve as the basis for their value systems. 

Kringelbach and Berridge (2009) suggested that “liking” and “disliking” should be 

distinguished from “wanting” and “dreading,” and that they are implemented in brains using 

distinct neural pathways. Liking/disliking indicates an immediate hedonic response to an event, 

while wanting/dreading is an attractive or repulsive force associated with an event. Wanting and 

dreading are quantified in LIDA by an additional parameter called incentive salience, which is 

further divided into a base-level and current incentive saliences. Base-level incentive salience is 

a context-invariant attraction or repulsion to an event, which is learned from repeated exposure 

to that event. Current incentive salience is a context-sensitive attraction or repulsion associated 

with an event that is modulated by an agent’s current situation. Current incentive salience is 
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based on learned, incentive salience links (as opposed to standard links that only propagate 

activation). 

Motivational learning (see Kugele & Franklin, 2021) involves updating base-level 

incentive saliences and creating incentive salience links. These learned motivational constructs 

can direct a LIDA agent’s attention, influence action selection, and modulate learning. Base-

level incentive salience is updated (by PAM) when a conscious broadcast contains an event with 

one or more associated feeling nodes. For example, suppose that our agent is eating vanilla ice 

cream. The agent’s tongue receives incoming sensory stimuli corresponding to the ice cream. 

Based on these sensory stimuli, Sensory Memory may activate a “sweet” (interpretative) feeling 

node in PAM, which PAM may then instantiate into the CSM. Structure building codelets 

(SBCs) monitoring the CSM may create an event node structure for this “eating ice cream” event 

and an “activation” link between the instantiated “sweet” feeling node and the “eating ice cream” 

event node. If this event node structure (which is now augmented with an activated “sweet” 

feeling node) comes to consciousness, PAM will receive it and update the base-level incentive 

salience associated with the “eating ice cream” event node. In this case, only one feeling node is 

associated with the event; however, in general, base-level incentive salience updates will be a 

function of the affective valences of all feeling nodes associated with an event. 

Current incentive salience, which quantifies the context-sensitive attraction or repulsion 

associated with an event in a given situation, is transmitted from feeling nodes to event nodes 

over incentive salience links (McCall et al., 2020, p. 17). The current incentive salience (𝑖𝑐) 

contributed by a feeling node to a linked event (over an incentive salience link) is defined as its 

incentive-salience-link-weighted affective valence.  
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A feeling node’s affective valence is given by 𝑣 = 𝑎𝑡 sgn(𝑣), where 𝑎𝑡 is the total 

activation of the feeling node at time 𝑡 and sgn(𝑣) denotes its valence sign (i.e., the “direction” 

of like or dislike). Therefore, current incentive salience is defined as 𝑖𝑐 = 𝑣𝑤 =  𝑎𝑡 sgn(𝑣)𝑤, 

where 𝑤 is the weight of a given incentive salience link and 

sgn(𝑣) =  {
−1 if 𝑣 < 0,
   0 if 𝑣 = 0,
   1 if 𝑣 > 0.

 

A structure building codelet (SBC) can create an incentive salience link between a feeling 

node and an event node if changes in that feeling node’s activation10 are attributed to the 

occurrence of that event. For example, an SBC may notice that the event of “drinking water” is 

correlated with a decrease in the activation of an agent’s “thirst” feeling node (which has a 

negative valence sign). In this case, the SBC will create a positively weighted incentive salience 

link between the “thirst” feeling node and the event of “drinking water.” If, on the other hand, an 

SBC notices that an event, say “exercising,” correlates with an increase in the activation of an 

agent’s “thirst” feeling node, then the SBC may create a negatively weighted incentive salience 

link between the “thirst” feeling node and the event of “exercising.”  

In general, for any incentive salience link between a feeling node and an event node, its 

weight 𝑤 will be given by 𝑤 = sgn(𝑣)𝑓(Δ𝑎), where Δ𝑎 = 𝑎𝑡+1 − 𝑎𝑡 is the change in that 

feeling node’s activation between conscious broadcasts at time 𝑡 and 𝑡 + 1, sgn(𝑣) is the feeling 

node’s valence sign, and 𝑓: ℝ → [0,1] is a function that scales Δ𝑎 (for example, a sigmoid 

 

10 Conscious broadcasts are stored temporarily in LIDA’s Conscious Contents Queue (CCQ)—a data structure in the 

preconscious workspace that is accessible to structure building codelets. SBCs can detect changes in the activation 

of feeling nodes by comparing their activations between subsequent broadcasts in the CCQ. 
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function). Intuitively, the weights will be positive for events that lead to beneficial changes in an 

agent’s homeostatic state and negative if they lead to detrimental changes. When a node structure 

containing a new incentive salience link is consciously broadcast, the new incentive salience link 

can be learned into PAM and later influence the current incentive salience associated with the 

linked to event node. 

The Nature of LIDA’s Representations 

LIDA is committed to the principles of embodied and situated cognition, which is interpreted as 

a “structural coupling” between autonomous agents and their environments (Franklin, Strain, et 

al., 2013). Grounded representations have also been advocated for throughout LIDA’s 

development (Agrawal et al., 2018; Franklin, Madl, et al., 2013; Kugele & Franklin, 2020b; 

Ramamurthy et al., 2006). Apart from these commitments, LIDA is representation agnostic, and 

individual implementations are free to explore different representational options. 

Historically, LIDA’s primary knowledge representation has been node structures—

directed graphs containing one or more nodes and zero or more links. Nodes are symbolic 

representations that refer to objects, entities, events, concepts (etc.), and links indicate semantic 

relationships between nodes (e.g., “X is a Y,” “X has a Y,” and “X caused Y”). Activation is 

said to propagate over links, from source nodes to sink (or target) nodes. While nodes structures 

are, themselves, symbolic representations (similar to semantic networks; see Sowa, 1991/2014), 

it has been proposed that these data structure could be “grounded” by associations with sensory 

content originating from LIDA’s Sensory Memory module. 

Node structures are conceptually appealing (particularly from an analytical modeling or 

pedagogical perspective) because they are easily visualized and interpreted by humans. 
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Unfortunately, they suffer from some computational limitations that have inspired exploration 

into more scalable representational options (e.g., modular composite representation vectors; see 

Snaider & Franklin, 2014a). For the purposes of this manuscript, I will generally use node 

structures for illustrating conceptual details; however, other representations may be used, as 

necessary, for computational purposes.  

The LIDA Conceptual Model and Its Implementations 

LIDA’s conceptual model (Franklin et al., 2016) specifies a set of high-level components (e.g., 

modules and processes) and their interactions. And LIDA’s conceptual commitments (Franklin, 

Strain, et al., 2013) constrain how these components must operate. LIDA’s computational 

instantiations (i.e., LIDA agents) are required to abide by both LIDA’s conceptual model and its 

commitments; however, within those confines, there is a considerable amount of flexibility 

related to implementation details, and some of these details are necessarily unspecified by the 

LIDA model. I say “necessarily unspecified” for at least two reasons. First, an agent may be 

situated in any of an enormous variety of environments, each with its own character and relative 

complexity. This environmental sensitivity will likely flavor most, if not all, module 

implementations. This is a direct consequence of embodiment and situated principles: all aspects 

of cognition are shaped by the agent’s body and its situated relationship with its environment. 

Second, some details are necessarily unspecified due to our imperfect knowledge of minds. 

Biological minds provide the only known examples that “generally intelligent” autonomous 

agents are constructible; however, our knowledge of how they accomplish this feat is far from 

complete.  
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The LIDA conceptual model and its commitments are a testament to what we believe we 

know about minds based on our current interpretation of the available evidence; however, the 

computational implementations of those conceptual constructs are subject to change without 

invalidating the LIDA conceptual model. Therefore, any computational implementation of a 

module should be considered an implementation not the implementation of a module, and it is 

entirely consistent (and eminently useful) to admit many implementations, so long as they are 

consistent with LIDA’s conceptual foundations.  

Finally, note that not every LIDA module and process must be implemented in a LIDA 

agent for it to be considered a LIDA agent. Depending on the nature of the agent one is trying to 

implement (e.g., reactive, deliberative, etc.) or the research question one is trying to explore 

(e.g., replicating hippocampal lesion studies), it may be beneficial to focus on a subset of 

modules or processes, so long as the resulting system remains an autonomous agent consistent 

with LIDA and its conceptual commitments.   
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Chapter 5 

Grounded Representations, Mental Simulations, and Multimodal Perception 

It is unlikely that grounded cognition will be fully accepted until classic research 

paradigms can be understood within its framework. In cognitive psychology, for 

example, how would a classic paradigm such as recognition memory be 

understood as grounded? (Barsalou, 2008, p. 635) 

This is the first of three chapters detailing LIDA-based implementations for ES-Hybrid’s 

fundamental components. This chapter focuses on sensorimotor representations, grounded 

concepts, and the generative processes that support mental simulation (see Chapter 3). A 

conceptual model and computational approach to multimodal perception and perceptual learning 

is then developed based on this foundation.  

The computational implementation I develop here can be described as a neuro-symbolic 

system.1 It combines generative artificial neural networks (see Chapter 2) with symbolic data 

structures (i.e., mental representations). Specifically, I combine beta-variational autoencoders (𝛽-

VAEs) with a content-addressable activation graph (containing both modal and amodal nodes). 

These components and their functions within LIDA will be described in detail below. 

Background: Variational Autoencoders (VAEs) 

Recall from Chapter 2 that autoencoders are generative artificial neural networks that learn in an 

unsupervised fashion (i.e., from unlabeled training data). They combine an encoder (or 

 

1 Kautz (2022) referred to this type of neuro-symbolic architecture as Neuro | Symbolic. 
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recognition) network, a decoder (or generative) network, and a loss function that is based, in 

part, on reconstruction error. The encoder network transforms its inputs into (typically) lower-

dimensional representations—often called latent representations—and the decoder network 

attempts to reconstruct the encoder’s inputs from those latent representations. 

 

 
Figure 9. Depiction of a variational autoencoder (VAE). (Note that 𝒙 and 𝒛 are vectors.) 

 

Variational autoencoders (VAEs; Kingma & Welling, 2013) learn latent representations 

that are interpretable as multi-dimensional probability distributions (see Figure 9). Specifically, 

for each input, a VAE’s recognition network outputs a vector of means (𝝁) and standard 

deviations (𝝈) that characterizes that input’s generative features (e.g., its size, rotation, 

brightness, location, and so on).2 A stochastic sampler can then be used to sample individual 

latent vectors from these probability distributions.  

Sampled latent vectors (𝒛) correspond to single points in a VAE’s learned latent (vector) 

space—that is, they function like the outputs from a traditional autoencoder’s recognition 

 

2 In general, the generative features learned by a VAE are not so easily interpreted by humans. This limitation has 

been partially addressed in more recent VAE architectures, such as 𝛽-VAEs (Higgins et al., 2017), which will be 

discussed later in this section. 
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network. These sampled latent vectors can then be fed into the VAE’s generative network to 

create reconstructions of the encoder’s inputs. They can also be directly compared using a 

similarity measure (e.g., cosine similarity). Crucially, vectors that are “close” in a latent space 

will typically have similar generative features; consequently, the inputs 𝒙 that generated those 

latent vectors will often resemble one another (as will their reconstructions). 

One of the benefits of using variational autoencoders over traditional autoencoders is that 

they tend to produce “smoother” latent spaces. Small perturbations in latent vectors typically 

correspond to similar input mappings (i.e., similar sensory stimuli). They will also tend to 

produce similar reconstructions (i.e., mental simulations). Furthermore, a VAE’s latent space 

typically has fewer “gaps.” That is, they contain fewer regions with incoherent reconstructions or 

that lack useful input mappings. This follows from the fact that VAEs map their inputs to a 

distribution of points in their latent spaces rather than a single point. As a result, their latent 

spaces tend to be more “filled in.”  

Beta-variational autoencoders (β-VAEs; Higgins et al., 2017) augment the standard VAE 

loss function with a regularizing coefficient (𝛽) that encourages their networks to learn 

“disentangled latent representations” (Higgins et al., 2018). Higgins et al. (2018) defined a vector 

representation as being disentangled if it can be “decomposed into a number of subspaces, each 

one of which is compatible with, and can be transformed independently by a unique symmetry 

transformation” (Higgins et al., 2018, p. 2). Symmetry transformations are vector operations that 

selectively modify individual generative features while preserving others; therefore, disentangled 

latent representations are desirable because they contain generative features (e.g., brightness, 



 

109 

 

position, and size) that can be individually inspected and manipulated to selectively control 

aspects of the generative process. Otherwise, 𝛽-VAEs are identical to standard VAEs.  

The 𝛽-VAE loss function (ℒ) appears below: 

ℒ(𝜃, 𝜙; 𝐱, 𝐳, 𝛽) = −𝔼𝑞𝜙(𝒛|𝒙)[log(𝑝𝜃(𝒙|𝒛))] + 𝛽𝐷𝐾𝐿 (𝑞𝜙(z|x) || 𝑝(𝒛))  , 

where 𝒙 represents a sample of input data (encoder inputs); 𝒛 represents sampled latent vectors 

(decoder inputs); 𝛽 is a configurable parameter that controls the amount of “disentangling 

pressure”; 𝐷𝐾𝐿 the Kullback-Leibler divergence; and 𝜃 and 𝜙 correspond to the parameters—

weights and biases—associated with the encoder and decoder neural networks, respectively. 

(The first term in the 𝛽-VAE loss function corresponds to the reconstruction error.) 

Note that 𝛽 = 1 corresponds to a classical variational autoencoder. 𝛽 > 1 constrains the 

capacity of the learned latent vectors, encouraging disentangling at the cost of lower-quality 

reconstructions. For more details on the 𝛽-VAE’s loss function and its derivation see Higgins et 

al. (2017). 

Implementation 

This section contains my implementations of foundational ES-Hybrid components in LIDA. I 

implement the requisite modules, representations, and processes, and then illustrate how they can 

be combined to support multimodal perception, mental simulation, and grounded concept 

learning. I assume readers are familiar with LIDA’s cognitive cycle, modules, processes, basic 

representational formats (i.e., node structures), and basic conceptual commitments (e.g., 

conscious learning). These were introduced in Chapter 4. LIDA’s modules and codelets are also 

summarized in Table 6 of the Appendix. 
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Figure 10. Sensory Memory and bottom-up perception. Modality-specific recognition networks in 

LIDA’s Sensory Memory module generate modal probability distributions (i.e., sensory 

representations) that are used to activate modal nodes in PAM. Activation can spread through PAM’s 

activation graph over directed links (e.g., referential associations), activating amodal nodes that 

symbolize grounded concepts. An elementary grounded concept (see Chapter 3) is depicted above. 

Node structures receiving sufficient activation are instantiated into LIDA’s preconscious Workspace as 

percepts. 

Sensory Memory and Sensory Representations 

Sensory Memory is a short-term memory module that encodes modality-specific sensory content 

as patterns of activation over low-level feature detectors3. Environmental stimuli activate these 

feature detectors, resulting in the generation of sensory representations (cf. ES-Hybrid’s 

sensorimotor representations; Chapter 3). Like their originating low-level feature detectors, 

sensory representations are modality-specific—they encode features from a single sensory 

 

3 The feature detectors learned by ANN architectures, such as convolutional neural networks (see Chapter 2), are 

typically hierarchically organized. In their earliest layers, they might encode feature maps that are receptive to edges 

(in various orientations) or colored regions. In their later layers, they might encode feature maps that are receptive to 

more elaborate shapes (e.g., eyes; see Mahendran & Vedaldi, 2016; Z. Qin et al., 2018.) 
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modality (e.g., visual, auditory, somatosensory)4 Sensory representations can be characterized as 

non-symbolic representations that are modal, analogical, and generative (see Chapter 3 for a 

review of these properties). 

Sensory Memory can be implemented using a set of modality-specific 𝛽-VAEs—one per 

sensory modality (see Figure 10).5 The 𝛽-VAEs’ recognition networks implement Sensory 

Memory’s low-level feature detectors. And the (modal) probability distributions generated by 

these networks implement LIDA’s sensory representations.  

Sensory representations are arguably the most important representations for 

implementing embodied, stimulation-based (grounded) cognition in LIDA. They directly support 

the following functions: 

(1) Sensory representations characterize the most “important” features of sensory stimuli; 

therefore, they can serve as sensory signatures that support the identification of, and 

discrimination between, those sensory stimuli when present in an agent’s (internal or 

external) environment.6  

(2) Sensory representations are used to activate perceptual representations in LIDA’s 

PAM module; thus, they directly support bottom-up perception. 

 

4 LIDA does not require feature detectors or sensory representations to be modality-specific. This is an additional 

constraint imposed by ES-Hybrid. 

5 The specifics of the 𝛽-VAEs’ network architectures (e.g., feed-forward, recurrent, convolutional) will depend on 

the representational needs of each sensory modality. The flexibility to vary these network architectures by sensory 

modality is one benefit of the implementation used in this chapter. 

6 Harnad (1990, sec. 3.1) defined discrimination as the ability to judge the extent to which two representations are 

the same or different (i.e., their degree of similarity), and he defined identification as the ability to assign a unique 

(symbolic) identifier (i.e., a “name”) or category label to a class of inputs. 
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(3) Sensory representations are sent to LIDA’s Current Situational Model (CSM), where 

they contribute to an agent’s understanding of its current situation.  

(4) Sensory representations are sent to LIDA’s Sensory Motor System (SMS), where they 

support situated, online control processes (see Chapter 2). 

(5) Sensory representations are the grounding constituents of grounded concept 

representations (see Chapter 3). 

(6) Sensory representations are used by generative processes to construct mental 

simulations. 

Many of these functions will be expanded on below. 

Perceptual Associative Memory and Grounded Concepts 

Perceptual Associative Memory (PAM) is LIDA’s “recognition memory” (Franklin et al., 2016, 

sec. 5.2.1). It is a long-term memory module that supports the identification of objects, entities, 

situations, events, and their properties. It is also LIDA’s long-term memory for grounded 

concepts. 

I implement PAM as a content-addressable activation graph. It is composed of a set of 

nodes that can be connected using directed activation links.7 It is an activation graph because 

current activation (see Chapter 4) can propagate between its nodes along activation links. And it 

is a content-addressable data structure because its representations are typically activated using 

resemblance-based comparisons (and spreading activation) rather than name-based lookups. 

 

7 Nodes can also be connected using incentive salience links (see Chapter 4). In this chapter, I omit this and other 

details of LIDA’s motivational system to simplify and focus the exposition. 
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Figure 11. Grounded representations and conceptual generalization. 

PAM’s nodes represent grounded concepts and instance of those concepts (e.g., objects, 

entities, situations, events, features). These can range in specificity from individual experiences 

to highly generalized category representations. As such, PAM’s activation graph is typically 

hierarchically structured (see Figure 11, Right Panel). 

My implementation subdivides PAM’s nodes into two types: modal and amodal. Modal 

nodes are modality-specific nodes with associated sensory representations (e.g., 𝛽-VAE 

generated modal probability distributions) and a modality indicator (e.g., visual, auditory, 

tactile). Modal nodes receive current activation exclusively from Sensory Memory; therefore, 

they function as PAM’s “primitive feature detectors” (see McCall, Snaider, et al., 2010). Sensory 

Memory activates modal nodes by comparing their sensory representations and those for 
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incoming environmental stimuli. Modal nodes receive current activation in proportion to the 

degree of similarity (e.g., cosine similarity) between those sensory representations. 

In contrast, amodal nodes do not have associated sensory representations or modality 

indicators. They are symbolic representations that receive activation exclusively from other PAM 

nodes: they are never (directly) activated by Sensory Memory. Therefore, amodal nodes function 

as PAM’s “non-primitive feature detectors” (see McCall, Snaider, et al., 2010). PAM’s amodal 

nodes never occur in isolation, as such representations would be functionally inert. And amodal 

nodes ultimately depend on modal representations for activation. 

I implement elementary grounded concepts (see Chapter 3) in LIDA using a combination 

of modal and amodal nodes. Specifically, I use a “hub-and-spoke” (Patterson et al., 2007; Ralph 

et al., 2010, 2017) representational format. Coordinating amodal nodes serve as “hubs” that 

holistically symbolize distinct, potentially multimodal, experiences. Modal nodes serve as 

“spokes” that ground those amodal symbols in sensory content. Modal nodes are connected to 

their amodal hubs using “referential” activation links (described later in this chapter). More 

elaborate grounded concept representations (e.g., for objects and categories) can be created by 

binding these elementary grounded concepts together into more generalized and complex 

structures—supported by “referential” activation links and hub-and-spoke-style topologies (see 

Figure 11, Right Panel). 

All PAM nodes have a current activation (representing its current situational relevance) 

and a base-level activation (representing its historical frequency, recency, and salience in 

“conscious” broadcasts). A node’s total activation is a function (e.g., summation) of these 

parameters. PAM nodes with sufficient total activation are instantiated into LIDA’s Current 
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Situational Model (CSM) as percepts (see Figure 10). Note that all activations decay over time, 

with current activations typically decaying much more rapidly than base-level activations (see 

Chapter 4, Activation). 

Referential and Non-Referential Associations 

Recall from Chapter 3 that ES-Hybrid specifies two kinds of representational associations: 

referential and non-referential. Referential associations establish a correspondence between two 

things. For example, they can specify constitutive (part-of), identity (is-a), and membership 

(kind-of) relationships. Referential associations are grounding associations. Non-referential 

associations, on the other hand, characterize non-correspondence-based relationships. These 

include causality, co-occurrence, temporal ordering, spatial relationships, etc. Non-referential 

associations are non-grounding associations. 

Referential associations hold a “privileged” status with respect to ES-Hybrid’s 

conception of grounded cognition and this LIDA-based implementation, as they are used to 

ground its conceptual representations.8 As such, referential associations depend, at least in part, 

on innate (built-in) cognitive processes for their creation and interpretation. These processes 

might oversee multimodal sensory binding, conceptual generalization, and the generative 

processes that govern mental simulation (among others). In contrast, non-referential associations 

may largely depend on learned conceptual relationships that are themselves grounded concepts. 

 

8 Referential associations are necessary for grounding concept representations, but they are not sufficient. 

Referential associations can connect ungrounded concepts. 
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Referential and non-referential associations can be implemented in LIDA as types of 

activation links.9 Like standard activation links, referential and non-referential activation links 

are created by structure building codelets (see Chapter 4), and they can be learned into long-term 

memory if they are included in a global broadcast. In the current implementation, the distinction 

between these two types is primarily of concern to structure building codelets (SBCs; see 

Chapter 4), for example, “simulator” SBCs, which will be discussed later in this chapter. 

Specifically, SBCs create these associations and may interpret the representations containing 

them differently depending on the link type (e.g., as grounded vs ungrounded concepts). Link 

types could also differentially affect the activation dynamics in long-term memory modules, such 

as PAM, though I will not elaborate on this idea further here.10 

The idea of “typed” activation links has precedent in McCall, Franklin, and Friedlander’s 

(2010) proposal to add what they called “primitive link classes” to LIDA. Primitive link classes 

were intended to serve as semantic labels (cf. semantic networks; Sowa, 1991/2014) that 

characterized the associative relationships denoted by activation links. Their proposal included 

many types of link classes, including those for features (is-a-feature-of), parts (is-a-part-of), 

spatial relationships (e.g., is-left-of or is-above), causal relationships (e.g., is-caused-by), 

thematic roles (e.g., is-an-agent, is-a-location, is-an-object), and category membership (e.g., is-

a-kind-of). As such, referential and non-referential links could be conceptualized as higher-order 

categories of link classes that group these classes into more basic types. 

 

9 Referential and non-referential associations do not apply to LIDA’s incentive salience links. Incentive salience 

links specify the current motivational significance of an object, entity, or event—not what it is, or how it relates to 

other things in an environment. 

10 See link “types” and “labels” in Hofstadter and Mitchell’s (1994) Copycat architecture for ideas on how this could 

be accomplished in LIDA. 
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Simulator Structure Building Codelets 

Barsalou defined a “simulator” as the knowledge and generative processes that support concept 

representation and mental simulation (Barsalou, 1999, sec. 2.4.3). That is, in Barsalou’s theory, 

simulators are both mental representations and generative processes. My implementation 

separates these concerns. Specifically, my implementation uses “simulator” structure building 

codelets (SBCs)—generative processes that construct mental simulations for grounded concept 

representations. Simulator SBCs are not equated with individual concepts; they merely support 

their mental simulation. And a single simulator SBC can support the simulation of many 

grounded concepts. 

 

Figure 12. Simulator structure building codelet (SBC). 

 

Conceptually, simulator SBCs re-activate portions of LIDA’s Sensory Memory. They do 

this in a top-down fashion, proceeding from grounded concepts to their grounding sensory 

representations over a chain of referential links. Simulator SBCs generate modality-specific 
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mental simulations for those sensory representations and integrate them into multimodal 

structures in LIDA’s Current Situational Model (CSM).11 

Computationally, simulator SBCs can be implemented using a set of modality-specific 𝛽-

VAE generative networks and a stochastic sampler (see Figure 12). Mental simulation involves 

first sampling latent vectors for each sensory representation associated with a grounded concept 

and then feeding those sampled latent vectors into the 𝛽-VAEs’ generative networks. The 

outputs from these generative networks are modality-specific, sensory-like representations—that 

is, internal reconstructions of (internal or external) environmental stimuli. These modality-

specific simulations can then be integrated into more complex, multimodal sensory scenes that 

are accessible from LIDA’s CSM. Portions of these sensory scenes may cue relevant percepts 

(from Perceptual Associative Memory) or be operated on by structure building codelets. This 

sensory content might also be included in LIDA’s global broadcasts, if selected by one or more 

attention codelets. 

In summary, simulator SBCs construct mental simulations by iteratively re-activating 

portions of Sensory Memory. Mediating amodal nodes and referential links provide a bridge 

from grounded concepts to their grounding sensory representations. Once constructed, simulator 

SBCs associate their mental simulations with their originating grounding concept representations 

in the preconscious workspace. The resulting combination of “virtual” sensory content and 

grounded node structures is reflected in LIDA’s Perceptual Scene (see Chapter 7). 

 

11 More precisely, mentally simulations are added to the sensory portion of the CSM’s Perceptual Scene (McCall, 

Snaider, et al., 2010), and their originating grounded concepts are added to its node layer. Grounded concepts and 

their mental simulations are then linked together via referential associations. The simulation of more complex, 

multi-part concept instances requires a process of sequential elaboration that works in concert with an agent’s 

introspective processes. These details will be discussed in Chapter 7. 
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Simulation-Based Attention 

Barsalou (1999, sec. 2.4.3) characterized learning as the establishment of simulators. Moreover, 

he equated simulators with concepts and one’s understanding of those concepts with the ability 

to simulate them. These hypotheses, if correct, lead to two interesting corollaries. First, 

conceptual understanding can be operationalized by one’s overt and covert generative 

capabilities. Second, conceptual learning can be optimized by biasing one’s attention towards 

objects, entities, and events for which one’s mental simulations are inadequate. That is, 

generative deficits can serve as cues that more experiential learning is needed (with respect to a 

concept).  

These observations suggest an attentional process. For example, the 𝛽-VAE’s 

reconstruction error, 

ℰ(𝜃, 𝜙; 𝐱, 𝐳) = −𝔼𝑞𝜙(𝒛|𝒙)[log(𝑝𝜃(𝒙|𝒛))]  , 

could be used to guide an agent’s attention towards salient environmental stimuli. In particular, a 

high reconstruction error could be considered a measure of “surprise.”12 

This reconstruction-error-based attentional process is primarily useful during bottom-up 

perception since reconstruction errors can only be determined in the presence of a concurrent, 

veridical, sensory signal—error calculation requires a basis for comparison. This suggests that 

simulation-based autonomous agents continually attempt to simulate their sensory experiences, 

which may seem counter-intuitive. Why construct “virtual” sensory content when the “real” 

 

12 A LIDA agent could become consciously aware of those “surprising” stimuli if reconstruction error were used as 

an activation source for a “surprise” feeling node. 
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sensory content (environmental stimuli) is readily available? And, if mental simulation is 

continually occurring, how do mental simulations so frequently escape our notice?  

This idea of continual mental simulation becomes less absurd when we make the 

connection between mental simulation and prediction. Mental simulation is a form of 

experience-based prediction, and Moulton and Kosslyn (2009) argued that this predictive 

function of mental imagery is its primary function.  

Albright (2012) referred to the idea that non-volitional mental imagery (see Chapter 7) 

can influence and support perception as the implicit (or automatic) imagery hypothesis. This 

hypothesis states that one’s perceptual experiences typically depend on both “real” stimuli and 

“virtual” stimuli (i.e., mental simulations). The degree to which perception relies on one or the 

other depends on the quality of the “real” sensory stimuli, and one’s knowledge of their 

environment (e.g., their ability to generate mental simulations of those concepts). Albright 

argued that, ordinarily, mental simulations serve “to augment sensory data with ‘likely’ 

interpretations [i.e., predictions]” (Albright, 2012, p. 235) in order to compensate for noisy, 

ambiguous, and partial sensory information. Though controversial, there is a wealth of empirical 

and theoretical support for the idea that perception is based on a complex interplay between the 

bottom-up signals resulting from incoming sensory stimuli and internally generated, top-down 

signals (e.g., resulting from mental simulations; Bar, 2009; Bruner et al., 1951; Cope et al., 2017; 

N. Dijkstra et al., 2017; Farah, 1985, 1989; Hansen et al., 2006; Mast et al., 2001; Moulton & 

Kosslyn, 2009; O’Callaghan et al., 2017; Powers III et al., 2016; Tian et al., 2018). 

According to this view, mental simulation is fundamental to perception. When there are 

no discrepancies between our perceptions and corresponding mental simulations, we are 
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typically unaware that these continual background mental simulations exist. However, when 

there are discrepancies (incorrect predictions), we may become conscious of them and 

experience associated feelings of confusion or surprise. These discrepancies may also indicate 

that an agent’s internal representations, generative processes, and predictive models of the world 

need updating. 

Cognitive “Object” Maps 

Previous LIDA research (e.g., Madl et al., 2018) has explored allocentric13, topographically 

organized, “cognitive maps” (Schiller et al., 2015; Tolman, 1948). These hybrid (symbolic/non-

symbolic) data structures encode the spatial locations of objects and places within an agent’s 

environment, and support agent localization and route planning, among other things. LIDA’s 

implementation of cognitive maps relies on place nodes—PAM nodes that represent distinct 

locations within a topographic or volumetric extent.14 Cognitive maps depict the spatial 

dimensions15 within an environment (e.g., they may depict the layout of one’s house), and place 

nodes are overlaid on those depictions—like pins in a map—to symbolize specific locations with 

that spatial extent. 

An object’s location can be specified within a cognitive map by associating a PAM node 

that symbolizes that object with one or more of its place nodes (see Figure 13). Note that 

 

13 Allocentric representations rely on agent-external landmarks and world-centric (or god’s eye) points of view to 

represent the locations of things in an environment. This contrasts with egocentric representations that represent 

locations relative to an agent’s own position or with respect to their individual points of view. 

14 Place nodes are inspired from “hippocampal place cells” that occur in animal brains, which are believed to encode 

an animal’s belief about its current spatial location. 

15 Temporal cognitive maps are also possible, though they have yet to be explored in the context of LIDA. 
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cognitive maps are typically hierarchically organized: a single spatial region may be represented 

by many cognitive maps (concurrently) with different scales and resolutions.  

 

Figure 13. Spatial cognitive map. 

 

Object-centric cognitive maps that encode the relationships between object parts or scene 

elements (from egocentric or object-centered reference frames) could also be implemented. For 

example, this type of cognitive map could be retinotopically organized, where locations on the 

cognitive map correspond to locations in an agent’s visual field. Alternately, they could encode 

the tactile relationships between object parts, such as would occur when someone explores an 

object with their hands. Or they could be used to coordinate an agent’s somatosensory (tactile, 

temperature, proprioceptive, nociceptive) inputs with respected to its body’s extent (e.g., a 

somatosensory homunculus16). These cognitive “object” maps are similar to Kosslyn’s “object 

 

16 Somatosensory cognitive (or perceptual) maps such as these could be used to implement LIDA’s current body 

schema (see Neemeh et al., 2021). 
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maps” (Kosslyn, 1994; Kosslyn et al., 2006) or simplified versions of Barsalou’s modal “frames” 

(Barsalou, 1999, fig. 3). 

 
Figure 14. A schematic diagram depicting a cognitive “object” map. 

Cognitive “object” maps could be implemented in LIDA by combining PAM’s node 

structures with topographic, retinotopic, or volumetric extents that occur within its various short-

term (e.g., Sensory Memory and the Current Situational Model) and long-term (e.g., Spatial 

Memory) memory modules. For example, the bicycle in Figure 14 combines a topographic 

extent corresponding to a bicycle with a set of node structures that describe the details and 

locations of each of its part (i.e., sub-regions of interest). These descriptive node structures are 

anchored to the bicycle’s extent using object-centric “place nodes” that specify distinct locations 

along that extent. Like allocentric cognitive maps, cognitive “object” maps can be hierarchically 

organized, concurrently supporting multiple scales and resolutions. 

Multimodal Perception 

Perception involves the recognition (identification) of objects, entities, situations, and events 

within environmental stimuli. During perception, these stimuli are mapped to learned or innate 
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mental representations (e.g., grounded concepts) that provide the most plausible explanations for 

those stimuli, and the resulting “percepts” are integrated into an agent’s internal model of its 

current situation (i.e., its Current Situational Model).  

In practice, perception is an active process, supported by predictions, exploration, and 

speculative reasoning. And it can be viewed as the result of both “bottom-up” and “top-down” 

processing (e.g., see N. Dijkstra et al., 2017; Intaitė et al., 2013; Mechelli et al., 2004). Bottom-

up processing is characterized by the forward flow of information. With respect to LIDA, this 

begins with the arrival of sensory stimuli in Sensory Memory and ends with a global (conscious) 

broadcast. Top-down perceptual processing, on the other hand, is characterized by the backward 

(or recurrent) flow of information and internally generated signals. This can take the form of 

mental simulations, predictive processing (Clark, 2013), and situational expectations.17 With 

respect to LIDA, top-down processing is reflecting in the dynamics of LIDA’s (preconscious) 

Workspace, including the activity of its structure building codelets (e.g., simulator SBCs) and the 

cueing of long-term memory modules (e.g., Declarative Memory and Perceptual Associative 

Memory). 

In this section, I will primarily focus on developing an account of LIDA’s bottom-up 

perceptual processing. This partial account of LIDA’s perceptual processes is based on the 

module, representation, and process implementations described earlier in this Chapter. Chapters 

6 and 7 delve into more detail about top-down cognitive processes.  

 

17 Recall from Chapter 3 that prediction and mental simulation are not necessarily distinct mental phenomena. 

Moulton and Kosslyn (2009) posited that mental simulation is primarily used to create experiential predictions, and 

numerous researchers have noted a deep connection between prediction, perception, and mental simulation 

(Barsalou, 2009; Clark, 2013; Jeannerod, 2001). Though I did not mention them explicitly earlier, expectations are 

clearly a related idea.  
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LIDA’s bottom-up perceptual processing is partially depicted in Figure 10; it involves the 

following steps: 

(1) Perception begins when environmental stimuli activate Sensory Memory’s modality-

specific, low-level feature detectors (i.e., 𝛽-VAE recognition networks). Their patterns of 

activation result in the generation of a set of modality-specific sensory representations 

(i.e., modal probability distributions).  

(2) Sensory Memory updates the current activations associated with Perceptual Associative 

Memory (PAM)’s modal nodes (i.e., PAM’s primitive feature detectors). This is 

accomplished by a resemblance-based comparison between the sensory representations 

generated in step (1) and the learned (or built-in) sensory representations grounding 

PAM’s modal nodes. The greater the similarity between these sensory representations, 

the greater the increase in their modal node’s current activation. For computational 

purposes, current activation is calculated as a function of the cosine similarity between 

two sensory representations.  

(3) In parallel to step (2), the sensory representations generated in step (1) are integrated into 

LIDA’s Current Situational Model. Multimodal-binding structure building codelets 

construct elementary grounded concept representation from each such set of co-

occurring, modality-specific, sensory representations. These new elementary grounded 

concepts characterize an agent’s individual sensory experiences. 

(4) Current activations propagate in Perceptual Associative Memory (PAM) activation graph 

over referential links, from modal nodes (i.e., primitive feature detectors) to their 

connected grounded concepts (i.e., non-primitive feature detectors). When current 
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activation propagates from multiple (source) nodes to a single (sink) node, their current 

activations can combine to jointly activate that target node18. A portion of this current 

activation can then propagate to other perceptual/conceptual representations over 

activation links. 

Base-level and current activations combine in PAM to determine a node’s total 

activation. PAM node structures with total activations over an instantiation threshold are 

instantiated into LIDA’s preconscious Workspace—i.e., its Current Situational Model—

as percepts.  

(5) A simulator structure building codelet (SBC) continually scans the Current Situational 

Model looking for percepts without associated mental simulations. For each such percept, 

the simulator SBC construct a modal simulation. It then associates this modal simulation 

with its corresponding percept in LIDA’s Perceptual Scene (using a referential 

association). This “virtual” (internally sourced) sensory content comingles with “real” 

(externally sourced) sensory content within the Perceptual Scene (see Chapter 7). 

(6) Attention codelets scan the preconscious representations in LIDA’s Current Situational 

Model and select among these based on their own interests (i.e., their matching criteria). 

Selected representations are sent to a coalition forming process, which constructs 

coalitions from them and sends them to the Global Workspace. 

 

18 When a PAM node is activated from multiple sources, those source nodes function like a heterogeneous, 

multimodal “stacked ensemble” (Naimi & Balzer, 2018; Sesmero et al., 2015; D. H. Wolpert, 1992). That is, the 

current activation of the target (sink) node is calculated as a weighted combination of multiple sources of 

resemblance-based “evidence.” Such a multimodal ensemble of nodes could be used to provide a more robust 

predictor of a node’s situational relevance. 
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(7) The Global Workspace conducts an activation-based, winner-take-all competition among 

its coalitions and globally broadcasts the winning coalition’s content. 

Perceptual (Conceptual) Learning 

LIDA’s perceptual (conceptual) learning can be characterized as both instructionist and 

selectionist (see Edelman, 1987). Instructionist learning involves the learning of new knowledge 

representations (e.g., sensory representations and grounded concepts). Selectionist learning 

involves updating/fine-tuning parameters associated with existing knowledge representations 

(e.g., base-level activations). 

Instructionist Perceptual Learning. A multimodal-binding structure building codelet (SBC) 

can create new elementary grounded concept representation in LIDA’s Current Situational 

Model by binding together co-occurring sensory representations. It first creates a new modal 

node for each unbound sensory representation and assigns a value to its modality indicator. It 

then binds these modal nodes to an amodal node using referential links. This new amodal node 

holistically symbolizes that experience. Other elements of the agent’s current situation (i.e., 

background contexts) may also be associated with these sensory experiences using non-

referential links. If these new elementary grounded concept representations and their associated 

contexts are attended to by attention codelets, they may be consciously broadcast and learned 

into Perceptual Associative Memory (PAM).  

More elaborate and generalized node structures could be created in an agent’s CSM by 

other structure building codelets. For example, a structure building codelet could specialize in 

creating cognitive “object” maps (see Figure 14). These could be created using a process similar 

to the “schematic symbol formation process” described by Barsalou (1999) for learning frames. 
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This process begins by first constructing (or allocating) a coordinating non-symbolic 

representation (e.g., a spatial extent) that characterizes an object’s overall shape and properties. 

For example, the spatial extent for an object could be induced into the sensory portions of 

LIDA’s Perceptual Scene by a simulator SBC. This proto-cognitive “object” map could then 

serve as an object-centered reference frame within which specific sub-regions could be 

elaborated.19 In particular, grounded concept representations (e.g., object parts) could be 

associated with object-centric place nodes that specify distinct locations within an object overall 

extent.20 These object maps could then be incrementally learned over multiple cognitive cycles. 

Finally, a generalization structure building codelet could identify and construct 

categories of objects, entities, or events (etc.) by (1) identifying clusters of related items in the 

CSM, (2) creating new amodal category nodes (as necessary) for those related items, and (3) 

linking identified category members to those category nodes (using referential links). Each of 

these structures could then be learned into PAM, if they are included in a conscious broadcast. 

Selectionist Perceptual Learning. If PAM receives a conscious broadcast that contains 

previously learned PAM nodes, it increases the base-level activation of each such PAM node. 

The magnitude of this increase is based on the “strength” of the conscious broadcast (i.e., the 

activation of the winning coalition). Additionally, the parameters (weights and biases) associated 

with Sensory Memory’s recognition and generative networks could be updated from the content 

 

19 Kosslyn suggested that the creation of multi-part (visual) mental images may begin with a “global image” (1994, 

p. 292) whose parts are elaborated on, as needed. The process advocated for here follows a similar idea: incremental 

elaboration of an initially low fidelity coordinating non-symbolic representation. 

20 The idea of object-centric place nodes was described in the section on Cognitive “Object” Maps earlier in this 

chapter. 



 

129 

 

in a conscious broadcast—based on the 𝛽-VAE loss function and stochastic gradient descent. 

This update requires (1) environmental stimuli (i.e., “real” sensory content), (2) their simulations 

(“virtual” sensory content), and (3) their sensory representations (modal probability 

distributions). This required content is available in LIDA’s Perceptual Scene (see Chapter 7); 

therefore, it could be included in a conscious broadcast. 

Evaluation 

This chapter detailed conceptual and computational implementations for grounded 

representations, mental simulation, and multimodal perception in LIDA. While these 

implementations were developed in accordance with the guidelines specified in Chapter 3, its 

properties should be confirmed by experimentation and analysis. Specifically, ES-Hybrid 

requires that grounded concept representation satisfy the following four properties: 

(1) They must be analogical, bearing a resemblance to the things they signify. 

(2) They must be generative, supporting modal mental simulations. 

(3) They must be grounded, either directly or indirectly, in sensorimotor (i.e., sensory) 

representations. 

(4) They must be perceptual, capable of activating and being interpreted by perceptual 

systems. 

In this section, I will demonstrate that my computational implementation satisfies these 

requirements. 
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Analogical 

Analogical representations are non-symbolic representations that bear an iconic relationship with 

the things they signify (see Peirce’s semiotics, Chapter 2). As such, they can serve as proxies for 

their referents (e.g., environmental stimuli) in resemblance-based comparisons. Two analogical 

representations should be judged similar by an agent’s perceptual processes if and only if their 

referents resemble one another with respect to that agent’s sensory system. 

I contend that the implementations of LIDA’s Sensory Memory and Perceptual 

Associative Memory (PAM) modules detailed in this chapter can satisfy this analogical 

requirement. To test this claim, a 𝛽-VAE with a convolutional architecture21 was trained on 

Fashion MNIST (Xiao et al., 2017)—a well-known data set containing 70,000 grayscale images 

(28 x 28 pixels each) from ten different categories of “fashion products” (t-shirts, trousers, 

pullovers, dresses, coats, sandals, shirts, sneakers, bags, and ankle boots). The resulting 𝛽-VAE 

had 538,529 parameters (i.e., weights and biases), its sampled latent vectors (𝑧) had 64 

dimensions, and its 𝛽 value was 1.2. Training was fully unsupervised (see Chapter 2) and 

consisted of five training epochs over the data set’s 60,000 training images. The data set’s 

10,000 test images were withheld during training and used exclusively for experimentation. 

To test the 𝛽-VAE’s ability to capture the resemblance-based characteristics of its inputs 

(i.e., whether its sensory representations are analogical), 25 images were randomly sampled from 

each of the dataset’s 10 categories. The resulting 250 images (sensory stimuli) were used to 

 

21 Alternating convolutional, max pooling layers (2 of each) were used to implement the 𝛽-VAE’s encoder network. 

Transpose convolutional layers were used to implement the 𝛽-VAE’s decoder network. Rectified-linear (RELU) 

activation functions were used throughout. 
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generate sensory representations. Current activations were then calculated for each pair of 

sensory representations to determine their apparent perceptual similarity. The resulting values 

were used to generate the heatmap shown in Figure 15 (Left Panel). 

This experimental setup was intended to imitate Sensory Memory’s activation of modal 

nodes in PAM from sensory representations for incoming environmental stimuli. Each row of the 

heatmap in Figure 15 (Left Panel) can be viewed as a pattern of activation induced over PAM’s 

modal nodes given some sensory input (in this case, an image). 

Current activations were based on the cosine similarities (𝛿) calculated over pairs of 

sensory representations (i.e., modal probability distributions). These cosine similarities were then 

used as inputs to a sigmoidal current activation (𝛼𝑐) function,22 

𝛼𝑐(𝛿) =
1

1 + 𝑒(−15𝛿+10)
    . 

Note that current activations immediately decayed to zero following each calculation; therefore, 

current activations were unaffected by earlier trials.23 

 

22 While not strictly necessary, it was beneficial to scale cosine similarities using this non-linear activation function 

to reduce noise. A sigmoidal scaling function such as this will be particularly useful in a LIDA agent, where current 

activation can gradually accumulate over time because current activation does not immediately decay to zero 

between subsequent environmental stimuli.  

23 As a side note: residual current activation in PAM’s activation graph could be viewed as a form of perceptual 

priming. 



 

132 

 

 

Figure 15. Current activations and resemblance-based best matches. A 𝛽-VAE was trained on the 

Fashion MNIST dataset and used to generate a heatmap of current activations (left) for 250 randomly 

sampled images. Objects were grouped in the heatmap by their object classes (25 images per class). 

Gridlines were added to help with visualizing category boundaries. Example sensory stimuli and the 

objects receiving the most current activation (𝛼𝑐) from those stimuli are also shown (right). 

The heatmap (Figure 15, Left Panel) shows that intra-category activations were always 

greater (on average) than inter-category activations. Furthermore, categories containing items 

that resemble one another—for example, pullovers (category 2), coats (category 4), and shirts 

(category 6)—generated higher inter-category current activations than categories containing 

dissimilar items. In fact, sensory representations corresponding to dissimilar categories generated 

very little current activation; for example, the only sensory representations receiving current 

activations for images of ankle boots were those corresponding to other items of footwear. 

Figure 15, Right Panel shows a set of images functioning as incoming sensory stimuli. 

These sensory stimuli were encoded using the 𝛽-BAE’s recognition network and used to activate 

modal nodes in PAM (i.e., previously learned sensory representations). The set of images 

associated with the most highly activated modal nodes are shown alongside the sensory stimuli 

that activated them. Figure 15, Right Panel demonstrates that the most highly activated sensory 
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representations corresponded to objects that shared similar shapes, textural features, and 

luminance (i.e., they resemble the sensory stimuli that activated them).  

Based on the above observations, I contend that a 𝛽-VAE-based implementation of 

LIDA’s Sensory Memory module can learn sensory representations that are analogical. 

Furthermore, since these sensory representations are used as the basis for all of PAM’s grounded 

concept representations, their analogical property will apply to all grounded representations in 

PAM. 

Grounded 

Sensory representations are non-symbolic representations generated by Sensory Memory’s 𝛽-

VAE recognition networks. They encode the modality-specific, low-level features of 

environmental stimuli. They are analogical (shown earlier)—capable of serving as proxies for 

the environmental stimuli they represent. And they can be used to activate other (similar) sensory 

representations using a resemblance-based comparison (e.g., cosine similarity). Therefore, 

sensory representations are grounding representations (cf. Harnad’s iconic representations, 

Chapter 2). 

Elementary grounded concept representations combine one or more modal nodes (with 

associated sensory representations) and a coordinating amodal node using referential (activation) 

links. Referential links support the spread of activation from modal nodes to their connected 

amodal symbols. This allows the activations associated with those amodal symbols to covary 

with the patterns of activation of their constituent sensory representations. Assuming Sensory 

Memory’s sensory representations reflect the features of environmental stimuli, and Sensory 

Memory uses those sensory representations to activate modal nodes in PAM, then elementary 
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grounded concept representations will also reflect those features in their patterns of activation. 

As such, elementary grounded concept representations are grounded in their sensory 

representations; furthermore, elementary grounded concept representations are grounding 

representations. Through induction, one could now show that all of LIDA’s grounded concept 

representations are grounded (via chains of referential links from elementary grounded concept 

representations). 

Generative 

I claim that an implementation has learned generative representations (e.g., sensory 

representations) if and only if those allow the creation of modal simulations that are recognizable 

by the implementation’s system. For example, given a mentally simulated shirt, shoe, or bag, it 

should be recognizable as such by that system’s perceptual processes. To demonstrate that this 

property holds for the 𝛽-VAE-based implementation described here, I generated mental 

simulations for the same 250 randomly selected images that were used to generate the heatmap 

in Figure 15 (Left Panel). I then used these mental simulations to activate the 𝛽-VAEs 

recognition network as if they were incoming sensory stimuli. I generated corresponding sensory 

representations and calculated the pairwise 𝑎𝑐 as before. The resulting 𝛼𝑐 heatmap (not shown) 

looked very similar to the heatmap shown in Figure 15 with only slightly more inter-class noise. 

This demonstrates that the mental simulations produced by the 𝛽-VAEs generative networks 

(and, by extension, simulator structure building codelets) are sufficient to support the correct 

perception of those “virtual” stimuli. 

Analytically, it is self-evident that this property should hold for a 𝛽-VAE-based 

implementation. 𝛽-VAE’s latent representations are designed to be generative with respect to its 
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generative network.24 This is a consequence of its encoder-decoder architecture and its loss 

function that attempts to minimize reconstruction errors. While the quality of its reconstructions 

(simulations) will vary (e.g., depending on the 𝛽-VAE’s layered topology and the 𝛽 value used), 

its latent representations will almost certainly be generative after sufficient training.25 Therefore, 

LIDA’s sensory representations, which are based on these latent representations, will also be 

generative. 

Figure 16 demonstrates this property visually with respect to the 𝛽-VAE trained earlier 

on Fashion MNIST. It shows a set of “real” sensory stimuli and their corresponding mental 

simulations (i.e., “virtual” sensory stimuli). Notice that these simulations resemble their 

corresponding “real” stimuli. Also notice that these simulations fail to capture many of the 

details present in the original images; for example, the buttons on shirts and stripes on shoes are 

completely missing (i.e., they are “partial” and “indeterminate”; see Barsalou, 1999). Finally, 

notice that some of the simulated objects have slightly different shapes and orientations than 

their real counterparts—for example, the shape of handbag and the orientation of the pant legs. 

Therefore, there is some evidence that this 𝛽-VAE has generalized over its inputs rather than 

simply memorizing those details. 

 

24 This is a further example that mental representations must be understood with respect to the cognitive processes 

that are intended to interpret them. A latent representation that is “generative” with respect to one 𝛽-VAE’s 

generative network will likely produce incomprehensible, incoherent reconstructions using a different 𝛽-VAE’s 

generative network. 

25 The only caveat to this is that a bad random initialization of a 𝛽-VAEs parameters could cause a gradient descent-

based optimizer to become prematurely stuck in a local optimum for which this property fails; therefore, it is always 

best to experimentally verify these properties. 
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Figure 16. Stimuli and their mental simulations (Fashion MNIST). 

Perceptual 

Grounded concept representations are perceptual representations—i.e., they are learned into 

Perceptual Associative Memory in support of recognition. Therefore, there is no disconnect 

between a LIDA agent’s sensory/perceptual systems and its conceptual representations. 

Grounded concept representations can cue grounded concepts in PAM either directly (using 

sensory representations and structural comparisons) or indirectly (through mediating mental 

simulations). The latter (simulation-based mechanism) should be preferred in most cases. 

Discussion 

This chapter detailed implementations for many of ES-Hybrid foundational components in 

LIDA. These included sensory representations (cf. sensorimotor representations), grounded 

concept representations, referential and non-referential associations, the generative processes 

supporting mental simulation (i.e., simulator SBCs), multimodal perception, and “conscious” 

perceptual/conceptual learning. While there are many ways of computationally realizing this 

functionality within LIDA, the combination of modality-specific 𝛽-VAEs and a content-

addressable activation graph provides a powerful and flexibility way of satisfying ES-Hybrid’s 

representational requirements that should work well for many environments. 
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Previous LIDA research has attempted to implement grounded cognition in LIDA using a 

combination of Modular Composite Representation (MCR) vectors (Snaider & Franklin, 2014a, 

2014b) and a Hierarchical Temporal Memory (HTM; Hawkins et al., 2010) based Sensory 

Memory module (see Agrawal et al., 2018). While MCR vectors can be analogical and 

perceptual, they are not generative; therefore, it is unclear how to use them as the 

representational basis for modal mental simulations and, by extension, embodied, simulation-

based LIDA agents. 

Many aspects of the account presented here accord well with Barsalou’s theory of 

Perceptual Symbol Systems (Barsalou, 1999; Barsalou et al., 2003). Sensory Memory’s 

collection of 𝛽-VAEs combined with Perceptual Associative Memory’s spreading activation 

graph can be viewed as the “shared associative networks” (Barsalou, 1999, p. 579) that Barsalou 

suggests as a possible implementation strategy for perceptual symbols. The use of “simulator” 

structure building codelets to support the generation of mental simulations draws further 

inspiration from Barsalou. And the cognitive “object” maps described in this chapter are 

functionally similar to simplified versions of Barsalou’s (1999) modal frames. Furthermore, 

many of the properties Barsalou ascribes to his perceptual symbols (see Chapter 2, Perceptual 

Symbol Systems) hold for grounded concept representations presented here. Specifically, they 

are analogical, not complete recordings, partial and indeterminate, capable of designating 

multiple referents, and dynamic. 

However, there are numerous differences as well. Most notably, Barsalou’s theory of 

Perceptual Symbol Systems has been described as an “eliminativist” position (see Goldstone & 

Barsalou, 1998) that argues that modal representations and the cognitive processes that operate 
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on them are sufficient to account for all of cognition. By contrast, the conceptual and 

computational implementations described here make extensive use of amodal representations. I 

contend that these amodal representations serve many critical functions that are difficult (and 

perhaps impossible) to accommodate with purely modal representations. Replacing amodal 

representations with modal representations, such as cross-modal conjunctive representations 

(CCRs; see Binder, 2016), which store the “statistically likely features” extracted from category 

exemplars or multimodal compressed representations (Barsalou, 2016a, p. 1133), would 

undermine many of those benefits. 

 A second difference between the current account and Perceptual Symbol Systems is that 

Barsalou’s (1999) “simulators” are defined as the combination of knowledge and generative 

processes needed to represent a single concept. The current implementation separates these 

concerns (see the earlier section on Simulator Structure Building Codelets). I do this for several 

reasons, chief among these is computational and conceptual simplicity. Coordinating the activity 

of the myriad of largely independent, generative processes needed to support a rich conceptual 

system would be extraordinarily challenging in software. Moreover, a one-to-many relationship 

between generative processes and the concepts they simulate is more consistent with Kosslyn et 

al.’s (1988) experimental observations that simulation appears to use sequential generation 

processes. If the generation of each constituent part of a multi-part object were handled by 

separate processes operating in parallel, then additional synchronization would be needed to 

produce those observed experimental results. Therefore, the implementation described here 

provides a more parsimonious explanation for those experimental results (ceteris paribus).
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Chapter 6 

Action-Based Mental Simulation and Motor Cognition 

The overriding task of Mind is to produce the next action…. The various cognitive 

functions—recognizing, categorizing, recalling, inferencing, planning—all 

ultimately serve what to do next. (Franklin, 1995, p. 412) 

Chapter 5 focused on perception, the representation of grounded concepts, and the generative 

processes that support mental simulation. This chapter builds on that earlier groundwork, adding 

aspects of motor cognition (see Chapter 2) to LIDA. Specifically, this chapter focuses on 

developing action-based mental simulations and other action-oriented aspects of LIDA’s 

cognitive cycle. 

Procedural Memory and Action Selection are the modules that most directly answer the 

question “What do I do next?” (Franklin et al., 2016, p. 106) in LIDA. Procedural Memory 

contains an internal model of the predicted consequences of an agent’s actions. And Action 

Selection uses situationally relevant portions of that model to select an agent’s next action.  

Historically, the knowledge in LIDA’s Procedural Memory module was considered to be 

“never conscious” (see Franklin & Baars, 2010) knowledge. It supported the selection of actions, 

but its knowledge representations (i.e., schemes) were never consciously accessible to an 

agent—that is, they were inaccessible from LIDA’s Current Situational Model (CSM). 

Building on Jeannerod’s theory of motor cognition (Jeannerod, 2001, 2006), I suggest 

how “covert” actions (see Chapter 2, Motor Cognition) could support action-based mental 

simulations. Action-based mental simulations are generated from the predicted consequences of 
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internally executed behaviors. Specifically, these mental simulations update LIDA’s CSM to 

reflect the expected outcomes of an agent’s selected behaviors. This capacity to internally 

executed behaviors and generate mental simulations from them is learned by internalizing the 

consequences of externally executed behaviors.  

Action-based mental simulations are the basis for volitional/intentional mental imagery 

(see Chapter 7), and they are likely pervasive in cognitive activities such as deliberation and 

planning. As such, conscious reasoning (e.g., volitional and consciously mediated offline 

cognition) could be viewed as a skill that is developed over time through relevant environmental 

interactions (Bartlett, 1958).  

In support of action-based mental simulations and the internal execution of selected 

behaviors, this chapter details a new implementation for LIDA’s Procedural Memory and Action 

Selection modules. In addition to laying the foundation for motor cognition in LIDA, it advances 

LIDA’s procedural learning, behavior streams, and exploratory action selection. It also suggests 

a possible implementation for automatized action selection (see Chapter 4) based the 

“overlearned” components of reliable behavior streams. 

My implementation is based on an enhanced LIDA-compatible extension of Drescher’s 

(1991) schema mechanism. Where Drescher was primarily focused on explicating the very early, 

sensorimotor stages of Piaget’s constructivist theory of childhood development (Piaget, 1952, 

1954), I expand that scope to include the mental simulation of actions and their environmental 

consequences. The capacity to perform action-based mental simulations is believed to emerge 

later in childhood development (e.g., see Molina et al., 2008; Spruijt et al., 2015).   
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Background: The Schema Mechanism 

Drescher (1991) described his schema mechanism as a symbolic, “general learning and concept-

building mechanism” inspired by Piaget’s theory of constructivism (Piaget, 1952, 1954).1 

According to this theory, human infants initially conceive of their world exclusively in terms of 

sensorimotor activity. However, through continued interactions with the world, children learn 

that some of their actions affect their sensations, and gradually they can construct more 

sophisticated representations of reality that are grounded in these sensorimotor primitives.  

Piaget described this early learning as progressing through a series of developmental 

stages. Drescher’s schema mechanism is primarily focused on implementing portions of Piaget’s 

“sensorimotor stage,” which corresponds to the first two years of an infant’s life. An important 

aspect of this theory, and Drescher’s schema mechanism, is that knowledge builds on previously 

learned knowledge. In the subsections that follow, I will describe the schema mechanism’s 

knowledge structures (i.e., mental representations), action selection, and procedural learning 

algorithm.  

Knowledge Representations 

The schema mechanism’s primary mental representation is the schema. It is a three-part data 

structure composed of a context, an action, and a result. Taken together, these components 

predict what might occur if an agent were to execution an action in a given environmental state.  

 

1 While I am primarily interested in the schema mechanism’s capability to learn procedural knowledge, it should be 

noted that Drescher intended for the schema mechanism to be a more-or-less complete cognitive architecture, 

featuring procedural and declarative knowledge, as well as action selection. 
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Contexts and results make assertions about the world (i.e., an agent’s environment)— 

specifically, the state of the world before and after an action is taken. They are not complete 

descriptions of an environment. Rather, they only specify those state elements that are 

statistically correlated with an action and its reliable execution. A schema’s context and result 

are encoded using a set of zero or more item assertions.  

Items are binary state elements that symbolize aspects of an agent’s environment. They 

can be thought of as propositions or binary feature detectors that correspond to specific 

environmental conditions. An item’s state (On or Off) indicates whether that condition is 

satisfied in an agent’s environment. And an item assertion stipulates a specific value for an 

item’s state. 

A schema’s context and result contain a set of item assertions that describe relevant 

aspects of an agent’s environment prior to and following the execution of the schema’s action. 

For example, given three items 𝑝, 𝑞, and 𝑟, a schema’s context might be encoded as “~𝑝𝑞”. This 

indicates that item 𝑝 should be Off, 𝑞 should be On, and it makes no claims about the state of 

item 𝑟; that is, 𝑟 can be On or Off, and this context would still be satisfied. A schema’s context is 

said to be satisfied when all of its positive item assertions correspond to items that are On in an 

agent’s environment, and all of its negative (or negated) item assertions correspond to items that 

are Off in an agent’s environment. 

The schema mechanism defines two types of items: primitive items and synthetic items. 

Primitive items are built-in symbolic representations that are toggled On or Off by innate 

cognitive processes (based on an agent’s current environmental state). In simple cases, primitive 

items could be wired directly to an agent’s sensors (e.g., collision detectors) to set their values 
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On or Off. More generally, primitive items function as Boolean functions (predicates) that 

characterize the observable properties of an agent’s environmental state. In contrast, synthetic 

items are learned additions to the schema mechanism’s conceptual repertoire. 

The schema mechanism creates a synthetic item whenever a schema is found to be 

unreliable but “locally consistent” (Drescher, 1991, p. 82). Drescher referred to such a schema as 

the synthetic item’s host schema and the resulting synthetic item as the host schema’s reifier. 

Conceptually, a synthetic item represents some unknown, previously unconceived-of, 

environmental condition that influences the reliability of its host schema.2 

To make these ideas more concrete, consider the schema depicted in Figure 17. It 

specifies an action of moving one’s hand to the left (MOVE-HAND-LEFT) and a result of one’s hand 

touching something to the left (HAND-TOUCH-LEFT). This schema is likely unreliable because it 

fails to specify any conditions that constrain its applicability. Its context is empty (i.e., it asserts 

nothing), so it is assumed to apply in all situations. However, if there are no objects to an agent’s 

left, that agent should not expect to touch something if its hand were moved to its left. On the 

other hand, if on some occasion the agent did touch something after moving its hand to the left, 

then that result is more likely to occur again when repeating the same action (at least over a short 

duration of time).3 Such a schema is said to be locally consistent. And when the schema 

 

2 Synthetic items are examples of “initially ungrounded” symbols that signify “unknown referents” (see Chapter 3). 

They are hypothesized environmental conditions that are inferred from other environmental regularities. The schema 

mechanism works backwards from a previously conceived manifestation (e.g., a tactile sensation) and postulates a 

previously unconceived-of thing (e.g., a physical object). This new synthetic item (i.e., concept) is allocated by the 

schema mechanism and grounded through “the reification of counterfactual assertions” (Drescher, 1991, p. 90). 

3 The assumption being that objects generally remain in approximately the same place over short periods of time. 
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mechanism detects this local consistency, it creates a new synthetic item (labelled PALPABLE-

OBJECT-LEFT in Figure 17) with this unreliable schema as its host schema. 

 

Figure 17. A synthetic item and its host schema. A schema with an empty context (top) specifies that if 

an agent’s hand were to move to the left (MOVE-HAND-LEFT) it would result in the agent’s hand 

touching an object to its left (HAND-TOUCH-LEFT). This schema was identified as an unreliable, but 

locally consistent schema, resulting in the creation of a synthetic item (bottom). This synthetic item can 

be interpreted as corresponding to the condition of a palpable object being to the agent’s left 

(PALPABLE-OBJECT-LEFT). 

Unlike primitive items—which are considered On or Off based on the state of a sensor or 

a perceptual process—the schema mechanism determines a synthetic item’s On/Off status based 

on a set of learned “verification conditions” (see Drescher, 1991, sec. 4.2.2). The simplest of 

these is based on whether a synthetic item’s host schema’s result occurs after its host schema’s 

action is taken. If the host schema’s result does occur when its action is taken, then the synthetic 

item is turned On; if the host schema’s result fails to occur after its action is taken, then the 

synthetic item is turned Off. 
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The schema mechanism supports two types of actions: primitive actions and composite 

actions. Primitive actions are built-in actions that are typically “hard-wired” to actuators or 

controllers that execute those actions. Composite actions are learned actions that function like 

subroutines; specifically, each composite action contains a controller that learns chains of 

(component) schemas (see Figure 18) that lead to a specific goal state.  

Once learned, composite actions provide an abstraction over the details of how these goal 

states are reached, allowing the schema mechanism to learn further results that follow from 

achieving those goal states. For example, consider a composite action with a goal state of 

ON(SWITCH), that is, “a switch being in its on position.” This might result in “the lights being 

on”— ON(LIGHTS)—in the context of a kitchen, that is, IN(KITCHEN); however, but it might result 

in “a fan being on”— ON(FAN)— in the context of a bedroom, that is, IN(BEDROOM). The schema 

mechanism could learn these regularities as two different schemas with the same composite 

action: IN(KITCHEN)/ON(SWITCH)/ON(LIGHTS) and IN(BEDROOM)/ON(SWITCH)/ON(FAN).4 

 

4 Drescher (1991) often depicted schemas as “CONTEXT/ACTION/RESULT” with forward slashes separating each 

component. I follow that convention here. 
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Figure 18. An illustration of a single chain of schemas. One or more schemas can chain together (e.g., 

within a composite action's controller) when one schema's context is a proper subset of another schema's 

result, forming a link in the chain. For composite actions, the terminal link in a schema chain will have 

the composite action’s goal state as its result. Note that composite actions typically contain multiple 

chains of schemas that terminate in a single goal state. 

Schemas have several associated properties. A schema’s reliability tracks the probability 

with which a schema’s result occurs when its action is taken. In general, schema’s may be 

arbitrarily unreliable; however, even unreliable schemas are useful because they serve as points 

of departure for learning more reliable schemas. (Exactly how the schema mechanism achieves 

this will be discussed later in this chapter.) Other parameters associated with each schema 

include its (average) duration, (average) cost, and overriding conditions (see Drescher, 1991, p. 

55). 

Action Selection 

The schema mechanism selects a single applicable schema at each discrete time step. A schema 

is said to be applicable when its context is satisfied and none of its overriding conditions occur. 

Schema selection is based on a multi-faceted appraisal of each applicable schema. The criteria 

used to evaluate each schema can be broadly characterized as being in service of goal-pursuit or 

exploration (cf. exploration and exploitation in reinforcement learning; see Sutton & Barto, 
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2018). The schema mechanism adjusts the relative importance of these criteria over time in order 

to maintain a “cyclic balance” between goal-pursuit and exploration (see Drescher, 1991, p. 66). 

 A schema’s goal-pursuit importance is primarily determined by the primitive, delegated, 

and instrumental values of the items in its result. Primitive value is a built-in5 measure of the 

(positive or negative) desirability of an item. Delegated value is an acquired measure of the 

(positive or negative) desirability of an item. And instrumental value is a transient, goal-specific 

measure of the current utility of an item.6  

The primary criteria influencing a schema’s exploratory importance are what Drescher 

called hysteresis and habituation (see Drescher, 1991, p. 66). Hysteresis is the tendency to re-

select recently selected schemas, which provides a temporary focus of attention around a small 

set of schemas. Habituation is a temporary devaluation (partial suppression) of schemas that 

have been recently selected many times. In addition to hysteresis and habituation, the schema 

mechanism also includes other exploratory mechanisms that encourage the selection of schemas 

with underrepresented actions. 

The selection of schemas with composite actions introduces additional complications. 

While the initial selection of a composite-action schema proceeds exactly like a schema with a 

primitive action, they are treated differently after their selection. For example, immediately after 

the selection of a schema with a composite action, the schema mechanism will choose one of its 

 

5 Since primitive values are “built-in” values, they are only associated with primitive items (not synthetic items, 

which are learned). 

6 An item is said to have instrumental value—with respect to a specific chain of schemas leading to a goal state—if 

turning that item On would help satisfy the context of the next schema in that schema chain. 
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composite action’s applicable component schemas for execution. Applicable component schemas 

are selected based on their proximity to the composite action’s goal state, rather than their goal-

pursuit or exploratory value. If the selected component schema is itself a composite-action 

schema, then the schema mechanism will continue to recurse in this way until a schema with a 

primitive action is found.  

 On subsequent selection events, a previously selected composite action schema—

referred to as the pending schema—must still compete for re-selection like any other schema; 

however, it is given additional importance that encourages its re-selection. Drescher stated, 

The mechanism grants a pending schema enhanced importance for selection, so 

that the schema will likely be re-selected until its completion, unless some far 

more important opportunity arises. Hence, there is a kind of focus of attention that 

deters wild thrashing from one never-completed action to another, while still 

allowing interruption for a good reason. (Drescher, 1991, p. 62) 

The current pending schema is aborted if it fails to make progress towards its goal state after a 

maximum expected execution time, or, if at any time following its initial selection, the pending 

schema has no applicable component schemas.   

Procedural Learning 

The schema mechanism learns new schemas by marginal attribution—an empirical learning 

algorithm that is designed to incrementally learn chains of reliable schemas. A fundamental 

feature of marginal attribution is that new knowledge builds on prior knowledge. That is, new 

schemas are incrementally constructed from existing schemas through a process called spin-off. 
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The schema mechanism is initialized with a set of primitive actions and primitive items. 

For each of its primitive actions, the schema mechanism constructs a bare schema—an action-

only schema that serves as a “point of departure” for the discovery of action consequences. From 

this set of bare schemas, the schema mechanism’s marginal attribution process attempts to 

identify the statistically significant effects of an agent’s actions. If an item is significantly more 

likely to turn On when an agent executes an action, then a result spin-off schema is created 

containing that relevant item in its result. This spin-off schema’s action will be the same as its 

originating bare schema’s action, and its context will be empty. Similarly, if an item is 

significantly more likely to turn Off when an agent executes an action, then a result spin-off 

schema is created containing the negation of that relevant item. 

Once the schema mechanism learns one or more result spin-offs, it then attempts to 

identify context conditions that will make these result spin-offs more reliable. If a schema’s 

result is significantly more likely to occur when a particular item is On prior to its action 

execution, then a context spin-off is created containing that relevant item in its context. This new 

spin-off schema’s action and result will be the same as its originating schema’s action and result. 

Similarly, if a schema’s result is significantly more likely to occur when a particular item is Off 

prior to its action’s execution, then the schema mechanism will create a context spin-off schema 

with a negated assertion for that item.  

For each context spin-off created in this way, additional context spin-offs can be created 

from those schemas—new knowledge builds on previous knowledge. This supports the 

construction of schemas with composite contexts that function like conjunctions (logical ANDs) 
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of items.7 Once a conjunction of relevant items has been identified (via a context spin-off), it is 

eligible for inclusion in a result spin-off (but not before)8. 

Schemas require two additional “extended” components to support the identification of 

relevant items: an extended context and an extended result. These components tabulate item-level 

correlation statistics with respect to each schema. Extended context statistics, which support 

context spin-offs, are eligible to be updated whenever a schema is explicitly or implicitly 

activated. A schema is explicitly activated when it is selected for execution. A schema is 

implicitly activated whenever it shares the same action as the explicitly activated schema, and its 

context is satisfied. 

The schema mechanism updates the reliability associated with all implicitly or explicitly 

activated schemas based on the environmental state that follows action execution. If the resulting 

state satisfies an activated schema’s result, then its reliability is increased; otherwise, its 

reliability is decreased.  

The schema mechanism maintains numerous other (learned) parameters that are 

periodically updated including a schema’s cost and duration; an item’s generality, accessibility, 

 

7 The schema mechanism does not explicitly support disjunctions of items (logical ORs over sets of items); however, 

when multiple schemas contain the same context and action, but different results, these schemas implicitly function 

as a disjunction over their results. Similar, when two or more schemas have the same action and result, but different 

contexts, these sets of schemas function as implicit disjunctions with respect to their contexts. 

8 This is a subtle, but important point. The schema mechanism does not support the incremental learning of 

composite results, like it does for composite contexts. Drescher explained, “to prevent the explosive proliferation of 

such combinations,… only a schema with an empty result [i.e., a bare schema] can spin off a schema with a new 

result item” (1991, pp. 78–79). While composite results are possible, they are limited to those conjunctions of 

conditions that appear in known composite contexts. That is, the schema mechanism focuses on composite results 

that, when obtained, will satisfy the context of a known context-spinoff. This encourages the learning of schema 

chains. 
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and delegated value; and a component schema’s proximity with respect to its composite action’s 

goal state. These details have been omitted for brevity. I have also purposefully glossed over the 

specific processes that govern the learning of composite actions, synthetic items, and a schema’s 

overriding conditions. 

Implementation 

This section details an enhanced version of Drescher’s (1991) schema mechanism, which I use to 

implement LIDA’s Procedural Memory and Action Selection modules. In addition to supporting 

simulation-based cognition, this implementation solves several of LIDA’s open research 

problems. It implements instructionist procedural learning—that is, when and how new 

procedural knowledge is acquired.9 It implements behavior streams (i.e., “action plans”; see 

Ramamurthy et al., 2001), which have long existed in LIDA’s conceptual model, but lacked a 

concrete implementation. And it implements exploratory action selection10, which has yet to be 

considered in the LIDA literature. 

While Drescher’s (1991) schema mechanism was intended to be a complete cognitive 

system—supporting notions of procedural memory, declarative memory, action, and 

perception—the version proposed here only implements a small portion of LIDA; specifically, 

its Procedural Memory and Action Selection modules. As a result, some of the representations 

used by this implementation are managed by LIDA modules and processes that are external to it 

 

9 Recall that instructionist learning involves learning new representations, and selectionist learning involves 

reinforcing existing representations (e.g., their associated parameters; see Edelman, 1987). Instructionist procedural 

learning has never been computationally implemented in LIDA (e.g., in LIDA’s software framework; see Snaider et 

al., 2011), and its conceptual implementation is still underdeveloped. 

10 The exploration vs. exploitation problem, which is often discussed in the reinforcement learning literature (see 

Sutton & Barto, 2018) but has never been addressed in the LIDA literature. 
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and outside of its control. In other cases, the schema mechanism’s representations (e.g., synthetic 

items) and processes (e.g., conceptual learning) needed to be replaced by LIDA counterparts that 

are often quite different (both conceptually and functionally). 

As such, I begin this section by detailing how LIDA’s representations and processes can 

be reconciled with the schema mechanism. While this is largely a mapping exercise, some deep 

analyses and occasional compromises were needed. Table 1 lists the terminology that is roughly 

analogous between the two cognitive models. (It also indicates terms that have no clear 

correspondence.) 

Next, I detail my schema-mechanism-based implementation of LIDA’s Action Selection 

and Procedural Memory modules. This implementation is enhanced to support simulation-based 

cognition; specifically, the internal (covert) execution of behaviors and action-based mental 

simulations (i.e., motor cognition; see Chapter 2). These new capabilities are used in Chapter 7 

to implement volitional/intentional mental imagery in LIDA. 
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Table 1. Terminological comparison of Drescher’s Schema Mechanism and LIDA. Terms that appear in 

the same row are roughly analogous, while asterisks (*) indicate terms without corresponding concepts. 

LIDA SCHEMA MECHANISM 

schemes schemas 

base-level activation (of schemes) reliability (of schemas) 

* extended context / extended result (of schemas) 

amodal nodes items 

amodal nodes (learned) synthetic items 

node structures sets of items 

affective valence primitive value 

incentive salience delegated value 

* instrumental value 

behavior streams composite actions 

sensory representations * 

modal node / feeling node * 

templatized schemes * 

selectable behaviors applicable schemas 

internal actions * 
 

 

Reconciling LIDA with the Schema Mechanism 

Schemes and Schemas. Schemes are the primary data structures used in LIDA’s Procedural 

Memory module (see Chapter 4). Conceptually, they are similar to Drescher’s schemas since 

they were inspired by Drescher’s schemas11. Both are composed of a context, an action, and a 

result, and the meaning of these components is essentially the same. However, despite these 

surface similarities, their details often differ.  

Traditionally, LIDA’s schemes encode their contexts and results as node structures (see 

Chapter 4). Node structures are directed graphs containing one or more nodes, and zero or more 

 

11 The decision was made to name LIDA’s units of procedural knowledge “schemes” rather than “schemas” to avoid 

misleading readers into thinking that LIDA’s version of these data structures represented forms of non-procedural 

knowledge (such as forms of declarative and conceptual knowledge) that applied to Piaget’s more expansive 

formulation (S. Franklin, personal communication, July 29th, 2022). 
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directed links. Nodes represent concepts or instances of concepts, and links represent the 

relationships between them. Node structures are structured composite representations—i.e., their 

links carry additional semantic information that can influence their interpretation.  

In contrast, Drescher’s schemas represent their contexts and results as sets of item 

assertions. Item assertions indicate the presence or absence of environmental conditions, and 

each item assertion is logically independent of one another. Consequently, the contexts and 

results encoded in Drescher’s schemas are unstructured composite representations. 

Unfortunately, it is impossible to map structured representations to unstructured 

representations without losing information. Therefore, a pragmatic compromise is needed to 

reconcile LIDA’s node structures with the schema mechanism’s knowledge representations and 

learning processes. 

Individually, LIDA’s amodal nodes (see Chapter 5) are similar to the schema 

mechanism’s items. And their inclusion in, or omission from, a conscious broadcast can be used 

to determine an item’s current state (On or Off). This suggests that Procedural Memory’s 

contexts and results could be encoded as sets of node assertions that are activated based on the 

presence or absence of amodal nodes in a conscious broadcast. This, in turn, could support the 

instantiation of situationally relevant schemes.12 

 

12 While this differs from LIDA’s conceptual model (Franklin et al., 2016, sec. 5.6)—which assumes both the ability 

to structurally compare node structures and the ability to perform structure-based, instructionist procedural learning 

(i.e., adding or deleting structures)—similar simplifications have been employed in all of LIDA’s computational 

implementations. For example, LIDA’s Java Framework uses a node-based comparison to activate schemes (links 

are ignored). 
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Base-Level Activation and Reliability. LIDA’s schemes have base-level activations. Franklin 

et al. (2016, p. 119) described a scheme’s base-level activation as a measure of the likelihood 

that the execution of a scheme’s action will achieve its result if its context is satisfied. Based on 

this description, base-level activation is analogous to a schema’s reliability. Furthermore, the 

selectionist procedural learning algorithm that LIDA uses to update its schemes’ base-level 

activations is similar to the schema mechanism’s reliability update rule.13  

That said, base-level activations (LIDA) and reliabilities (schema mechanism) have 

subtly different mechanics due to LIDA’s comprehensive decay processes (see Franklin et al., 

2016, sec. 4.6). Since a scheme’s base-level activation decays (albeit slowly), it incorporates 

notions of frequency and recency that are not present in the classical schema mechanism’s 

reliabilities. As such, an otherwise reliable scheme (in LIDA) may be interpreted as being 

unreliable if its action is rarely executed, or it has been a while since its last execution. 

These differences do not negatively impact the schema mechanism’s operations. On the 

contrary, the additional functionality afforded by base-level activations can be seen as an 

enhancement over the original schema mechanism’s reliabilities. Therefore, base-level activation 

can be used as a “drop-in replacement” for the schema mechanism’s notion of reliability. 

Extended Contexts and Extended Results. Drescher’s schemas include extended contexts and 

extended results—data structures that tabulate item-level statistics in support of marginal 

attribution. They have no counterparts in LIDA. My implementation of Procedural Memory—in 

 

13 With important differences that will be discussed later in this chapter (see Procedural Memory, Selectionist 

Procedural Learning). 
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particular, instructionist procedural learning—requires that they be added as components of 

LIDA’s schemes. 

Amodal Nodes and Items. I previously mentioned that LIDA’s amodal nodes are similar to the 

schema mechanism’s items. (That statement is only partially true.) Representationally, amodal 

nodes and items serve the same function: they symbolize “things” in an agent’s environment 

(objects, entities, situations, events, etc.). However, amodal nodes (LIDA) and items (schema 

mechanism) are learned and processed in very different ways. 

 Recall that the schema mechanism has two types of items: primitive and synthetic. 

Primitive items are never learned. They are innate (built-in) concepts that are hard-wired to 

feature detectors and perceptual processes. Synthetic items, on the other hand, are learned 

concepts that rely on their host schemas for activation. They are detached from an agent’s 

sensory and perceptual processes (e.g., feature detectors and other concepts), and their meaning 

depends entirely on their host schemas. Thus, synthetic items are largely incompatible with 

LIDA’s current notions of (grounded) concept representation (see Chapter 5). 

 Reconciling the schema mechanism’s purely symbolic conceptual system with LIDA’s 

more capable, hybrid conceptual system (see Chapter 5) requires a fundamental change to the 

schema mechanism’s concept representations and representational learning processes. 

Specifically,  

(1) new primitive items must be supported, 

(2) synthetic items must be removed, and 

(3) concept learning must be externalized from the schema mechanism. 
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Supporting new primitive items would have been an impossibility for the classical schema 

mechanism. It lacked a way to experientially connect new items to an agent’s sensory and 

perceptual systems; therefore, it had no means of updating their internal states—i.e., turning 

them On or Off—based on an agent’s current environment. Fortunately, LIDA has solved this 

problem (see Chapter 5). 

Structure building codelets create new amodal nodes based on incoming sensory stimuli. 

These nodes are (referentially or non-referentially; see Chapter 3) connected to modal nodes in 

LIDA’s Perceptual Associative Memory module. Upon receiving a conscious broadcast 

containing never-before-seen amodal nodes, LIDA’s Procedural Memory module will expand its 

extended contexts and extended results to include a new slot for each such amodal node. 

Procedural Memory will then begin tabulating correlation statistics for these new nodes. 

Procedural memory also maintains a reference to each amodal node, which will be used to 

support instructionist procedural learning—i.e., context and result spin-offs. 

Sensory Representations, Modal Nodes, and Feeling Nodes. LIDA’s sensory representations, 

modal nodes, and feeling nodes function as non-symbolic representations. They support the 

grounding and activation of amodal nodes, and the learning of motivation-related parameters 

(i.e., incentive saliences) associated with those amodal nodes. The schema mechanism was not 

designed to work directly with non-symbolic representations, and, in general, sensory stimuli, 

sensory representations (e.g., modal probability distributions; see Chapter 5), and the modal 

nodes that encapsulate them should be excluded from LIDA’s schemes. 
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For similar reasons, feeling nodes (see Chapter 4) should be excluded from Procedural 

Memory’s schemes. Feeling nodes are not concept representations.14 They do not serve to 

identify environmental stimuli. They quantify an agent’s immediate hedonic responses—feelings 

of liking or disliking—elicited by those stimuli.15 Feeling nodes function like modal nodes, and, 

in many cases, they could be implemented as such. Separate perceptual/conceptual (amodal) 

nodes must be instantiated for an agent to recognize the external stimuli that provoked those 

feelings (e.g., sweet foods). And it is those conceptual representations that should be included in 

schemes (not feeling nodes).  

In summary: LIDA’s schemes’ contexts and results should be composed exclusively from 

amodal node assertions. Modal nodes, feeling nodes, sensory representations, and sensory 

stimuli should be limited to the data structures and processes that support other long- and short-

term memory modules (e.g., Perceptual Associative Memory and the Current Situational Model). 

Affective Valence and Primitive Value. LIDA’s motivational system is grounded in affective 

valences—parameters associated with LIDA’s feeling nodes (see Chapter 4). A feeling node’s 

total activation determines the magnitude of its affective valence, and its valence sign (positive 

or negative) determines whether that sensation is interpreted as pleasant or unpleasant. Affective 

valence represents an agent’s hedonic response to environmental stimuli—for example, the 

 

14 This is an important point. While feeling nodes are differentially activated in response to particular stimuli, such 

as sweets, they do not serve as percepts that identify the sweetness of substances. Instead, feeling nodes quantify an 

agent’s liking or disliking of that stimulus—that is, how the agent “feels” in response to sweet foods. A separate 

(perceptual) node must be instantiated for the agent to recognize that an external stimulus contained a “sweet 

substance.” It is this percept that should be included in schemes (not feeling nodes).  

15 The same experience can elicit different hedonic responses (e.g., the magnitude of those feelings may change), 

depending on the dynamics in Perceptual Associative Memory (PAM) and the situational contexts surrounding that 

event. 
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“liking” or “disliking” of bodily sensations (e.g., hunger and satiety) and events (e.g., eating 

sweet or bitter foods). However, feeling nodes do not identify the environmental stimuli that 

evoked those affective responses. Affective valence is merely elicited by them. Consequently, 

feeling nodes are typically co-activated with the grounded concept representations (see Chapter 

5) that identify those environmental stimuli. (This fact enables associative learning between 

concept representations and their co-occurring feelings in a conscious broadcast.) 

By comparison, the schema mechanism’s motivational system is grounded in primitive 

values—parameters associated with the schema mechanism’s primitive items (see Background: 

The Schema Mechanism). Primitive values represent the intrinsic desirability agents associate 

with their primitive items’ environmental referents. Unlike LIDA’s affective valences (which are 

attached to feeling nodes), primitive values are attached to representations that symbolize those 

environmental referents (rather than an agent’s affective responses to them).  

Consequently, primitive values can be included as components of contexts and results, 

and they can directly support goal-directed action selection. This differs from LIDA’s feelings 

nodes, which are excluded from contexts and results, and, as a result, can only indirectly support 

goal-directed action selection (via their role in incentive salience learning). 

These differences between affective valence (LIDA) and primitive values (schema 

mechanism) are largely irrelevant in the context of motivational learning. Both affective valence 

and primitive value function as built-in “reward signals” (cf. rewards in reinforcement learning; 

Sutton & Barto, 2018) that enable concept representations to acquire their derived motivational 

values—incentive saliences (LIDA) and delegated values (schema mechanism). That is, with 
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respect to motivational learning, LIDA’s affective valences are analogous to the schema 

mechanism’s primitive values, and they can replace them as motivational primitives. 

Incentive Salience and Delegated Value. Both LIDA’s and the schema mechanism’s 

conceptual representations support learned motivational values. These are called incentive 

salience and delegated value, respectively.  

Incentive salience (LIDA) quantifies the current value an agent places on an event 

occurring in the environment. It functions as a measure of the “wanting” or “dreading” 

associated with that event. Incentive salience combines an event’s historical desirability (base-

level incentive salience) with the realities of an agent’s current situation (current incentive 

salience). For example, while the thought of drinking water may generally have low-to-moderate 

desirability (base-level incentive salience), intense feelings of thirst can greatly increase water’s 

desirability (current incentive salience). 

By comparison, Drescher (1991) described an item’s delegated value as accruing to states 

that generally facilitate the acquisition of other things of value. That is, items acquire delegated 

value from the things they help to achieve rather than from any intrinsic (primitive) value that 

those items may possess. This measure of desirability (or utility) is not goal-specific; it is a 

general facet of that item with respect to all of the goals it facilitates.16 In a similar way, one 

might say that LIDA’s base-level incentive salience accrues to nodes that frequently lead to 

 

16 Drescher (1991) gave an example involving a young child and its parent to illustrate delegated value. The parent 

acquires delegated value for that child because having its parent in close proximity has general utility. Regardless of 

the child’s specific needs, its parent is there to facilitate their satisfaction. 
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events an agent “likes.”17 As such, base-level incentive salience and delegated value are 

analogous (though slightly different) concepts. The primary functional difference being that 

incentive salience is a context-sensitive measure of desirability, whereas delegated value is 

context-agnostic. 

While incentive salience (LIDA) and delegated value (schema mechanism) as subtly 

different conceptually and functionally, they are effectively identical with respect to their support 

of goal-directed action selection. Moreover, they are both derived from more basic motivational 

constructs (i.e., affective valence and primitive value). In short, without delving into other 

irrelevant computational differences here, LIDA’s incentive saliences can replace the schema 

mechanism’s delegated values without introducing computational or conceptual difficulties. 

A general enhancement (related to motivational learning) that I have included in my 

computational implementation is the use of temporal-difference (TD) learning with “replacing” 

eligibility traces (Singh & Sutton, 1996) to update base-level incentive salience.18 Specifically, 

whenever one or more feeling nodes are globally broadcast, Perceptually Associative Memory 

(PAM) updates the base-level incentive salience associated with all amodal nodes that 

contributed to that “feeling event” (McCall et al., 2020, sec. 5.2). The magnitude and direction of 

their update is based on (1) the combined affective valence over those broadcast feeling nodes 

and (2) how recently each amodal node was included in a conscious broadcast. This requires an 

 

17 This characterization is based, in part, on the fact that temporal-difference (TD) learning (Sutton & Barto, 2018, 

Chapter 6) is used to update the base-level incentive saliences associated with LIDA’s nodes (see McCall et al., 

2020, sec. 5.3). As such, the base-level incentive saliences associated with nodes for objects, entities, situations, 

events that contribute to acquiring those things an agent “likes” will also acquire some base-level incentive salience. 

18 McCall et al. listed eligibility traces as an “avenue of future research” (McCall et al., 2020, p. 62) with respect to 

LIDA’s motivational learning. This avenue has been explored as part of this work. 
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additional parameter (i.e., an eligibility trace) be added to each PAM node to track the recency of 

its broadcast. It also requires that PAM decays these values slightly following each global 

broadcast. 

Behavior Streams and Composite Actions. Ramamurthy et al. (2001, p. 7) defined a behavior 

stream (in LIDA) as a “partially ordered plan which guides [the] execution of behaviors… so as 

to effect the required transition from the initial state to the goal state.” Compare this with 

Drescher’s definition of a composite action as an action that is “defined with respect to some 

goal state; it is the action of bringing about that state…. The means are given by chains of 

schemas that lead to the goal state from various other states” (1991, p. 59). Based on these 

descriptions, behavior streams are functionally analogous to composite actions.  

Given that behavior streams have never been fully implemented in LIDA, an added 

benefit of this schema-mechanism-based implementation is that behavior streams would have a 

clear conceptual and computational implementation (both in terms of its representation, 

procedural learning, and action selection). This implementation may also pave the way for an 

implementation of LIDA’s automatized mode of action selection (based on composite actions), 

which is currently missing. 

Instrumental Value. Drescher (1991) described instrumental value as a transient, context-

sensitive, and goal-specific measure of an item’s utility. Items have instrumental value because 

they currently facilitate the acquisition of other things of value—with respect to a specifically 

foreseen chain of events (Drescher, 1991, p. 63). 
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Instrumental value could be assigned by LIDA’s Action Selection module to component 

behaviors in a behavior stream. Selectable behaviors that lead to a behavior stream’s goal state 

can be given instrumental value based on their proximity to that goal state. The amount of 

instrumental value those behaviors receive could be based, in part, on the desirability of the 

results that behavior stream’s composite action is intended to effect (i.e., within a containing 

scheme). 

Templatized Schemes. The LIDA conceptual model supports templatized schemes that contain 

one or more unbound variables in their contexts, actions, and results. For example, the 

templatized scheme IN_FRONT_OF(OBJECT=?)/ PICKUP(OBJECT=?)/ HOLDING(OBJECT=?) contains an 

unbound (unspecified) OBJECT variable. Templatized schemes represent a family of schemes from 

which specific instances can be created through the process of “instantiation.” During 

instantiation, Procedural Memory creates an instance of a templatized scheme with its variables 

bound to content in a conscious broadcast. In the example above, the templatized scheme’s 

OBJECT variable could be bound (during instantiation) to a COFFEE_MUG node in a global broadcast, 

resulting in the instantiated scheme (i.e., behavior) IN_FRONT_OF(OBJECT=COFFEE_MUG)/ 

PICKUP(OBJECT=COFFEE_MUG)/ HOLDING(OBJECT=COFFEE_MUG). 

Templatized schemes are powerful additions to the LIDA conceptual model that have no 

direct counterparts in Drescher’s schema mechanism. Unfortunately, LIDA’s computational 

implementation of templatized schemes and their instantiation operation is still poorly 

understood. While the learning of templatized schemes will likely require the development of a 

generalization process that learns templates from spin-offs, there is no reason to suspect that such 

a generalization process will be incompatible with the implementation outlined here. To the 
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contrary, it is likely that this generalization process could be largely agnostic of the processes 

responsible for learning individual, non-templatized, schemes (e.g., marginal attribution). And it 

will almost certainly depend on processes external to Procedural Memory—for example, concept 

learning and conceptual generalization. 

Procedural Memory 

This section details my schema-mechanism-based implementation of LIDA’s Procedural 

Memory module. It combines details from the classical schema mechanism with the 

modifications and enhancements discussed in the previous section (see Reconciling LIDA with 

the Schema Mechanism). This implementation preserves many aspects of Drescher’s schema 

mechanism without modification; therefore, readers may wish to review the background section 

on Drescher’s schema mechanism (provided earlier in this chapter). 

Basic Components. Schemes are Procedural Memory’s primary data structure. They have three 

main components: a context, an action, and a result. Traditionally, LIDA’s contexts and results 

were encoded as node structures (see Chapter 4); however, this implementation encodes them as 

sets of node assertions. A node assertion stipulates the presence or absence of an amodal node in 

LIDA’s global broadcast.  

In addition to contexts, actions, and results, schemes also have base-level activations, 

extended contexts, and extended results. Extended contexts and extended results support 

instructionist procedural learning via marginal attribution. 
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Instantiation. A scheme’s context can contain zero or more node assertions. For each global 

broadcast Procedural Memory receives, it compares the contents19 of that broadcast against the 

node assertions in its schemes’ contexts. A scheme’s context is said to be satisfied when its node 

assertions are satisfied.20 Such schemes are situationally relevant, and they are typically 

instantiated as behaviors. Procedural Memory then sends these behaviors to LIDA’s Action 

Selection module to compete for selection and execution. 

Primitive and Composite Actions. A scheme’s action can be a primitive (built-in) action, or a 

composite (learned) action implemented by a behavior stream. Primitive actions are typically 

hard-wired to motor plans in LIDA’s Sensory Motor Memory module. Composite actions are 

created when Procedural Memory identifies chains of schemes that lead to specific goal states. A 

collection of instantiated chains of schemes is referred to as a behavior stream.  

Procedural Memory creates a new bare scheme (action-only scheme) for each learned 

composite action. Spin-off schemes can then be created containing those composite actions (via 

instructionist procedural learning). 

Instructionist Procedural Learning. Procedural Memory must be initialized with a set of bare 

schemes (action-only schemes) that encode an agent’s built-in actions. Bare schemes are 

 

19 This implementation of Procedural Memory ignores modal nodes, feeling nodes, sensory representations, and 

sensory content in the global broadcast. Schemes’ contexts and results are only composed from amodal node 

assertions, and schemes are only activated/instantiated by the presence or absence of amodal nodes (in the global 

broadcast). 

20 This differs from LIDA’s conceptual implementation of Procedural Memory, which uses structural matching to 

activate its schemes. Schemes are given current activation in proportion to the degree of semantic similarity between 

the contents of a global broadcast and a scheme’s context. A scheme’s result can also factor into this comparison 

(e.g., if the conscious broadcast contains an “option” to act). 
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typically hard-wired to built-in motor plans (in LIDA’s Sensory Motor System) that fulfill the 

execution of those primitive actions. From this set of bare schemes, instructionist procedural 

learning (based on marginal attribution) can begin to construct result spin-off schemes based on 

the statistically significant consequences of an agent’s actions. These spin-off schemes can then 

be used to construct context spin-offs—based on the incremental addition of amodal nodes that 

are statistically correlated with the successful execution of those schemes. This process of 

incremental refinement continues, creating new context spin-offs from previous schemes. 

Schemes with compound contexts (i.e., contexts containing multiple node assertions) enable the 

learning of result spin-offs containing those compound contexts, thus encouraging the 

identification of chains of schemes (see Background: The Schema Mechanism, Procedural 

Learning). Unlike context spin-offs, marginal attribution does not create result spin-offs 

incrementally.21 

New amodal nodes can be learned using the grounded perceptual/conceptual learning 

mechanisms outlined in Chapter 5. These nodes function like learnable primitive items.22 

Whenever Procedural Memory encounters previously unseen amodal nodes in a global 

(conscious) broadcast, it will expand its extended contexts and extended results to include a new 

slot for each such amodal node. Procedural Memory will then begin tabulating correlation 

statistics for these new nodes. 

 

21 This is a computational optimization (see Drescher, 1991, pp. 78–79). 

22 The synthetic items used by the classical schema mechanism to support concept learning are not used in this 

implementation. 
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Selectionist Procedural Learning. Procedural Memory updates the base-level activations 

associated with its schemes following the execution of selected behaviors. In the traditional 

implementation of Procedural Memory, only a single scheme is updated per executed action—

specifically, the scheme corresponding to a selected behavior. If the consequences of that 

selected behavior’s execution match the behavior’s predicted result, then its corresponding 

scheme’s base-level activation is increased. Procedural Memory makes this determination based 

on the contents of subsequent conscious broadcasts. 

A more efficient way to perform selectionist procedural learning is to update all schemes 

that (1) share the same action as the selected behavior and (2) were instantiated as behaviors 

during the same cognitive cycle (as the selected behavior). Since a scheme is only instantiated 

when its context is satisfied23, its results can be compared to subsequent conscious broadcasts as 

if it were the selected behavior. This enhancement was inspired by Drescher’s schema 

mechanism24. 

Action Selection 

The standard implementation of LIDA’s Action Selection module (see Negatu & Franklin, 2002) 

has been described as an enhanced version of Maes’s (1989) behavior net25. LIDA’s behavior net 

selects at most one behavior per cognitive cycle based on the activation/inhibition-style 

 

23 This is a property of the current implementation that does not hold in the LIDA conceptual model. (The LIDA 

conceptual model supports the instantiation of schemes based on a partial context match.)  

24 Instantiated behaviors that share the same action as the selected behavior are analogous to what Drescher referred 

to as “implicitly activated schemas” (Drescher, 1991, p. 54). The classical schema mechanism updated the 

reliabilities of all such schemas following action execution. 

25 Maes’s behavior network is alternately referred to as the Agent Network Architecture (ANA; Maes, 1991).  
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dynamics between its behaviors. Activation spreads between behaviors over 

“successor/predecessor” links, and activation can be inhibited via “conflictor links” (see Maes, 

1989). This behavior net-based implementation of Action Selection was also present in LIDA’s 

predecessor IDA (Intelligent Distribution Agent, see Franklin, 2003). 

The schema-mechanism-based Action Selection implementation presented here is an 

alternative to the standard implementation, which is also consistent with LIDA’s conceptual 

model and its commitments. In particular, the proposed Action Selection implementation 

chooses at most one behavior per cognitive cycle from a set of relevant behaviors (instantiated 

schemes); it is compatible with all four modes of LIDA’s Action Selection; and it uses similar 

selection criteria, including those based on the reliability (base-level activation), desirability 

(total incentive salience of expected results), applicability (context satisfaction), and the 

consequences (e.g., instrumental value) of those behaviors. 

I made the decision to use a schema-mechanism-based implementation of Action 

Selection here because instructionist procedural learning is extremely difficult to reconcile with 

Maes’s behavior net. IDA (LIDA’s predecessor) did not support learning; therefore, it was easier 

to coordinate the operations of Procedural Memory and Action Selection, even though they were 

not expressly designed to work together. While it may be possible to implement a procedural 

learning algorithm that works with Maes’s behavior net, it will require a Herculean effort that 

merits its own dissertation. That is well beyond the scope of this work, moreover, the benefits of 

doing so are unclear. 

As a final note, there are several additional benefits to the implementation proposed here 

beyond its direct compatibility with the instructionist learning of schemes. First, the proposed 
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implementation introduces psychologically plausible exploratory criteria into the action selection 

process based on hysteresis and habituation (see Drescher, 1991, sec. 3.4.2). This trade-off 

between exploration and goal-directed behavior has never been explored in the LIDA literature. 

Second, the proposed schema-mechanism-based implementation suggests a possible 

implementation for LIDA’s automatized mode of action selection, which has never been 

implemented26. Finally, the proposed implementation is highly extensible, easily supporting new 

selection criteria or the weighting of existing criteria according to their relative selection 

importance.  

Internal and External Behaviors. The LIDA conceptual model includes both external and 

internal actions27. More generally, I propose that LIDA’s Action Selection module should 

support the selection of behaviors for external or internal execution. The external execution of 

behaviors is fulfilled by LIDA’s Sensory Motor System (see Chapter 4), which typically results 

in changes to an agent’s (external) environment. Whereas a behavior’s internal execution is 

carried out by structure building codelets and usually results in changes within LIDA’s Current 

Situational Model (i.e., an agent’s internal or mental environment).  

 

26 While out of the scope of this thesis, a computational implementation of automatized action selection could be 

based on the schema mechanism’s composite actions, which are directly analogous to behavior streams. The chains 

of schemes within a composite action’s controller could be selectively reinforced and decayed based on their 

execution history and the reliability of the component schemes. If a single chain of schemes within a given 

composite action’s controller becomes the dominant chain (where all other chains have decayed away), then it 

becomes an automatized action. The selection of component schemes within such an automatized action could 

proceed in exactly the same way as the selection of components of a pending (composite action) scheme in the 

current implementation. 

27 Historically, LIDA’s internal actions have been primarily used to facilitate its volitional mode of action selection, 

which is based on William James’s ideomotor theory. Specifically, an internal action has been used to start a timer 

in LIDA’s Current Situational Model following the selection of a deliberation behavior. This work greatly expands 

on that previous use case. In particular, I argue that most behaviors can be internally executed. And that the 

consequence of their internal executions is the mental simulation of those behaviors’ expected results in LIDA’s 

Current Situational Model. 
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There are considerable parallels between LIDA’s action phase and Jeannerod’s (1994, 

1995, 2001) theory of motor cognition (see Chapter 2, Motor Cognition). In particular, when a 

LIDA agent’s behaviors are selected for external execution, they function like Jeannerod’s 

“overt” actions, and those selected for internal execution function like Jeannerod’s “covert” 

actions. Furthermore, the “covert stage” representations hypothesized by Jeannerod (2001) are 

analogous to LIDA’s instantiated schemes, which are the representational precursors of all of 

LIDA’s selected behaviors. Finally, LIDA’s internally executed behaviors (cf. Jeannerod’s 

covert actions) support its implementation of action-based mental imagery (see Chapter 7), 

which is analogous to Jeannerod’s hypothesis that covert actions enable motor imagery. Figure 

19 shows these parallels between LIDA and Jeannerod’s theory of motor cognition in the context 

of LIDA’s cognitive cycle. 

Drescher’s schema mechanism does not include the equivalent of internal actions or 

mental simulations; therefore, an enhancement is needed to support this functionality in the 

schema-mechanism-based implementation described in this chapter. Specifically, whenever 

LIDA’s Action Selection module chooses a behavior (instantiated scheme) for execution, it must 

also decide whether to execute that behavior internally or externally. 
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Figure 19. Jeannerod’s covert and overt action stages in LIDA. External (overt) behaviors are executed 

via LIDA’s Sensory Motor System (i.e., Sensory Motor Memory and Motor Plan Execution). Internal 

(covert) behaviors are executed by structure building codelets (e.g., simulator SBCs), resulting in action-

based mental simulations. All overtly executed behaviors have an initial covert stage characterized by the 

instantiation of a set of schemes. 

In some cases, this decision is trivial since not all behaviors are capable of being executed 

both internally and externally. For example, its typically impossible to internally execute (i.e., 

mentally simulate) behaviors based on bare (action-only) schemes because those behaviors have 

no associated expected results (i.e., they make no predictions). In other cases, an agent’s 

situational context may dictate that a behavior must be executed internally. For example, when 

an agent is deliberating about a distal intention (i.e., options for achieving goals for which 

external “overt” behavior cannot be immediately executed), it may engage in a form of “mental 

time travel” that precludes the external execution of those behaviors. An example of this occurs 

when one is deliberating on what route to take when driving to work. One does not physically 

take those potential routes to make this decision, but rather, mentally traverses those path options 
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and weighs the pros and cons of each. Similarly, agents may mentally manipulate objects that are 

not physically present in their environment (e.g., if an agent were playing a game of blindfolded 

chess). In these cases, agents engage in a form of “mental telekinesis” that requires internally 

executed behaviors.  

Nevertheless, in many cases, behaviors can be executed either internally or externally, 

and LIDA’s Action Selection module must determine which is more appropriate or advantageous 

based on an agent’s current situation and the expected consequences of those actions. Numerous 

factors can influence this decision, including (but not limited to) the time sensitivity of a 

situation, perceived situational risk, perceived situational uncertainty, and the estimated 

reliability of an agent’s internal model (with respect the agent’s current situation). 

 Naturalistic environments often place real-time demands on agents that preclude 

“offline” activities such as mental simulation. That is, time-critical circumstances (e.g., 

predator/prey interactions) may force agents to immediately execute “overt” re-active behaviors 

(lest they be eaten or starve). In LIDA, the most extreme example of this would be an alarm 

situation (see Chapter 4, Modes of Action Selection), which would necessitate that a reactive 

behavior is immediately selected for external execution, even if that behavior could have been 

executed internally. In other words, alarms are generally incompatible with the selection of 

behaviors for internal execution. 

While it is certainly true that time pressure can be a powerful motivator for external 

“overt” behavior, it is also true that, given the opportunity, natural agents (e.g., humans) often 

“think about” their actions before externally executing them. They may assess their situations 

before acting, consciously weighing the pros and cons of potential actions, and develop action 
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plans that extend into places and times that are not externally perceivable. Many of these 

activities require internally executed behaviors (e.g., action-based mental simulations). 

Therefore, while it is clearly the case that time sensitivity influences whether Action Selection 

chooses a behavior for external or internal execution, it is not the only factor. For instance, it is 

typically ill-advised to rush to action in risky situations when there is time for additional 

contemplation. Similarly, if an agent is uncertain of their current situation, additional speculation 

and (internal or external) exploratory actions may be warranted. And, in general, any time an 

agent enters into a deliberative or volitional mode of action selection, internally executed 

behaviors, such as action-based mental simulations, are likely to occur. 

As a final note, it is often the case that agents may develop, or have innate or built-in, 

proclivities that bias their action selection towards internal or external execution. More impulsive 

or reactive agents may favor externally executed behaviors, while more introspective, and risk-

averse, deliberative agents may tend towards additional, preliminary contemplation (i.e., action-

based mental simulation via internally executed actions).  

Evaluation 

A software implementation28 was developed based on the enhanced, LIDA-compatible, version 

of Drescher’s schema mechanism described in this chapter. In order to evaluate this 

implementation, a modified 𝑘-armed bandit environment (explained below) was implemented 

along with a set of software agent that operated within that environment. An overview of this 

 

28 https://github.com/skugele/schema-mechanism. 

https://github.com/skugele/schema-mechanism
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agent, its environment, and an analysis of the generated experimental results appear in the sub-

sections that follow. 

Environment 

A standard 𝑘-armed bandit environment (see Sutton & Barto, 2018, sec. 2.1) contains 𝑘 “levers” 

that an agent can pull. Each lever has a fixed probability of winning that an agent must infer by 

observing the environmental consequences of pulling those levers. If the agent pulls a lever and 

wins, it receives some payout (e.g., a monetary reward). If the agent pulls a lever and loses, it 

receives nothing. Agents operating in this environment are typically given a fixed budget (e.g., a 

limited number of lever pulls), and an agent’s objective is to maximize its profit by concentrating 

its actions (pulls) on levers with the highest expected value (cumulative payout). 
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Figure 20. State-transition diagram for a modified, k-armed bandit environment. In this case, 𝑘 = 2. 

White nodes depict environmental states. Black nodes depict actions. Links going from white (state) 

nodes into black (action) nodes indicate that an action is taken from that state. Links leaving action 

nodes are labelled with the probabilities of transitioning to various environmental states if the agent 

were to execute those actions from those states. 

One shortcoming of this standard 𝑘-armed bandit environment is that the relationship 

between an agent’s actions and their consequences are too simplistic to adequately test many 

fundamental agential capabilities. For example, each action (lever pull) is completely 

independent of the ones that preceded it, and only a single action is required to achieve 

something of value. More realistic environments typically require a series of coordinated actions 

to acquire something of value, and executing the wrong actions—or the right actions at the 

wrong time—can undermine an agent’s progress towards its goals. In particular, the standard 
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𝑘-armed bandit environment does not test whether an agent can assign “partial credit” to actions 

that facilitate or enable the acquisition of something of value. This additional environmental 

challenge is often referred to as a credit assignment problem (see Minsky, 1961). 

To address this shortcoming, a slightly more complicated 𝑘-armed bandit environment 

was developed. In this environment, an agent must first “sit” at a machine and “deposit” money 

into it before it can “play” that machine (i.e., pull its lever). If after playing a machine, an agent 

wishes to “play” the same machine again, it must once again “deposit” money into that machine 

before pulling its lever. If, on the other hand, the agent wishes to “play” a different machine, it 

must first “stand,” and then “sit” at the new machine. An agent may choose to “stand” at any 

time; however, it will lose any money it has deposited if it stands up before “playing” the 

machine containing the deposited money. Figure 20 depicts this modified 𝑘-armed bandit 

environment (with 𝑘 = 2) as a state transition diagram.  

As a final note, the 𝑘-armed bandit environment used here for evaluation purposes was 

configured so that the “deposit” action cost an agent 1 credit29, while “winning” rewarded an 

agent with 2 credits. 

Agent 

A set of agents was implemented based on the modified schema mechanism described in this 

chapter. These implementations were focused primarily on Procedural Memory and Action 

 

29 This cost was only incurred when the agent executed the “deposit” action while sitting at a machine that did not 

already contain deposited money (that is, when executed in states 𝑀𝑖, states 𝑀𝑖 , 𝑊, states 𝑀𝑖 , 𝐿). 
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Selection modules; however, a simple implementation of Perceptual Associative Memory was 

also required. 

Each agent was initialized with 𝑘 + 3 bare schemes, where 𝑘 was the number of 

machines in a 𝑘-armed bandit environment. This included bare schemes for [/stand/], 

[/play/], [/deposit/], as well as 𝑘 additional bare schemes for sitting at each machine—

[/sit(𝑀𝑖)/], for 1 ≤ 𝑖 ≤ 𝑘. Three feeling nodes were used to specify an agent’s built-in 

motivations associated with winning, losing, and depositing money in a machine. The event of 

“winning” produced a +1.0 affective valence, the event of “losing” produced a −1.0 affective 

valence, and the event of “depositing money” produced a −0.5 affective valence. 

An amodal node was generated for each state element whenever it occurred in the 

environment. For example, if an agent were in the state 𝑀1, 𝑊, this would generate two amodal 

nodes—one activated by 𝑀1 (the event of being seated at the first machine) and another by 𝑊 

(the event of having just won). Note that the composite event of 𝑀1, 𝑊 would also correspond to 

its own amodal node.  

All nodes had the potential to accrue positive or negative base-level incentive salience 

based on their temporal proximity to states that generated affective valence. Base-level incentive 

salience updates were calculated using a temporal difference (TD) learning algorithm that used 

“replacing” eligibility traces (see Singh & Sutton, 1996). Current incentive salience and 

incentive salience links were not implemented. 
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Action Selection was based on a weighted30 combination of goal-directed and 

exploratory evaluation criteria. Goal-directed evaluation criteria included: (1) the incentive 

saliences of schemes’ results (i.e., their desirability), (2) the schemes’ base-level activations (i.e., 

their reliability), (3) the instrumental values of schemes’ results (i.e., whether schemes help 

achieve the agent’s currently selected goal state), and (4) “pending focus” (i.e., a selected 

behavior stream’s—pending scheme’s—component schemes are given additional selection 

importance). Exploratory criteria included: (1) habituation (i.e., recently or frequently selected 

schemes have decreased importance; see Drescher, 1991, sec. 3.4.2), and (2) “temperature-

based” randomized exploration31. 

Results 

Two sets of experiments were conducted to test the implementation’s capabilities. Both used the 

modified 𝑘-armed bandit environment described earlier in this section, but with different 

configurations. The agents’ runtime parameters (see Table 7 in the Appendix) were tuned using 

Optuna (Akiba et al., 2019) based on an eight machine (𝑘 = 8) environment with randomly 

generated win probabilities. These parameter values remained fixed throughout all evaluation 

trials (regardless of 𝑘).   

 

30 The weights associated with these goal-directed and exploratory criteria varied cyclically, so that an agent’s 

actions oscillated between being more goal-directed or more exploratory (see Drescher, 1991, sec. 3.4.2). 

31 A “temperature” parameter (0.0 ≤ 𝜖 ≤ 1.0) was used to control the probability that Action Selection would 

randomly choose a single scheme to receive a bonus to its selection importance during a selection event. Initially, 𝜖 

was set close to 1.0 to encourage exploration. However, its value was decreased over time, reducing the degree of 

random exploration. This idea is similar to the temperature used in simulated annealing (Kirkpatrick et al., 1983) or 

the epsilon parameter used in reinforcement learning’s epsilon-greedy policies (see Sutton & Barto, 2018, sec. 5.4).  
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Experiment 1. In the first set of experiments, modified 𝑘-armed bandit environments were 

configured where the range (min = 0.0; max = 1.0) and average (0.5) over their machine’s win 

probabilities remained the same, but the number of machines varied (𝑘 = {2, 4, 8, 16, 32, 64}). 

Note that the differences between individual machine’s win probabilities decreased as the 

number of machines (𝑘) increased (see Table 2).  

This set of experiments was intended to test the implementation’s ability to prefer the 

machines with the highest win probabilities. Agents were given a fixed budget of 25,000 actions; 

30 trials were executed for each environment configuration, using different random seeds. The 

results are summarized in Figure 21. 

Table 2. Percentage of trials in which agents focused on the best machine (experiment 1). The 

approximate difference between best and 2nd best machines per 𝑘 is also shown32. 

𝒌 Trials Focused on Best Approximate Difference in Win Probabilities 

2 100.00% 1.00 

4 96.66% 0.25 

8 63.33% 0.08 

16 53.33% 0.04 

32 23.33% 0.02 

64 16.66% 0.01 
 

 

 

 

32 For 𝑘 > 4, the differences in the win probabilities between the best two machines and worst two machines were 

half the difference between other consecutive machines. For example, the complete win probabilities for 𝑘 = 8 were 

[0.0, 0.083, 0.25, 0.417, 0.583, 0.75, 0.917, 1.0]. The best (and worst) two machines differed in their probabilities by 

0.083, while other consecutive probabilities differed by 0.167.  
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Figure 21. Boxplot of experiment 1’s results. The 𝑘-armed bandit environment was configured with a 

variable number of machines, 𝑘 = {2, 4, 8, 16, 32, 64}, but the same min (0.0), max (1.0), and average 

(0.5) machine win probabilities. 30 trials were run for each value of 𝑘. Over all experiments (i.e., for all 𝑘 

values), agents achieved a median win percentage of approximately 80%. The optimal win percentage 

was 100% if agents knew the best machine to play in advance. The agents’ median win percentage per 

trial is shown using a solid, orange horizontal line. A gray, dashed, horizontal line shows the expected 

average win percentage given completely random machine choices. 

Agents achieved a median win percentage—over all trials regardless of 𝑘—of around 

80%. A win percentage of 50% would have been at chance and 100% would have been 

optimal—though this is unattainable in practice. In the majority of trials with 𝑘 ≤ 16, agents 

preferred the best machine over other machines; however, this preference dropped considerably 

as the number of machines increased and the differences in probabilities decreased (see Table 2). 

Doubling the agents’ budgets to 50,000 only slightly increased the percentage of trials in which 

agents selected the best machine most often (from 23.33% to 31.25% for 𝑘 = 32). Therefore, the 
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limiting factor may be the relative closeness in the expected payouts between the best machines 

as 𝑘 increases (differing by less than 2% for 𝑘 = 32). 

 

Figure 22. Plots of the first 1500 steps from a single 𝑘-armed bandit trial (𝑘 = 8). This trial was chosen 

because its final cumulative winnings (after 25000 steps) was close to the median value from the 30 

earlier k-armed bandit trials (where 𝑘 = 8) from experiment 1. The first sub-plot shows the agent’s 

cumulative winnings. (Recall that the agent must spend 1 credit to play a machine, and it is awarded 2 

credits on a winning pull). The second sub-plot shows the number of known (learned + innate) schemes. 

The final sub-plot shows Action Selection’s goal-pursuit weight as a function of time. (Recall that the 

balance between goal-pursuit and exploration is cyclically updated.) 

Figure 22 shows the first 1500 steps of a “typical” trial when 𝑘 = 8. This trial was 

chosen because its final cumulative winnings (after 25,000 steps) were closest to the median 

value. Sub-plots show the agent’s cumulative winnings, total number of schemes (built-in and 

learned), and the goal-pursuit weight33 as functions of time. Notice that starting at time step 1459 

 

33 The weight given to exploratory scheme selection criteria is 1.0 minus the goal-pursuit weight. 
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this agent began to single-mindedly prefer the best machine—playing it almost exclusively. This 

resulted in an overall winning trend that continued for the remainder of the trial (with small 

oscillations when the weight of the exploratory selection criteria strongly dominated that of the 

goal-directed selection criteria). 

After 25,000 steps, this agent had learned 69 schemes in addition to its 11 built-in 

schemes (see Table 8 in the Appendix). The majority of these were learned by step 1500. The 

amodal nodes learned and their base-level incentive salience values are shown in Table 9 of the 

Appendix. The most important thing to note is that the numerical ordering of the base-level 

incentive saliences associated with the events of sitting at a machine (𝑀𝑖) and those for sitting at 

a machine with money deposited in that machine (𝑀𝑖 , 𝑃) are correctly ordered based on the win 

probabilities of those machines. That is, the agent was capable of correctly evaluating the 

“desirability” of sitting at, and depositing money in, those machines. 

Experiment 2. In a second set of experiments, modified 𝑘-armed bandit environments were once 

again configured with a variable number of machines, ranging from 2 to 64 (𝑘 =

{2, 4, 8, 16, 32, 64}); however, this time only a single machine was given a high win probability 

(0.9). All other machines had a low win probability (0.1). As a result, the average probability of 

winning decreased as 𝑘 increased. This set of experiments was intended to test an agent’s ability 

to find and exploit the environment’s single “good” machine when the payouts became sparser. 

As in experiment 1, agents were given a fixed budget of 25,000 actions, and 30 trials were 

executed using different random seeds for each environment configuration.  



 

183 

 

 

Figure 23. Boxplot of experiment 2’s results. The 𝑘-armed bandit environment was configured with a 

variable number of machines, 𝑘 = {2, 4, 8, 16, 32, 64}. Only a single machine had a high probability 

of winning (0.9). All other machines had a low probability of winning (0.1). As a result, the chance 

win percentage decreased with the number of machines: 50% (𝑘 = 2); 30% (𝑘 = 4); 20% (𝑘 = 8); 

15% (𝑘 = 16); 12.5% (𝑘 = 32); 11.25% (𝑘 = 64). 30 trials were conducted for each value of 𝑘. 

Over all experiments (i.e., for all 𝑘 values), the optimal win percentage was 90%; however, achieving 

this would require that agents knew the best machine to play in advance. The median win percentage 

per trial is shown using a solid, orange horizontal line. 

The results of experiment 2 are summarized in Figure 23. A win percentage of 90% 

would have been optimal. The chance of randomly winning decreased with increasing 𝑘: 50% 

(𝑘 = 2); 30% (𝑘 = 4); 20% (𝑘 = 8); 15% (𝑘 = 16); 12.5% (𝑘 = 32); 11.25% (𝑘 = 64).  

Figure 23 shows that agents were generally able to identify and exploit the single high 

probability machine when 𝑘 ≤ 32; however, variability in the trials increased dramatically for 

𝑘 > 16, and the median win probability for the 𝑘 = 64 trials was at chance. Doubling the 



 

184 

 

agents’ budgets to 50,000 did little to correct this issue. This suggests that the agent’s 

exploratory selection criteria need to be adjusted for larger, sparser environments. In particular, 

the 𝜖 temperature-based exploratory criteria reached its minimum value at step 36,887—

effectively eliminating most exploration—since the influence of the habituation-based criterion 

appears to be too weak to promote significant exploratory actions in its current form. 

Discussion 

In this chapter, I described a new conceptual and computational implementation of LIDA’s 

Procedural Memory and Action Selection modules. This implementation is based on a heavily 

modified and enhanced version of Drescher’s schema mechanism. The experimental results 

suggest that, starting from only a modicum of knowledge (i.e., primitive actions and built-in 

feeling nodes), this implementation can construct an internal model of its environmental 

interactions. Moreover, it can use that internal model to select goal-directed or exploratory 

behaviors. While these results have only been demonstrated on a simple stochastic environment, 

the results are promising. 

This implementation significantly advances LIDA’s instructionist procedural learning, 

provides a computational mechanism for behavior streams, suggests an implementation for 

automatized action selection, expands the use cases for internal actions to include action-based 

mental simulations, and proposes an enhancement to LIDA’s Action Selection module that 

controls the selection of behaviors for external or internal execution. Furthermore, an explicit 

connection was made between Jeannerod’s theory of motor cognition and LIDA’s action phase. 

An additional benefit of this implementation is that its operations are transparent and easily 

interpreted. For example, it is straightforward to ascertain why an agent selected a particular 
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behavior, from the conscious content that resulted in the instantiation of a set of selectable 

behaviors, to the selection importance assigned to each.  

The internal model learned by this implementation is the foundation of action-based 

mental simulation in LIDA. Furthermore, I contend that the selection of behaviors for internal 

execution is the backbone of simulation-based cognition—working in conjunction with 

multimodal perception (see Chapter 5) to implement imagistic, epistemic processes (see Chapter 

7).
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Chapter 7 

Mental Imagery and Simulation-Based Epistemic Processes 

perceptual experience falls at varying positions along a continuum between the 

extremes of pure stimulus and pure imagery… imagery is not simply a thing 

apart, an internal representation distinct from the scene before our eyes, but rather 

it is part-and-parcel of perception. (Albright, 2012, p. 235) 

This chapter explores mental imagery and its implementation in LIDA. Using the foundations 

established in Chapters 5 and 6, I implement the four fundamental imagistic operations 

underpinning simulation-based cognition—image generation, image transformation, image 

inspection, and image maintenance (see Kosslyn, 1994; Kosslyn et al., 2006). Generative 

processes produce mental simulations; transformative processes alter the properties and parts of 

those simulations; introspective processes selectively orient attention towards situationally 

relevant properties and parts; and maintenance processes ensure that mental simulations persist 

long enough to be manipulated and perceived. Taken together, these operations—combined with 

multi-modal perception—provide a mechanism for generating new knowledge without rule-

based symbolic manipulation.1 

The chapter begins with background on mental imagery: its nature, its properties, and the 

four fundamental imagistic operations that are believed to support it. Following this, I describe 

 

1 Recall from Chapter 2 that classical symbolic cognitive theories hypothesize that natural cognitive systems employ 

epistemic processes that are primarily based on symbolic manipulations (e.g., see “the physical symbol system 

hypothesis,” Newell & Simon, 1976). In contrast, embodied, simulation-based theories of cognition contend that 

natural systems internally construct new knowledge through the coordinated activity of imagistic and perceptual 

processes. 
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Kosslyn’s “proto-model” of visual imagery and perception (Kosslyn, 1994), which inspired 

portions of the LIDA-based implementations described here. Next, I detail my LIDA-based 

conceptual implementation of mental imagery and the design and partial computational 

implementation of a simulation-based LIDA agent. The chapter concludes with a comparison of 

my implementation to those that appear in several other cognitive architectures, as well as a brief 

discussion. 

Mental Imagery 

Most humans report the ability to have sensory-like experiences in the absence of external 

stimuli. This has led to expressions such as “seeing with your mind’s eye,” “having a song stuck 

in your head,” and “listening to your inner voice.” Collectively, these phenomena are referred to 

in the literature as mental images (i.e., consciously accessed mental simulations). Indeed, many 

humans are capable of using mental imagery to create complex, multimodal, virtual scenes, and 

they do so both spontaneously (e.g., when daydreaming), or intentionally to facilitate a variety of 

cognitive processes (e.g., planning and mental rehearsal). 

In its most basic form, mental imagery enables the reconstruction of prior experiences in 

a way that conveys sensory-like qualities on those remembrances. However, mental imagery’s 

utility extends well beyond the simple reconstruction of past experiences. Mental images often 

function as experience-based predictions (see Moulton & Kosslyn, 2009) that allow us to 

anticipate what we might encounter, or imagine what we might have encountered if 

circumstances had been different (i.e., counterfactuals). These mental simulations are “epistemic 

devices” (Fisher, 2006) that generate (or make available) new knowledge. Moulton and Kosslyn 

(2009) stated, 
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[mental imagery] allows us to simulate reality at will, and, because of this, allows us to 

predict what we would experience in a specific situation or after we perform a specific 

action. This ability not only allows us to reconstruct the past, but also to anticipate what 

may occur in the near and distant future. (p. 1273) 

In other words, mental imagery not only supports the recreation of prior experiences, but the 

productive elaboration, transformation, and recombination of those experiences as a way of 

understanding the world. This ability to generate and manipulate imagery-based simulations may 

underlie many higher-order cognitive processes such as problem solving (Clement, 1994; Y. Qin 

& Simon, 1992; Shaver et al., 1974), mental rehearsal (Driskell et al., 1994; Keller, 2012), and 

language comprehension (Bergen et al., 2007; Bergen & Chang, 2005; Zwaan, 2004, 2014; 

Zwaan & Taylor, 2006). Moreover, these conscious mental images are indicative of a more 

ubiquitous cognitive phenomena—mental simulation—that may directly support the majority of 

our cognitive processes, both overtly and covertly (Barsalou, 1999, 2016b; Grush, 2004; 

Hesslow, 2002, 2012). 

Properties of Mental Images 

Mental images can be described as having the following basic properties: 

• consciously accessible 

• analogous to stimuli from sensory modalities 

• interacts with externally sourced (i.e., real) sensory representations 

• rapid decay 

Each of these properties is briefly discussed in the subsections that follow. 
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Conscious Accessibility. By definition, mental images are consciously accessible, and they are 

consciously experienced. This is not to say that preconscious precursors of mental images do not 

exist or that those precursors do not serve a functional role in cognitive systems. In fact, a major 

goal of this work is to elaborate on the preconscious precursors of mental imagery and to 

explicate their functional roles in support of cognitive tasks. However, the fact that mental 

images are consciously accessible is a tremendous boon. It affords us a glimpse into many 

aspects of mental simulations that we would be unable to discern otherwise (for example, 

through introspection and self-report).  

Ideally, many of the properties attributed to mental images would also apply to their 

preconscious counterparts (mental simulations); however, there is a possibility that their 

properties may differ. For example, Barsalou (1999) suggested that unconscious (i.e., 

preconscious and never-conscious) simulations might violate certain constraints that are 

compulsory for their conscious counterparts. While a mental image of a cup must minimally 

have an orientation, a shape, and subtend some angle in the (internal) visual field, an 

unconscious mental simulation of a cup may relax these requirements, such that, one or more of 

these aspects may be “inactive” at any given time. Assuming this hypothesis is correct, it leads to 

many interesting questions and challenges in modeling such phenomena. 

Analogous to Stimuli from Sensory Modalities. Mental images and their preconscious 

counterparts (i.e., mental simulations) appear to be based (at least in part) on depictive, 
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topographically2 organized, non-symbolic representations (see Kosslyn et al., 2006, Chapter 4). 

And many of the same brain regions that support mental imagery also support the perception 

(Chen et al., 1998; Ganis et al., 2004; Klein et al., 2004; Kosslyn et al., 1995, 1997, 1999; 

Slotnick et al., 2012). 

Interaction between External and Internal Sensory Representations. Based on psychological 

and neuroimaging studies, it appears that real and virtual sensory content can interact in various 

memory systems. In particular, it seems that imagination has the ability to either interfere with or 

prime perceptions of real phenomena, and vice versa. The earliest and most famous study 

demonstrating this interaction was by Perky (1910), and the results she described are now 

referred to as “the Perky effect” (Waller et al., 2012). Numerous studies have followed in 

Perky’s (1910) tradition and established a complex set of interactions between real and imagined 

stimuli (Craver-Lemley & Reeves, 1992; Farah, 1985, 1989; Pearson et al., 2008). 

Albright (2012) contended that our perceptions are based on a mixture of external stimuli 

(from sensory organs) and internal stimuli (from mental simulations). The relative contribution 

of each is largely based on the strength and quality of those stimuli. These, in turn, may be based 

on the fidelity of our external sensory inputs (e.g., one’s visual acuity), and the relevance, 

reliability, and precision of our internal models of the world.  

This idea makes a certain amount of intuitive sense. When the external environment 

provides you a clear and unambiguous sensory signal, it should be preferred over internally 

 

2 Topographical organization entails that cortical locations can be used to represent locations in space (e.g., points 

within the visual field) and that the distances between those cortical locations are roughly proportional to the 

distances between the locations they are intended to represent.  
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generated and more speculative representations. On the other hand, when external sensory 

stimuli are highly ambiguous or degraded, then internal predictions should take over to supply 

missing details. In between these extremes, real and virtual sensory content should collaborate to 

realize a coherent and plausible perceptual interpretation of one’s current situation.  

Rapid Decay. Without continual maintenance, mental images rapidly lose clarity and become 

inaccessible to conscious experience. Kosslyn et al. (2006) argued that this rapid fading of 

mental images is a consequence of shared sensory cortical regions (e.g., topographically 

organized areas of the primary visual cortex) that are used to represent both real and imagined 

sensory content. They further argue that this decay is necessary to prevent prior real and 

imagined sensory content from interfering with incoming sensory content. 

Fundamental Operations 

Kosslyn (1994) defined four fundamental cognitive operations that support mental imagery: 

generation, transformation, inspection, and maintenance. Each of these operations are described 

below. 

Image Generation. Mental images can be formed in numerous ways. They can be generated 

spontaneously (i.e., through involuntary unconscious processes) or intentionally (i.e., through 

volitional or consciously mediated processes). Their generations may be single-part (constructed 

in a single operation) or multi-part (requiring sequential elaboration). And their content can be 

sensory (e.g., the simulated experience of a sensory event, such as the smell of garlic) or motor 

(e.g., the simulated execution of an action and its environmental consequences, such as turning a 

doorknob). 
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Spontaneous generation—also referred to as involuntary (Brewin et al., 2010) or implicit 

(Albright, 2012) imagery—is initiated “automatically” via unconscious cognitive processes. For 

example, spontaneous mental images can occur in response to cued memories or through the 

efforts of predictive processes. We engage in this form of mental simulation when we 

preconsciously “fill-in” an object’s missing details (for example, when part of an object is 

occluded), or when we conjure plausible sensory interpretations of nebulous shapes or indistinct 

noises. We may also experience spontaneous imagery during language comprehension (Bergen, 

2012). Albright (2012) argued that spontaneous mental imagery is “fundamental and 

ubiquitous,” (p. 235) serving to augment noisy, ambiguous, or otherwise incomplete sensory data 

based on probable predictions about their sources. In the extreme, spontaneous imagery can also 

become intrusive and pathological, and is linked to numerous psychological disorders, such as 

post-traumatic stress disorder, social anxiety disorders, eating and body perception disorders, and 

schizophrenia (Brewin et al., 2010). 

 Intentional generation—also referred to as voluntary (Brewin et al., 2010), volitional 

(Kreiman et al., 2000) or explicit (Albright, 2012) imagery—requires conscious mediation and is 

often accompanied by an explicit intention to engage in imagistic thought. This type of mental 

imagery is “conjured on demand [in service of] specific cognitive or behavioral goals” (Albright, 

2012, p. 234). Players of strategy board games (such as chess or Go) may engage in intentional 

mental imagery when they try to imagine what the board would look like if their pieces were 

arranged differently. Tasks that require the recognition of spatial or temporal relationships 

between objects (or their parts), or judgments about their sensory qualities, may also initiate 

volitional processes that utilize intentional mental imagery. 
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Image generation exhibits predictable timing effects based on the complexity of the 

generated mental images. More complex, multi-part images require more time to generate than 

less complex or single-part images. Consequentially, image generation is believed to be 

governed by sequential, rather than parallel, cognitive processes (Kosslyn et al., 1988). Kosslyn 

(1994, p. 292) proposed that multi-part, visual images could be formed by first generating a 

global (“skeletal”; see Kosslyn, 1980) image that depicts the overall extent of an object. 

Representations for individual object parts could then be sequentially activated to generate 

images of those parts at specific locations on the global topographical extent, as needed. The 

specific order of this sequential elaboration depends, at least in part, on image inspection 

(described later). 

Image Transformation. Image transformations include any operation that starts from an 

existing mental simulation and manipulates it in some way to change its sensory or motor 

characteristics. Operations such as mental rotations, scanning, and zooming are frequently given 

examples. However, other visual and non-visual transformations, such as auditory pitch and 

tactile pressure, also apply.  

Chronometric (reaction time) studies are frequently cited as evidence that brains perform 

image transformations, particularly in support of perceptual tasks. Participants in these studies 

are typically required to make same-difference judgments when shown two objects with varying 

orientations, sizes, etc. Their reaction times are then recorded. In most cases, these reaction times 

are described as a linear function of the degree of perturbation between the presented objects. 

For example, the time subjects require to make same-difference judgements about rotated 2D and 

3D objects is a linear function of the angle of presentation (Cooper, 1975, 1976; Metzler & 
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Shepard, 1974; Shepard & Metzler, 1971): the greater the degree of rotation between presented 

objects, the greater a subject’s reaction time. From these results, researchers have hypothesized 

that their subjects are performing a series of incremental mental transformations that enable them 

to perform these perceptual discrimination tasks.  

Georgopoulos et al. (1989) generated further support for this hypothesis by directly 

recording the patterns of activity in the motor cortex of a rhesus monkey while it performed a 

task requiring physical rotations. This monkey was trained to move its arm “in a direction that 

was perpendicular to and counterclockwise from the direction of a target light that changed in 

position from trial to trial” (Georgopoulos et al., 1989, p. 234) Georgopoulos et al. observed a 

sequence of preparatory, counterclockwise, mental rotations in the monkey’s “neuronal 

population vector” in the moments prior to the monkey moving its arm. They interpreted this as 

direct support for the mental rotation hypothesis. 

Finally, Zacks (2008) made several additional observations about mental rotation based 

on a meta-analysis of 32 high-quality, neuroimaging (PET or fMRI) studies. His first observation 

was that there is substantial evidence supporting the hypothesis that mental rotation appears to be 

based on the sequential transformation of “analog spatial representations” rather than abstract, 

descriptive representations. A second observation was that motor simulations were often 

involved in performing these transformations, though the degree of involvement depended on the 

specifics of the subjects’ tasks. For example, Kosslyn et al. (2001) found that PET showed 

primary motor cortex involvement when subjects imagined themselves rotating an object, but not 

when they imagined an external force rotating that object. However, the premotor cortex was 

involved in both cases. As a result, it appears that some motor processes are employed whenever 
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we imagine objects rotating, but that the processing remains at a relatively high level unless 

subjects imagine themselves physically manipulating those objects. Moreover, Zacks noted that 

there appears to be an interaction (either interference or facilitation) between mental rotation and 

manual rotation tasks, depending on the task configuration. For example, Wexler et al. (1998) 

found that physically rotating a joystick handle in the same direction as required by a 

simultaneous mental rotation task decreased reaction times and error rates, while physical 

rotation in opposite direction increased reaction times and error rates.  

Image Inspection. Image inspection refers to the ability to volitionally explore, perceive, and 

attend to portions of mental images. For example, the “mental scanning” of visual images is a 

frequently used experimental paradigm for investigating the properties of image inspection. In 

one such experiment, Kosslyn et al. (1978) had subjects memorize the map of a fictional island 

that contained seven objects (hut, tree, rock, well, lake, sand, and grass) situated at various 

locations. Once subjects had demonstrated that they had learned the map (by accurately drawing 

it from memory), they were asked to mentally picture the entire map. They were then asked to 

focus on one of the objects depicted on the map. Following a brief pause, they were given a 

second named object, and asked to scan to that new location on the imagined map. Subjects were 

instructed to perform this scanning operation by imagining a small dot traversing the shortest, 

straight-line path between the two objects. They were also instructed to press a button when their 

mental dot had reached the destination object. Kosslyn et al. (1978) reported a linear increase in 

subjects’ reaction time with the map distance scanned. They hypothesized that subjects were 

utilizing a form of image transformation—“in the same class as mental rotation and size 

alternation” (Kosslyn et al., 1978, p. 60)—to perform this scanning operation. 
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Finke and Pinker (Finke & Pinker, 1982, 1983; Pinker et al., 1984) later conducted a 

series of experiments that addressed several criticisms of Kosslyn et al.’s (1978) experimental 

procedure. In particular, in Finke and Pinker’s experiments, subjects were never instructed to 

conjure mental images, nor were they explicitly told to perform mental scanning. Instead, 

subjects were instructed to remember a pattern of four dots on a display. The dots were 

subsequently removed, and an arrow was displayed. Subjects were required to report whether the 

arrow pointed to any of the previously displayed dots, where the distance between the arrow and 

the dots varied between trials. Once again, reaction times were found to increase linearly with 

distance.  

After completing these trials, subjects were asked to describe how they mentally 

performed these tasks. Most participants reported mentally scanning a remembered dot pattern, 

starting from the location of the arrows, and in the directions indicated by those arrows. Pinker et 

al. (1984) hypothesized that this scanning operation was performed by mentally shifting an 

attentional locus (Pinker et al., 1984, p. 216), in small increments, along an imagined visual 

field. Notably, this mechanism differs from the transformation-based scanning operation 

postulated by Kosslyn et al. (1978).  

Borst et al. (2006) investigated the possibility that different cognitive processes were 

being used to perform mental scanning, depending on the specifics of the task. They did this by 

repeating the earlier experiments, subjecting each of their participants to both experiments, and 

analyzing their reaction times. Borst et al. hypothesized that if the same underlying cognitive 

processes were being used in both cases, then they would expect to see highly correlated reaction 

time/distance slopes between the two experiments for the same subjects. Conversely, if different 
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cognitive processes were being employed, they surmised that the slope correlations between 

experiments would be weaker (for a given participant). Not only were Borst et al. (2006) able to 

replicate the findings of the earlier experiments, but they observed no significant correlations 

between the reaction time slopes for individual participants. As a result, they concluded that (at 

least) two different cognitive processes were being used to perform mental scanning. 

Image inspection also seems to engage some of the same neural areas as image 

generation (Kosslyn et al., 2004). This is not surprising, as inspection often drives the sequential 

elaboration of mental images, adding parts and properties as needed (see Kosslyn, 1994, Chapter 

9). That said, the processes of image generation and inspection are distinct. For example, 

Kosslyn et al. (2004) found that numerous brain regions were independently (i.e., not jointly) 

activated during image generation and image inspection tasks. 

All of this to say that image inspection is a complex process that seems to enlist cognitive 

mechanisms associated with many of the other imagistic operations, as well as attentional 

processes. Furthermore, it is well-established that image inspection and perception share 

cognitive processes and neural substrates (Ganis et al., 2004; Kosslyn et al., 1997; Slotnick et al., 

2012). 

Image Maintenance. Kosslyn stated that image maintenance “lies at the heart of the use of 

imagery in reasoning” (Kosslyn, 1994, p. 324). The rapid decay of mental images requires the 

ability to actively maintain mental images in working memory. While not as glamorous as the 

other functions, offline cognitive processes (e.g., reasoning and planning) require the retention of 

images in short-term memory, working memory, and sensory memory (iconic/echoic memory) 

long enough to manipulate and inspect them. Therefore, this capability may be a basic 
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prerequisite for any meaningful use of mental images in a cognitive system. Kosslyn (1994) 

argued that image maintenance involves the repeated activation of representations by selectively 

attending to portions of mental images, or through the repeated engagement of attentional 

processes that operate on “the same loci in the visual buffer” (Kosslyn, 1994, p. 325). 

Kosslyn’s Proto-Model of Visual Perception and Mental Imagery 

This section describes Kosslyn’s (1994) “proto-model” for visual perception and mental 

imagery, which inspired portions of the LIDA-based implementation described later in this 

chapter. Kosslyn’s proto-model is comprised of seven components (i.e., subsystems, which are 

depicted in Figure 24). Each subsystem will be briefly described in the sections that follow, 

along with their relevant representations and processes. Kosslyn (1994) and Kosslyn et al. (2006) 

provide neurophysiological and experimental evidence supporting each of these subsystems. For 

brevity, those details will not be repeat here. 

Visual Buffer  

The Visual Buffer corresponds to topographically organized areas of the occipital lobe that 

“depict” the geometry of a stimulus’s retinal (or mental) projection. The Visual Buffer functions 

as a non-symbolic spatial extent in which cortical regions are used to represent retinotopic 

extents. According to Kosslyn et al. (2006), the low-level properties of environmental stimuli 

(such as color, intensity, depth, and motion) can then be encoded at locations within the Visual 

Buffer using a symbolic (propositional) code. As such, the Visual Buffer is a hybrid 

(symbolic/non-symbolic) representation—a non-symbolic, topographically organized extent 

overlaid with symbolically encoded shape properties. 
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Figure 24. Kosslyn's proto-model of visual perception and mental imagery. The protomodel contains 

seven subsystems, which are depicted above. The brain regions believed to correspond to each subsystem 

are shown in red font next to their subsystems. 

 

Kosslyn et al. (2006) characterized the Visual Buffer as a “canvas” upon which mental 

images could be depicted. Furthermore, they assumed that the proto-model’s other subsystems 

could operate on mental images in essentially the same way as they would externally sourced 

environmental stimuli.  

Attention Window 

The Attention Window supports the system’s ability to selectively focus on “contiguous sets of 

points” in the Visual Buffer (Kosslyn, 1994, p. 70). The focal region of the Attention Window 

can be shifted (e.g., spontaneously or volitionally) to center on different areas of the Visual 
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Buffer. This shifting might occur, for example, during image inspection. Kosslyn argued that the 

Attention Window supports both mental imagery and perception (Kosslyn, 1994, p. 101). 

Object-Properties Subsystem  

Kosslyn et al. (2006) asserted that object properties (e.g., color, texture, and shapes) are encoded 

in brains using population codes (or feature vectors; Fujita et al., 1992). They referred to the 

subsystem responsible for encoding these properties as the Object-Properties Subsystem. The 

population codes produced by this subsystem are based on sets of neurons (within the 

inferotemporal cortex) that selectively respond to different object-property dimensions. Different 

combinations of these neurons can be used to specify, and later recognize, an object’s properties.  

Kosslyn et al. (2006) argued that these representations are not “depictive,” nor are they 

topographically organized on the cortex. The function of the Object-Properties Subsystem is to 

recognize objects in the Attention Window by comparing those incoming sensory stimuli against 

previously stored object properties.3 Kosslyn (1994) stated that this subsystem corresponds to the 

ventral stream (“what”) pathway of the two-streams hypothesis (Goodale & Milner, 1992; 

Mishkin et al., 1983). 

Spatial-Properties Subsystem 

While Kosslyn’s (1994) Object-Properties Subsystem (described earlier) is capable of 

recognizing objects, it discards information about location, size, and orientation. Individual 

points in the Attention Window are only important to the Object-Properties Subsystem insofar as 

 

3 Compare this with LIDA’s sensory representations from Chapter 5. 
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they are arranged into particular shapes or patterns, not due to their locations in space. Kosslyn et 

al. (2006) argued that a separate subsystem—called the Spatial-Properties Subsystem—was 

needed to explicitly encode information about location, size, and orientation. This subsystem 

(which corresponds to neurons in the parietal lobes) encodes at least some of these spatial 

representations as topographically organized, depictive representations. Individual points are 

encoded within spatial representations relative to some designated origin within that reference 

frame (e.g., body-centric, object-centric, or scene-centric). This allows the system to represent 

the locations of objects, and parts of objects, within a topographically organized area. The 

objects at each of the locations encoded by the Spatial-Properties Subsystem could then be 

specified using the Object-Properties Subsystem. Kosslyn et al. (2006) referred to this style of 

hybrid representation as an object map4. 

 Kosslyn et al. (2006) hypothesized that the Spatial-Properties Subsystem encodes the 

locations of objects and object parts across the entire visual field. This is in contrast to the 

Object-Properties Subsystem that they argued was generally limited to encoding the portions of 

the visual field that were currently attended to by the Attention Window. Their rationale for 

supporting a wider encoder field for the Spatial-Properties Subsystem was to support attentional 

shifts to the locations of currently unattended objects within the visual field. The Spatial-

 

4 Compare this with the cognitive “object” maps (Chapter 5) that were developed in the context of LIDA’s 

perceptual system. 
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Properties Subsystem corresponds to the dorsal stream pathway of an earlier (“what” vs “where”; 

Mishkin et al., 1983) formulation of the two-streams hypothesis5. 

Associative Memory  

The outputs (object maps and feature vectors) generated by the Object-Properties Subsystem and 

Spatial-Properties Subsystem are combined together to form encoded object and scene 

representations. These encoded (object- and spatial-property) representations are then compared 

against representations in short- and long-term associative memory. If an encoded representation 

matches a representation in associative memory, then the object it represents is said to be 

identified6. In the event that an object cannot be unambiguously identified, the best-matching 

representation is treated as a hypothesis (see Kosslyn et al., 2006, Chapter 5) that will guide later 

information gathering activities (see Information Shunting Subsystem).  

Kosslyn (1994) stated that associative memory contains perceptual representations and 

more abstract conceptual representations (e.g., semantic knowledge). One final note is that 

Kosslyn et al. (2006) assumed that the output produced from associative memory would be a 

propositional description of an object or scene. 

 

5 Kosslyn (1994) explicitly identified the Object-Properties Subsystem and Spatial-Properties Subsystem as 

corresponding to the ventral and dorsal visual pathways; however, this characterization was later discarded by 

Kosslyn et al. (2006). 

6 Kosslyn et al. (2006) distinguished between “recognition,” which is performed by the Object-Properties Subsystem 

and “identification,” which is performed by associative memory. They stated that recognition merely indicates that a 

stimulus is familiar, whereas identification entails the ability to name an object and access other associated 

knowledge about that object (such as the categories to which the object belongs).  
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Information Shunting Subsystem 

Whenever associative memory fails to clearly identify an object, the best-matching hypothesis is 

sent to an Information Shunting7 Subsystem. This subsystem orchestrates a top-down search to 

confirm or refute an earlier hypothesis (e.g., from an ambiguous associative memory lookup). 

According to Kosslyn et al. (2006), the Information Shunting Subsystem serves two primary 

functions. First, it sends information to the Attention Shifting Subsystem. This information may 

then be used to adjust the focus of attention towards distinctive object parts or scene elements. 

Second, it sends information back to the Object-Properties Subsystem in order to prime various 

representations. This may, for example, facilitate the later encoding of various parts or 

characteristics. 

Attention Shifting Subsystem  

An Attention Shifting Subsystem updates the system’s current focus of attention. This attentional 

shift can include changes to the location of the Attention Window, as well as orienting eye, head, 

and body movements. After attention is shifted, a new object or object parts may be encoded in 

the Visual Buffer. If those new stimuli match previously primed representations in the Object-

Properties Subsystem, they may be recognized. Moreover, if the recognized objects or object 

parts clearly implicate associated representations (in associative memory), then those objects are 

said to be identified. Otherwise, the top-down search may continue based on new hypotheses, 

and additionally primed object parts and properties. 

 

7 Kosslyn (1994) referred to this as “information lookup.” Kosslyn et al. (2006) renamed it to “information 

shunting.” 
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Implementation: Mental Imagery in LIDA 

In this section, I develop a conceptual model of multimodal mental imagery and imagistic, 

epistemic processes in LIDA. Whenever possible, I compare this LIDA-based model with 

Kosslyn’s (1994) proto-model of visual imagery and perception, which was described earlier in 

this chapter. At the end of this chapter, I also compare this implementation of mental imagery to 

those found in other cognitive architectures. 

Components 

Mental imagery utilizes the majority of LIDA’s modules and processes. That said, several 

components stand out as being particularly significant. These are described in the subsections 

below.  

Sensory Scenes. LIDA’s Sensory Memory module may contain one or more modality-specific 

sensory scenes. A sensory scene is a data structure that preserves the low-level details of sensory 

stimuli, while simultaneously supporting the representation of more processed, low-level 

features. The representational content within LIDA’s sensory scenes is typically integrated into 

multimodal representations elsewhere, for example, within LIDA’s Current Situational Model.  

A visual sensory scene (see Figure 25) could be represented as a layered, topographically 

organized data structure. Each layer within this data structure can represent features associated 

with active visual stimuli—real or virtual—as well as the locations in which those features occur 

within an agent’s visual field. I refer to this representational format as a feature map (cf. LeCun 

et al., 1989; LeCun & Bengio, 1995). 
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Figure 25. Visual sensory scene and Perceptual Scene. The visual sensory scene—a modality-specific, 

topographically organized data structure—exists in LIDA’s Sensory Memory module. Portions of this 

sensory scene are integrated into LIDA’s Perceptual Scene, specifically, those portions associated with 

current percepts. The Perceptual Scene is a multimodal data structure containing symbolic (nodes) and 

non-symbolic (depictive) representations. This figure originally appeared in McCall et al. (2010, fig. 3). 

(“Blank nodes” are coordinating amodal nodes associated with sensory content in the “segmented 

layer” of the visual sensory scene; see McCall, Snaider, et al., 2010 for more details.) 

For software agents, the lowest layer of a visual sensory scene might be a “pixel” layer 

(McCall, Snaider, et al., 2010, p. 5) containing raw (unprocessed) sensory stimuli from an 

agent’s visual sensors (e.g., an RGB or depth camera). For natural agents (e.g., humans), it might 

contain a retinotopic map based on sensory projections within an agents’ eyes. Visual mental 

simulations (i.e., virtual sensory stimuli) could also be represented in this layer. 

Higher layers in the visual sensory scene might contain feature maps derived from one or 

more of its lower layers—for example, color maps or motion fields (e.g., optic flow fields; Lee, 

1980). These layers might, in turn, be used as the basis for even more processed layers higher in 
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the visual sensory scene. For example, an edge boundary feature map could be derived from the 

visual sensory scene’s color and motion layers, which were, themselves, derived from its pixel 

layer.  

LIDA’s sensory scenes are purely non-symbolic data structures. As such, they are 

representationally different from Kosslyn’s (1994) Visual Buffer, which contain symbolic 

(propositional) features overlaid on non-symbolic, spatial extents. Furthermore, sensory scenes 

are not directly accessible to LIDA’s attentional processes; therefore, a direct analog to 

Kosslyn’s (1994) Attention Window is impossible to implement within LIDA’s Sensory 

Memory module. However, portions of these sensory scenes are accessible to attentional 

processes within LIDA’s Perceptual Scene. Specifically, those portions with sensory 

representations attached to node structures in the Perceptual Scene’s “node layer” (described 

below). 

Perceptual Scene. LIDA’s Perceptual Scene is a multimodal data structure within LIDA’s 

Current Situational Model. It contains portions of LIDA’s sensory scenes combined with node 

structures that characterize or identify that sensory content. These node structures are said to be 

part of the Perceptual Scene’s node layer (McCall, Snaider, et al., 2010, p. 7). Modal nodes 

within the node layer are grounded in the representations within LIDA’s sensory scenes. Note 

that sensory content corresponding to multiple modality-specific sensory scenes can be 

associated with a single node structure in the Perceptual Scene’s node layer (see Figure 26). This 

is implemented using coordinating amodal nodes that support multimodal binding (see Chapter 

5). 
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Figure 26. Real and virtual sensory content co-mingle in LIDA’s Perceptual Scene. Real sensory 

content, from Sensory Memory’s visual and auditory sensory scenes, is integrated into the sensory 

portions of LIDA’s Perceptual Scene. A percept, corresponding to the most likely interpretation of 

that sensory content (in this case a horse), is instantiated into the Current Situational Model. Virtual 

sensory content (i.e., a mental simulation) corresponding to this percept is generated and integrated 

into LIDA’s Perceptual Scene alongside real sensory content, which happens to be obscured and 

occluded. This virtual sensory content might serve to embellish the features of indistinct scene 

elements (among other things).  

The Perceptual Scene can simultaneously contain “real” and “virtual” sensory content. 

Real sensory content originates from an agent’s external environment. Virtual sensory content is 

generated internally by “simulator” structure building codelets (see Chapter 5). During ordinary 

perception, virtual sensory content (top-down signals) augment real sensory content (bottom-up 

signals). These top-down signals help with the interpretation of that content, filling in missing 

details based on the most plausible explanations of that sensory stimuli. Both real and virtual 
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sensory content can be associated with perceptual/conceptual node structures in the Perceptual 

Scene’s node layer.  

Figure 26 illustrates the integration of bottom-up (real) and top-down (virtual) sensory 

signals. In the depicted situation, an agent encounters a partially occluded, equine creature of 

unknown variety at dusk. The “real” sensory content corresponding to this animal is partially 

occluded and contains indistinct features due to low-lighting conditions. Visual and auditory 

sensory stimuli resulting from this encounter are integrated into the agent’s visual and auditory 

sensory scenes. This sensory content then activates perceptual representations in Perceptual 

Associative Memory (see Chapter 5, Multimodal Perception) resulting in the instantiation of a 

percept corresponding to a horse—the most plausible explanation8 for that scene element. A 

simulator structure building codelet may then use this percept to construct a spontaneous (i.e., 

non-volitional) mental simulation of that horse, and integrate it into the sensory portions of the 

Perceptual Scene. This combined (bottom-up and top-down) signal could then be used to support 

active exploration or offline cognitive activities (e.g., generating action plans). 

The Perceptual Scene is LIDA’s closest analog to Kosslyn’s (1994) Visual Buffer. Like 

the Visual Buffer, LIDA’s Perceptual Scene is a hybrid representation. Its node layer contains 

symbolic or hybrid representations (i.e., node structures or cognitive maps) that characterize the 

non-symbolic representations in one or more sensory scenes. Furthermore, the Perceptual Scene 

can be operated on by LIDA’s attentional processes (attention codelets), which can serve a 

 

8 Percept(s) instantiated from ambiguous sensory stimuli will typically depend on the base-level activations 

associated with node structures (i.e., recency and frequency effects), along with any residual current activations 

(priming) induced by recent situational contexts. 
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similar function to Kosslyn’s (1994) Attentional Window. However, unlike the Visual Buffer, 

the Perceptual Scene is intended to serve as an integration point for sensory content from all 

sensory modalities. This introduces a degree of complexity—multimodal scene integration—that 

is not accounted for in Kosslyn’s proto-model. 

Perceptual Associative Memory. Perceptual Associative Memory (PAM) is LIDA’s 

recognition memory. PAM is also the primary long-term memory module in which grounded, 

conceptual/perceptual representations are persisted. More elaborate forms of representational 

content (e.g., scenes, episodes, cognitive maps, and narratives) will typically depend on node 

structures from PAM. PAM may, in turn, depend on representations from other long-term 

memory modules. For example, cognitive “object” maps, which are analogous to Kosslyn’s 

object maps, are formed through the association of PAM nodes with object-centered spatial 

extents from Spatial Memory (see Chapter 5, Cognitive “Object” Maps). 

Perceptual Associative Memory (PAM) combines aspects of Kosslyn’s Object-Properties 

Subsystem and Associative Memory. PAM is like Kosslyn’s Object-Properties Subsystem in the 

following ways: First, the activation of its representations can be based on object properties (e.g., 

color, texture, and shapes). Furthermore, PAM’s representations (e.g., node structures) are not 

topographically organized, and they do not directly “depict” their referents. However, through 

their associations with other forms of long-term memories (e.g., representations in Spatial 

Memory) they can form spatially arranged, depictive, hybrid representations (e.g., cognitive 

“object” maps). Finally, PAM’s grounded node structures could be described as population 

codes: their activations are based on a set of nodes and a set of sensory representations that 

characterize sensory stimuli.  
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There is one notable difference between Kosslyn’s Object-Properties Subsystem and 

PAM: attention modulates their operations differently. According to Kosslyn, his Object-

Properties Subsystem is constrained to the recognition of objects within an Attention Window. In 

contrast, the bottom-up activation of PAM is unaffected by LIDA’s attentional processes. 

However, attentional processes (attention codelets) that function like Kosslyn’s Attention 

Window can be applied after the activation of PAM nodes (from Sensory Memory), that is, once 

percepts are instantiated in the Current Situational Model. It is very likely that this difference 

could lead to testable predictions. For example, even if preconscious percepts outside of the 

focus of attention are never brought to consciousness, they may alter Workspace dynamics, 

leading to priming effects and other secondary indicators. 

Finally, note that PAM models some, but not all, elements of Kosslyn’s Associative 

Memory. In particular, Kosslyn’s Associative Memory contains semantic knowledge in addition 

to perceptual knowledge. In LIDA, semantic knowledge is encoded in a separate Declarative 

Memory module. Also, Kosslyn assumed that the output of Associative Memory was symbolic 

propositions. PAM’s output, on the other hand, typically consists of hybrid (symbolic/non-

symbolic) representations that can be said to characterize scene elements, but not propositionally. 

Action Selection. LIDA’s Action Selection module plays a pivotal role in supporting many 

forms of mental imagery. For example, we saw in Chapter 6 that “motor imagery” (Grush, 2004; 

Jeannerod, 1994, 1995, 2001; Pfurtscheller & Neuper, 1997; Sharma & Baron, 2013) is based on 

the selection of behaviors for internal execution (i.e., “covert actions”; Jeannerod, 2001, p. 

S103). Furthermore, there is a sizeable body of research supporting the hypothesis that image 
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transformation (e.g., mental rotation) relies on internal-action-based motor processes (Ganis et 

al., 2000; Georgopoulos et al., 1989; Kosslyn et al., 2001; Wexler et al., 1998). 

More generally, Action Selection orchestrates all action-based mental imagery, which 

includes not only motor imagery, but all forms of voluntary or intentional mental imagery (see 

Albright, 2012; Brewin et al., 2010; Kreiman et al., 2000). This may even include some forms of 

mental imagery that are construed as spontaneous or involuntary. In particular, mental imagery 

that relies on automatized and consciously mediated modes of action selection may not be 

perceived as intentional acts by an agent. Consequently, Action Selection may frequently 

participate in every fundamental operation of mental imagery—generation, transformation, 

inspection, and maintenance (Kosslyn, 1994; Kosslyn et al., 2006). 

“Simulator” Structure Building Codelets. In LIDA, all preconscious mental simulations are 

generated by simulator structure building codelets (SBCs) (see Chapter 6, Simulator Structure 

Building Codelets). This applies to mental simulations generated spontaneously (e.g., following 

the recall of long-term memories), as well as volitional or intentional mental simulations based 

on covert (internal) actions. However, never conscious mental simulations, such as those 

produced by “forward models” (D. M. Wolpert et al., 1995) in LIDA’s Sensory Motor System, 

are not based on simulator SBCs.9 SBCs only operate on representations in the (preconscious) 

Workspace. 

 

9 Dong et al. (2015) implemented a simple forward model in LIDA’s Sensory Memory System using a Kalman 

filter-based approach. 
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 Simulator structure building codelets (SBCs) generate modal simulations from grounded 

concept representations in LIDA’s Current Situational Model (CSM). That is, before a simulator 

SBC can create a modal simulation, some cognitive process must introduce a grounded node 

structure into the CSM. Cognitive processes capable of this include perception (see Chapter 5, 

Multimodal Perception), the cueing of long-term memory modules from the CSM (see Chapter 

4, The LIDA Cognitive Cycle), the internal execution of behaviors (see Chapter 6), and other 

structure building codelets. 

𝛽-VAEs (Higgins et al., 2017) provide one computational implementation for simulator 

SBCs (described in Chapter 5) However, this is by no means the only implementation. 

Regardless of the implementation used, the act of mental simulation should be based on the re-

activation of LIDA’s sensory representations via coordinating node structures in Perceptual 

Associative Memory (PAM). Moreover, this re-activation should be performed in a top-down 

fashion—for example, from PAM nodes with higher conceptual depth, to those with lower 

conceptual depth, eventually re-activating sensory representations (see Chapter 5, Simulator 

Structure Building Codelets). 

Attention Codelets. Attention codelets are LIDA’s attentional processes. They scan 

preconscious representations within the Current Situational Model and bring any content of 

interest to them to LIDA’s Global Workspace (via a coalition forming process). If such content is 

included in a winning coalition, it is consciously broadcast to all of LIDA’s modules and 

processes (see Chapter 4, The LIDA Cognitive Cycle). 

A multimodal version of Kosslyn’s Attention Window could be implemented by one or 

more attention codelets that are interested in aspects of LIDA’s Perceptual Scene. For example, 
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specific regions within the visual sensory scene10 could be attending to by one or more attention 

codelets. However, a fundamental question is, what representations and/or cognitive processes 

specify or modulate these focal parameters (e.g., the size and shape of the area of interest in the 

visual sensory scene)? Furthermore, some of these parameters appear to be amenable to 

volitional control (i.e., based on intentional, internal actions). These topics will be addressed later 

in the chapter (e.g., with respect to LIDA’s implementation of “image inspection”). 

Fundamental Operations of Mental Imagery 

This section describes LIDA-based implementations of image generation, image transformation, 

image inspection, and image maintenance—Kosslyn’s (1994) four fundamental mental imagery 

operations. These implementations are based on the assumption that the linear timing effects 

observed during many imagery-based chronometric studies is a direct consequence of multi-

cyclic offline cognitive processes (see Chapter 4, The LIDA Cognitive Cycle). Moreover, I 

assume that these cognitive processes are dependent on internally executed behaviors. 

Image Generation. Image generation refers to the “spontaneous” or “intentional" formation of 

mental simulations. Spontaneous image generation is characterized as being “involuntary” 

(Brewin et al., 2010) or “implicit” (Albright, 2012). While intentional image generation is 

characterized as “voluntary” (Brewin et al., 2010), “volitional” (Kreiman et al., 2000) or 

“explicit” (Albright, 2012). In both cases, the corresponding (preconscious) mental simulations 

are generated by simulator structure building codelets (see Chapter 5, Simulator Structure 

 

10 Note that the representational content in sensory scenes is only accessible to processes (e.g., codelets) operating 

on the CSM if that content that been associated with a node structure (grounded concept representation) in the 

Perceptual Scene’s node layer (see Figure 25).  
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Building Codelets) and integrated into LIDA’s Perceptual Scene. Both spontaneous and 

voluntary forms of image generation are depicted in Figure 27. 

Spontaneous mental simulations can occur in LIDA whenever a percept or cued memory 

enters the Current Situational Model (CSM) and is subsequently acted upon by a simulator SBC. 

Content generated in the CSM from the consciously mediated or automatized selection of 

internally executed behaviors may also support spontaneous mental simulations. In these cases, 

the results of behaviors11 selected for internal execution function like cued long-term memories. 

In contrast, intentional mental simulation is always initiated by an internally executed, 

covert behavior. Furthermore, these behaviors are selected, at least in part, due to an explicit 

intention to engage in mental simulation. This suggests that the mode of action selection that 

supports intentional mental simulation is volitional (i.e., goal-directed), but not necessarily 

deliberative12. In both cases, simulator structure building codelets are directly responsible for 

orchestrating the creation of these preconscious mental simulations. 

Single-part mental simulations can be generated in a single cognitive cycle. This form of 

image generation can occur completely preconsciously (e.g., from percepts or cued memories), 

or it can be generated following the execution of covert behaviors (e.g., motor simulations). 

 

11 Recall from Chapters 4 and 6 that behaviors are instantiated schemes. Schemes are data structures that are learned 

into Procedural Memory that contain three primary components: a context, an action, and a result. Action-based 

mental simulation relies extensively on schemes’ (instantiated) results. 

12 The LIDA literature currently does not make a distinction between volitional action selection and deliberation 

(Franklin et al., 2016, sec. 6.2). However, in many cases of intentional mental imagery, individuals appear to have 

explicit intentions to perform mental imagery, but the corresponding “options” to act do not initiate a deliberative 

context. Furthermore, the selection of such actions appears to occur in a single cognitive cycle. This suggests that 

these “intentional” actions should either be modeled in LIDA as consciously mediated actions, or that LIDA’s 

volitional mode of action selection needs to be updated to include the non-deliberative but intentional selection of 

actions.  
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Multi-part mental simulations, on the other hand, likely require one or more supporting internal 

actions. In these cases, the incorporation of additional parts and properties occurs largely through 

a process of sequential elaboration, in which parts and properties are added one at a time (see 

Kosslyn et al., 1983, 1988). During sequential elaboration, the cognitive processes responsible 

for inspection, transformation, and generation collaborate to construct parts and properties on 

demand. 

 

Figure 27. Mental imagery and the Perceptual Scene. Spontaneous forms of mental imagery can occur 

during bottom-up perception, and following the cueing of long-term memory. Intentional forms of mental 

imagery are always action-based, using covert behaviors (with internal actions) to initiate changes within 

LIDA’s Current Situational Model. All forms of preconscious mental simulation are supported by 

“simulator” structure building codelets (SBCs) that generate mental simulations and integrate them within 

LIDA’s Perceptual Scene. Never-conscious mental simulations can occur in the Sensory Motor System 

(SMS) as a result of external (overt) action execution. The Perceptual Scene can contain both “real” and 

“virtual” sensory and perceptual representations.  

  



 

216 

 

Image Transformation. The mechanisms proposed here for implementing image 

transformations are largely the same as those used for motor imagery (described in Chapter 6); 

that is, image transformations are modeled as action-based imagistic processes. Specifically, 

image transformations (e.g., mental rotations) typically involve the serial execution of 

consciously mediated or volitionally selected internal actions. These covert actions can then 

initiate the generative activities of unconscious processes (e.g., simulator structure building 

codelets).  

The hypothesis that image transformations are action-based is supported by 

neurophysiological research that shows the engagement of motor processes during mental 

transformations (Cohen et al., 1996; Georgopoulos et al., 1989; Kosslyn et al., 2001; Wexler et 

al., 1998; Zacks, 2008). In particular, the premotor cortex, which is believed to be involved in the 

high-level selection and preparation of voluntary movements13 (Passingham, 1988; Scott & 

Kalaska, 2021) is typically activated during image transformations, such as mental rotations 

(e.g., see Cohen et al., 1996; Kosslyn et al., 2001). The premotor cortex is functionally analogous 

to LIDA’s Action Selection and Procedural Memory modules; therefore, modeling image 

transformations as being action-based is consistent with current experimental research. 

If image transformations are, indeed, action-based, then one might expect that their 

development and use would be similar to that of motor skills—and this seems to be the case. For 

example, numerous studies have shown improvements in mental imagery abilities with age 

 

13 The premotor cortex is also believed to support the understanding of others’ actions (Buccino et al., 2013; Gallese 

et al., 1996; Rizzolatti et al., 1996). This suggests that “mirror mechanisms” (Iacoboni et al., 2005; Rizzolatti & 

Craighero, 2004; Rizzolatti & Sinigaglia, 2016) could also be implemented in LIDA using internally executed 

behaviors. 
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(Caeyenberghs et al., 2009; Kosslyn et al., 1990; Smits-Engelsman & Wilson, 2013; Souto et al., 

2020) and training (Spruijt et al., 2015). And motor imagery training appears to improve motor 

performance (see Driskell et al., 1994 for a meta-analysis).  

In general, the view advocated for here is that mental imagery represents the 

internalization of an individual’s interactions with the world (Piaget & Inhelder, 1971). For 

example, the conscious awareness of the consequences of one’s actions allows those 

consequences to be internalized as schemes in Procedural Memory. Through repeated use, these 

learned behaviors can be internally (covertly) executed—instead of their overt counterparts—in 

service of perception and offline cognition.  

Frick et al.’s (2009) findings support this gradual transition from overt to covert activity. 

They found that young children (5-year-olds) relied on concurrent, overtly executed movements 

when trying to simulate the consequences of imagined events (e.g., changes in the orientation 

and position of imaginary water when tilting an empty glass). However, older children (e.g., 9-

year-olds) were less dependent on these overt behaviors. Frick et al. (2009) suggested that one 

explanation for these results is that older individuals may be able to mentally simulate their hand 

movements, whereas children required overt hand movements to facilitate their mental 

simulations. As individuals become more experienced, they became more capable of using 

covertly executed behaviors in place of overt behaviors.  

The internalization of overt behaviors can be observed in players of strategy board 

games, like chess or Go. For example, beginning chess players will often physically move pieces 

on the board to visualize the consequences of their moves and assess board positions. However, 

as they gain experience, and begin playing in more constrained settings where those overt 
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behaviors are prohibited, they often develop the ability to perform these moves mentally (i.e., 

covertly). 

Recall that LIDA has four modes of action selection: volitional, consciously mediated, 

automatized, and alarms (see Chapter 4). Throughout this work, I have generally assumed that 

volitional and consciously mediated action selection is compatible with the internal execution of 

behaviors. For example, intentional and spontaneous image generation (described earlier in this 

chapter) seems to require these modes of action selection. In contrast, I argued in Chapter 6 that 

alarms are incompatible with the internal execution of behaviors, due to the time-sensitive nature 

of the situations in which they arise. However, up to this point, I have not made any explicit 

declarations about whether automatized (autonomous; Fitts & Posner, 1967) action selection 

could occur with mental imagery.  

LIDA’s automatized action selection is characterized as being largely unconscious, where 

one selected behavior seems to directly call the next (in a stream of behaviors) without the need 

for intervening conscious content. This mode of action selection is typically only available after 

an individual has mastered a skill, and, even then, only in predictable situations that do not 

require conscious intervention.  

The model of mental imagery developed in this manuscript predicts that internal 

behaviors should be compatible with automatized action selection. Unlike alarms, these is no 

criteria to exclude automatized behaviors from being internally executed. Furthermore, this 

capability may be highly advantageous—e.g., expediting an agent’s offline cognitive processes 

by reducing their dependence on conscious content during action selection. 
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Figure 28. Response times in mental rotation across age groups. All age groups exhibited response times 

that had a linear relationship with respect to stimulus angle; however, the slopes associated with the 

corresponding regression lines decreased noticeably with increased age. Figure reprinted from Kosslyn et 

al. (1990, fig. 4) with permission. 

Some support for this “internal automatization hypothesis” comes from experiments by 

Kosslyn et al. (1990), who performed a modified version of Shepard and Metzler’s (1971) 

mental rotation experiment, including a chronometric study of the mental rotation abilities of 5-

year-olds, 8-year-olds, 14-year-olds, and adults. While their results showed a predictable, linear 

relationship between subjects’ response times and the angle of stimulus presentation for all age 

groups, the slopes of their corresponding regression lines decreased considerably with age (see 

Figure 28). It is unclear what form of learning or development accounts for these improvements 
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in efficiency; however, one possibility is that there are underlying “behavior streams” (see 

Chapter 6) supporting mental rotation that are progressing from consciously mediated to 

automatized forms of action selection (cf. cognitive, associative, and autonomous stages of skill 

acquisition; Fitts & Posner, 1967).  

Madl et al. (2011) estimated that the time required for a single cognitive cycle is 

approximately 260-390 milliseconds. The linear regression line for adult subjects in this 

experiment showed a slope of 245 milliseconds per 36 degrees of stimulus rotation. Unless 

subjects were performing covert mental rotations in increments of 36 degrees or more, these 

results suggest that parts of these operations may be occurring unconsciously (i.e., without 

conscious mediation). Targeted experiments are needed to explore this possibility further. 

One final implementation detail that I will consider here relates to the manner in which 

behaviors with composite actions—i.e., behaviors whose actions are implemented using behavior 

streams—are mentally simulated. Recall that the internal execution of behaviors with primitive 

actions involves the immediate simulation of those behaviors’ results. That is, following the 

selection of such a behavior for internal execution, a structure building codelet will update 

LIDA’s Current Situational Model with that behavior’s expected result. A simulator structure 

building codelet might then generate a mental simulation of that result and integrate it into 

LIDA’s Perceptual Scene.  

In contrast, the internal execution of behaviors with composite actions could be modeled 

in one of two ways: (1) their predicted results could be simulated directly (bypassing their 

underlying behavior streams), or (2) the component behaviors in their underlying behavior 

streams could be simulated iteratively (and potentially recursively). The chronometric studies 
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considered throughout this chapter (e.g., Borst et al., 2006; Cooper, 1975, 1976; Finke & Pinker, 

1982; Kosslyn et al., 1978; Metzler & Shepard, 1974; Pinker et al., 1984; Shepard & Metzler, 

1971) suggest that the latter is occurring—reaction time increases with angle of rotation, 

scanning distance, object complexity (i.e., the number of parts in a multi-part image), etc. These 

timing effects would not be predicted if the automatized behavior’s expected result were directly 

simulated. 

Furthermore, this manner of internal execution is predicted by the implementation 

developed in Chapter 6. In particular, whenever a behavior with a composite action is selected, 

Action Selection immediately chooses a component behavior from its underlying behavior 

stream. And it is this component behavior’s result that would be mentally simulated into LIDA’s 

Current Situational Model, not the high-level behavior’s result. 

Image Inspection. Image inspection entails the exploration and examination of the sensory 

content in LIDA’s Perceptual Scene. It relies on both imagistic operations and perceptual 

processes. While image inspection often coincides with image transformations (e.g., during 

mental scanning; Kosslyn et al., 1978) and image generation (e.g., during the sequential 

elaboration of multi-part images; Kosslyn, 1994, Chapter 9), it is functionally and neurologically 

distinct (Kosslyn et al., 2004).  

In this section, I propose an implementation of image inspection in LIDA based on 

action-mediated attention processes—i.e., attentional processes modulated by the intentional 

execution of orienting behaviors. Posner defined “orienting” as the alignment of attention to a 

source of sensory stimuli or internal representations (Posner, 1980, p. 4). Orienting is distinct 

from the cognitive processes responsible for the conscious awareness of those stimuli and 
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representations, which Posner referred to as “detecting” (Posner, 1980, p. 4). For example, 

someone may move their eyes towards a stimulus, and yet be unaware of it. Nevertheless, 

orienting towards something often precedes the conscious awareness of that thing.  

In LIDA, “detecting” is implemented by attention codelets and the Global Workspace. In 

contrast, “orienting” involves the execution of behaviors that modulate the operations and 

concerns of attention codelets. This may involve spawning new attention codelets or directing 

their interests towards specific portions of LIDA’s Perceptual Scene (or types of content within 

it). 

Orienting behaviors can either be overt or covert. Eye and head movements are examples 

of overt orienting behaviors. However, attention can also be oriented through purely covert 

means, using internal mechanisms alone. For example, an individual may be looking directly at 

an object, and yet attending to something in their peripheral field of vision (e.g., see Posner et al., 

1978).14 

Recall that Kosslyn’s (1994) proto-model includes an Attention Window that is used to 

delineate an agent’s visual locus of attention. Kosslyn described the Attention Window as a 

contiguous set of points that could be overlaid on portions of the Visual Buffer. As such, the 

Attention Window enables the separation of the focus of visual attention from foveal sensory 

content, which would presumably be in the center of the Visual Buffer during normal perception. 

 

14 Though non-visual modalities have received far less research, orienting mechanisms have been demonstrated for 

other sensory modalities, including auditory (Mondor & Zatorre, 1995; Spence & Driver, 1994) and tactile (Spence 

& Gallace, 2007) modalities. 
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Moreover, Kosslyn’s Attention Shifting Subsystem provides the means for executing overt and 

covert orienting behaviors that adjust the position and shape of the Attention Window. 

Hoffman and Subramaniam (1995) conducted a series of experiments in which they 

investigated the relationship between saccadic eye movements and the covert orienting of 

visuospatial attention. They interpreted the results of their study to suggest that overt, orienting 

behaviors (e.g., saccadic eye movements) depend on preliminary, covert, orienting behaviors. 

This view is broadly consistent with Rizzolatti’s “premotor theory of attention” (Rizzolatti et al., 

1987), which posits that overt and covert orienting behaviors are controlled by common 

underlying mechanisms. In both cases, a “motor program” is generated; however, physical 

movements (e.g., eye movements) are blocked by the nervous system during purely covert 

executions. The premotor theory of attention is supported by numerous neuroimaging-based 

(e.g., fMRI) studies that show substantial overlap in neural activations when subjects performed 

covert and overt orienting behaviors (Beauchamp et al., 2001; de Haan et al., 2008; Nobre et al., 

2000). This theory also accords with Jeannerod’s (2001) theory of motor cognition, which was 

introduced in Chapter 2. 

Finally, orienting behaviors can be either reflexive or volitional. For example, eye 

movement can be driven unintentionally (reflexively) based on environmental stimuli (e.g., 

unexpected moment in the peripheral visual field), or intentionally (volitionally) based on a pre-

meditated oculomotor trajectory. Reflexive forms of orienting are often referred to as 

“exogenous,” while volitional forms of orienting are referred to as “endogenous” (Carrasco, 

2011). These two modes of attention seem to follow different time courses (Busse et al., 2008) 

and appear to be based on different cognitive processes and neural systems (Chica et al., 2013). 
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Furthermore, reflexive (exogenous) forms of attentional shifts are believed to be unavailable 

during mental imagery (Kosslyn, 1994, p. 102); therefore, the focus of this section will be on 

endogenous attentional shifts. 

There are several options for implementing endogenous (i.e., intentional), covert 

orienting behaviors in LIDA. All of these options depend on internally executed behaviors to 

initiate covert attentional shifts, and the associated changes within the preconscious Workspace 

modulate LIDA’s attentional processes (i.e., attention codelets). Each option considered proposes 

a different mechanism for effecting the necessary attentional biases—i.e., how attention is 

focused on specific content within LIDA’s Perceptual Scene. 

The first option involves spawning or activating attention codelets that are focused on 

specific representations in LIDA’s Current Situational Model; for example, they may be 

concerned with visual sensory content contained in a bounded region of LIDA’s Perceptual 

Scene (cf. Kosslyn’s Attention Window). These attention codelets are created based on internally 

executed orienting behaviors. This mechanism is similar to LIDA’s use of “expectation codelets” 

(D’Mello et al., 2006) to bias attention towards anticipated action consequences. 

A second option involves the creation of transient, preconscious representations (e.g., 

“attention-directing” nodes) that modulate LIDA’s attentional processes. For example, structure 

building codelets could be spawned (or activated)—via internally executed behaviors—that 

augment specific preconscious representations with associated (linked-to) attention-directing 

representations. Corresponding attention codelets could then scan the Workspace, looking for 

structures containing that “decorated” content. Coalitions containing these structures could then 

be brought to the Global Workspace to compete for inclusion in a global broadcast. 
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A third, and final, option requires the introduction of a persistent data structure within the 

Perceptual Scene that specifies an agent’s current attentional foci. This data structure would 

function like a multimodal version of Kosslyn’s Attention Window, continually directing the 

activities of a set of attention codelets towards content demarcated by those attentional foci. This 

data structure could be viewed as an enhancement to LIDA’s Perceptual Scene that allows an 

agent’s attentional concerns to be explicitly represented with respect to the contents of the 

Perceptual Scene. Internally executed orienting behaviors could then be used to adjust the 

parameters (e.g., the location and extent) of those attentional foci. 

At this point, it is unclear which of these options (if any) is preferable. Option three (i.e., 

a multimodal “attentional window”) could most easily support the incremental, attentional shifts 

observed in many experiments based on visual modalities (Cave & Kosslyn, 1989; Eriksen & 

Murphy, 1987; Eriksen & St. James, 1986; Kosslyn, 1994, p. 94). However, Posner et al. also 

argued that orienting is an “active process” (Posner et al., 1984) that requires continual 

maintenance, rather than a passive filter that can be “set in place and left” (Posner, 1980, p. 8). In 

contrast, options one and two are “active processes” that require continual maintenance, but it is 

less clear how they could support incremental attentional shifts—e.g., what internal state is being 

maintained and shifted? As such, it is possible that some combination of these option should be 

used. What is clear is that each of these options makes different predictions that require 

additional scrutiny, however, that exercise is beyond the scope of this manuscript. 

Image Maintenance. All of LIDA’s representations and codelets are subjected to activation 

decay (see Franklin, Strain, et al., 2013, sec. 4.7), and, in the absence of sufficient reinforcement, 

they are eventually purged from an agent’s short- or long-term memory modules. Image 
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maintenance is, therefore, required to ensure that the sensory and perceptual representations 

associated with mental simulations—in LIDA’s Perceptual Scene—remains available to 

imagistic and perceptual processes. 

Kosslyn hypothesized that the maintenance of (visual) mental images is based on the re-

activations of “compressed image representations” and attentional processes (Kosslyn, 1994, p. 

325). He also argued that image maintenance does not depend on image generation, at least not 

the processes “that are used to integrate parts into an image during image generation” (Kosslyn, 

1994, p. 321). This position was based, in part, on the findings of neuroimaging studies that 

show a lack of activation in brain areas associated with image generation (e.g., Uhl et al., 1990). 

Additional arguments against full-blown image generation could be made based on the 

variability inherent in mental simulation. Recall that mental simulation is a dynamic process (see 

Chapter 5), where each generative event typically produces different sensory content. With 

respect to the current computational implementation, this variability can occur as the result of 

several factors. The most direct cause is the use of a probabilistic sampler to implement the 

simulator structure building codelet (see Chapter 5, Simulator Structure Building Codelets). 

Depending on the magnitude of the standard deviations15 associated with a sensory 

representation (i.e., modal probability distributions), even single-part reconstructions can vary 

considerably (see Figure 34). Multi-part reconstructions would compound this issue. Therefore, 

if image generation were involved in image maintenance, there would likely be perceptible 

alterations in an underlying mental simulation following each generative event. 

 

15 Recall from Chapter 5 that 𝛽-VAEs produce sensory representations that are composed from a vector of means 

(𝜇) and a vector of standard deviations (𝜎⃗). 
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A more significant source of variability can occur due to changes in the activations within 

PAM. Recall that the simulation of grounded concept representations (see Chapter 5) requires 

top-down iteration—from nodes with higher to lower conceptual depth—until modal nodes 

containing sensory representations are activated. Depending on the activation dynamics within 

PAM, the specific tokens (i.e., category members) that are selected for simulation may change 

along with their properties (e.g., colors and textures). 

Given the above, I propose a simple implementation of image maintenance based on the 

direct reinforcement of preconscious Workspace activations. In particular, conceptual/perceptual 

nodes and their associated mental simulations in the Perceptual Scene can be reinforced if that 

content is included in a global broadcast. The global broadcast is received by all of LIDA’s 

modules, including the preconscious Workspace; therefore, the Workspace could use that content 

to increase the activations associated with its preconscious representations (including mental 

simulations). This is supported by the execution of internal “orienting” behaviors that bias an 

agent’s attention towards specific representations and their mental simulations—thus, increasing 

the likelihood that they will come to consciousness and be reinforced.   

As a direction of future work, the relationship between image maintenance and working 

memory (Baddeley, 1992; Baddeley & Hitch, 1974, 1994) should be explored. In particular, 

modality-specific forms of working memory (e.g., visual working memory; Eng et al., 2005; 

Fougnie et al., 2012; Luck & Vogel, 1997; Vogel et al., 2001) and their relationship to mental 

imagery should be examined more deeply. 
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A LIDA-Based Agent 

A simulation-based LIDA agent was designed to be a “participant” in a perceptual experiment 

inspired by Kosslyn et al. (1990). While this agent was only partially implemented in software, 

its design and preliminary results provide a useful demonstration of the concepts developed 

throughout this manuscript. 

 The intent of this agent and its environment was to show how—through the overt 

execution of epistemic behaviors16—the consequences of an agent’s actions could be 

internalized, enabling the generation of experience-based predictions (e.g., action-based mental 

simulations) that support perception. It was also intended to show how the various perceptual, 

procedural, and imagistic processes detailed throughout this manuscript could be combined to 

implement a complete autonomous software agent. 

Environment 

Kosslyn et al. (1990) described a mental rotation experiment (referred to as “task 4”) in which 

participants were shown two panels. Each panel contained asymmetrical, connected shapes 

formed from randomly selecting five cells in a 4 x 5 regular grid (i.e., pentominoes; see Figure 

29). The shape in the left panel was always displayed upright and served as a reference image. 

The shape in the right panel was always rotated from its upright position (in multiples of 36°).  

 

16 Kirsh and Maglio (1994) defined epistemic actions as actions that are primarily intended to discover information 

or simplify problem-solving. Temporarily moving a chess piece to a new position on a chess board—to visualize the 

consequences of a candidate move— is an example of this. In contrast, they defined pragmatic actions as actions 

that are intended to directly bring an agent closer to its goals. 
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Figure 29. Materials and procedures used in mental rotation experiment. Kosslyn et al. (1990) referred to 

this experiment as Task 4. 

On half of the trials, participants were shown a shape in the right panel that was a rotated 

copy of the shape in the left panel. On the other half of the trials, they were shown a rotated, 

mirror image of the shape. Asterisks were placed at the corresponding tops of both stimuli, to 

minimize the difficulty of discovering the relative orientations of the two shapes. 

Figure 29 shows an example, upright shape (such as would appear in the left panel) along 

with several combinations of rotated or reflected and rotated shapes (such as those that would 

appear in the right panel). Participants were asked to decide whether the shapes shown in both 

panels were identical, regardless of their orientation. However, they were instructed that only 

two-dimensional rotations were allowed, “as would occur if a pattern were on a piece of paper on 

a table top and one could not lift it off the table” (Kosslyn et al., 1990, p. 1007). 
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A software environment (see Figure 30) was developed based on Kosslyn et al.’s (1990) 

experiment (“task 4”). This environment generates two 128 × 128 pixel, black-and-white 

images (one for each panel), and an agent’s task is to determine if the shapes in the left and right 

panel are the same. However, once an agent has made its guess, the environment provides no 

feedback to the agent as to the correctness of its shape classifications. It merely cycles to the next 

pair of shapes. Moreover, a few modifications were made to Kosslyn et al.’s (1990) experimental 

procedure to make these perceptual task more interesting and challenging for a software agent. 

 
Figure 30. Screenshot of the mental rotation experiment’s environment. 

 

The first change was to support 29 polyominoes—rather than the 12 pentominoes17 

supported by Kosslyn et al. (1990). These were composed by selecting five or fewer contiguous 

 

17 Kosslyn et al. stated that they used nine different stimulus shapes (1990, p. 1007), but it is unclear how they 

arrived at this number. There are 18 pentominoes, in total, but only 12 of them are asymmetrical under reflection—

i.e., their reflections produce distinct shapes. This leads to six stimulus shapes and six mirror images of those shapes. 

Therefore, I report their number of stimulus shapes as 12 here (rather than nine), but this does not necessarily mean 

Kosslyn et al.’s (1990) reporting is wrong—only that its derivation is uncertain. 
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cells from a 5 × 5 grid (18 pentominoes, 7 tetrominoes, 2 trominoes, 1 domino, 1 monomino; see 

Figure 41 in the Appendix).18 Furthermore, any combination19 of those shapes could be 

presented in the environment’s left and right panels (see Figure 31), rather than being limited to 

reflected or non-reflected versions of the same shape. The rationale for this change was to assess 

whether the software agent (described in the next section) could distinguish between shapes that 

highly resemble each other, but are, in fact, different shapes. For example, polyominos 2, 3, 9, 

and 24 (see Figure 41 in the Appendix) are very similar: they only differ in their number of 

components, not in their overall shape or the relationships between their parts. 

Same Shape (Non-Reflected) Same Shape (Reflected) Different Shapes 

   
 

Figure 31. Categories of sensory stimuli pairs. The same shape may be presented in both panels 

(rotations, vertical and horizontal translations, and scaling allowed). The same shape and its reflection 

may be presented (rotations, vertical and horizontal translations, and scaling allowed). Different shapes 

may be presented in each panel (rotations, vertical and horizontal translations, scaling, and reflections, 

allowed). 

 In addition to increasing the number of supported shapes (from 12 to 29), new shape 

transformations—vertical and horizontal translations, and zooming in and out—were added to 

further perturb the shapes in the right panel from their reference (upright) shapes in the left 

 

18 Technically, these counts refer to the number of “one-sided” polyominoes. If the mirror images of a polyomino 

cannot be rotated onto one another—so that they completely overlap—then they are considered distinct one-sided 

polyominoes. 

19 While the environment could present any pair of shapes, the environment’s pair selection was constrained such 

that half of those pairs would show the same (non-reflected) shape in both panels and the other half a different 

shape. 
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panel. In total, the environment supports the following shape perturbations: rotations20 in five-

degree increments, horizontal and vertical shifts21 in four-pixel increments, and nine different 

scales. Therefore, a (conservative) lower bound on the number of possible environmental states 

is over 40 million, with the right panel displaying any of approximately 1.4 million possible 

pixel patterns. 

Agent 

A LIDA-based agent was designed and partially implemented for the environment presented in 

the previous section. A high-level overview of its modules and processes is depicted in Figure 

32. Each is summarized in the sub-sections below. 

An important aspect of this LIDA agent is that its capacity to perform mental imagery 

operations is developed through environmental interactions. The perceptual and procedural 

knowledge resulting from these interactions is used as the basis for internal re-enactments that 

allow the agent to mentally simulate the effects of its actions on the world. This simulation-based 

LIDA agent is also intended to demonstrate that an agent’s perceptual system can be enhanced 

via mental imagery. In other words, mental simulation can be an “epistemic process” that 

supports the non-symbolic generation of new knowledge. 

 

 

 

20 Note that the number of distinct rotations that are possible for each shape differs due to object symmetries. For 

example, shape 13 has 72 distinct rotational orientations (see Figure 42 in the Appendix), while shape 1 only has 18. 

21 The number of possible vertical and horizontal translations supported for each shape is different depending on 

their size and composition—ranging from 3 to 28 shifts in each direction); however, the majority of shapes support 

at least 10 translations in each direction, with many supporting over 20. 
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Figure 32. Cognitive cycle diagram for a LIDA-based agent. Both internally and externally executed 

behaviors are depicted. The agent’s Procedural Memory and Action Selection modules were based on the 

schema-mechanism-based implementations described in Chapter 6. 

To imitate a developmental period, the LIDA agent described in this section begins its 

life with an initial “play” phase, during which it is able to directly manipulate the shapes in the 

right panel. During this phase, the agent was capable of  

(1) rotating shapes (clockwise or counterclockwise),  

(2) translating shapes (vertically or horizontally),  

(3) moving shapes (closer or further away), and  

(4) advancing to the next shape. 
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Following the play phase, the agent lost the ability to move the pieces in the right panel. Its only 

available (external) actions were to decide—based on mental simulation and perceptual 

processes—whether the shapes presented in the environment’s left and right panels were the 

same or different. 

Sensory Memory. Sensory Memory was implemented using a convolutional neural network 

(CNN; see Krizhevsky et al., 2012; LeCun & Bengio, 1995) based 𝛽-VAE (Higgins et al., 

2017).22 Recall (from Chapter 5) that variational autoencoders (VAEs; Kingma & Welling, 2013) 

are generative connectionist architectures composed of an encoder (or “recognition”) network 

and a decoder (or “generative”) network. The encoder network was used to implement Sensory 

Memory’s low-level visual feature detectors. The decoder network was used to support the 

generation of mental simulations (see Chapter 6, Simulator Structure Building Codelets). 

On receiving visual sensory stimuli (i.e., two 128 × 128 pixel, black-and-white images), 

those images were integrated into a simple visual sensory scene containing a pixel layer 

segregated into two panels. The VAE’s encoder23 network was then used to separately generate 

sensory representations (i.e., modal probability distributions) corresponding to the content in 

each panel within the pixel layer. These sensory representations were then sent to the agent’s 

Current Situational Model (over LIDA’s “ventral stream”). 

 

22 The 𝛽-VAE’s overall architecture is summarized in Figure 38 of the Appendix, and its encoder and decoder 

network architectures are summarized in Figure 39 and Figure 40, respectively. 

23 The 𝛽-VAE’s encoder network (see Figure 39 in the Appendix) was composed of four alternating convolutional 

and max pooling layers. 3 × 3 filters were used for all convolutional layers, with the number of filters per layer 

varying from 32 to 256. 
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Perceptual Associative Memory. Perceptual Associative Memory (PAM) was implemented as 

a content-addressable activation graph (see Chapter 5). This graph contained learned grounded 

concept representations for shapes in various orientations, as well as several built-in feature 

detectors. Built-in feature detectors24 included “same,” “different,” “left,” and “right” amodal 

nodes, and a feeling node that quantified an agent’s “certainty” (positive valence sign). The 

“certainty” node was activated by a classifier structure building codelet (described later) based 

on content in the Current Situational Model. 

  Learned, elementary grounded concept representations (see Chapter 5) corresponding to 

encountered shapes were activated (i.e., received current activation) via their modal constituents 

(i.e., grounding modal nodes). Specifically, a modal node’s current activation is based on the 

scaled25, cosine similarity between its associated sensory representation and those for real or 

imagined sensory stimuli (in the Perceptual Scene). This current activation can then spread from 

modal nodes to their connected amodal nodes. If nodes receive sufficient activation, a reference 

to these node structures was add to the Current Situational Model (CSM)—i.e., they were 

instantiated into LIDA’s Workspace. 

Structure Building Codelets. Several structure building codelets (SBCs) were implemented in 

support of perception and mental simulation. These included a sensory-integration SBC, a 

simulator SBC, a classifier SBC, and a timekeeper SBC.  

 

24 Ideally, the concepts of “same,” “different,” “left,” and “right” would be learned from experience. However, that 

level of conceptual generalization is well beyond the current implementation’s capabilities. As a result, structure 

building codelets were used to “cue” this content (i.e., activate it in a top-down fashion from the Current Situational 

Model). 

25 A sigmoidal activation function (see Figure 43 in the Appendix) was used to scale these cosine similarities to 

derive the modal nodes’ current activation values. 
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The sensory-integration SBC (cf. “multimodal-binding” SBC, Chapter 5) bound sensory 

representations—generated by Sensory Memory’s encoder network—to coordinating amodal 

nodes. The resulting node structures were then integrated into the agent’s Perceptual Scene—in 

association with either the left or right visual sensory scene elements. Conceptually, this can be 

viewed as linking amodal node structures to their corresponding locations in the agent’s visual 

field using “place nodes” (Madl et al., 2016).26  

The simulator SBC for this agent was limited to fulfilling action-based mental 

simulations (i.e., spontaneous/involuntary mental simulations were not implemented). Whenever 

a behavior was selected for internal execution by Action Selection, its result was mentally 

simulated (via the 𝛽-VAEs generative network) in the Perceptual Scene’s right panel. In 

particular, the simulator SBC located the grounding sensory representation (modal probability 

distribution) for this node structure by iterating backward over (referential) activation links in a 

top-down fashion. Once located, the modal probability distribution was first passed through a 

sampler, which selected a single 16-dimensional latent vector from that probability distribution. 

This latent representation was then passed through the 𝛽-VAEs decoder network to generate a 

mental simulation of that scene element. (Figure 34 demonstrates the quality and variability of 

simulations for several shapes.) The simulator SBC then integrated this node structure and its 

associated mental simulation into the Perceptual Scene. This operation was performed by adding 

 

26 Even if bottom-up perception resulted in the instantiation of a PAM node (i.e., the sensory content in the visual 

sensory scene was “recognized”), these real and virtual sensory representations were still associated with a unique 

amodal node that characterized that sensory experience. This supported the agent’s ability to differentiate between 

multiple, identical objects in the same sensory scene (among other things). (This operation corresponds to Step (3) 

of the “multimodal perception” process described in Chapter 5.) 
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the node structure to the Perceptual Scene’s node layer in association with the right panel, and its 

mental simulation was added to the visual sensory scene’s right panel.  

The classifier SBC monitored the node layer of the agent’s Perceptual Scene. If the 

sensory content in the left and right panels were associated with the same shape (based on a 

comparison of their associated sensory content), then the classifier SBC created a “same” node in 

the Current Situational Model, which was then linked to the elementary grounded concept 

representations for those shapes in the Perceptual Scene. The “certainty” feeling node was also 

activated (given current activation), based on the scaled, cosine similarities between those 

shape’s sensory representations.27 

 Finally, a timekeeper SBC was used in support of deliberation. In particular, each time 

the agent executed an action to advance to the next set of shapes in the environment, it entered 

into a deliberative mode of action selection. In particular, a “different shape” proposal was 

immediately generated on advancing the environment to the next shape, and a deliberation timer 

was started by a timekeeper SBC. If the timer expired before a “same” node was generated by 

the classifier SBC—which is functioning as an objector from James’s ideomotor theory (see 

Franklin et al., 2016, sec. on Volitional decision making)—then the agent decided that the shapes 

were different. Otherwise, the “same” node might be consciously broadcast and used to 

instantiate an appropriate overt behavior for indicating that the shapes are the same. 

Attention Codelets. Two attention codelets were implemented. The first was a general-purpose, 

activation-based attention codelet (referred to as a “default attention codelet” by Franklin et al., 

 

27 Ideally, this operation would have been based on orienting behaviors and image introspection. 
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2016, p. 118). This attention codelet sought content in the Current Situational Model with the 

highest total activations. The second was a reconstruction-error-based attention codelet, that 

sought content associated with mental simulations that had high reconstruction errors. 

Procedural Memory and Action Selection. Procedural Memory and Action Selection were 

implemented based on an enhanced, LIDA-compatible version of Drescher’s schema mechanism 

(see Chapter 6). Procedural Memory was initialized with built-in “bare” schemes (see Chapter 6) 

for each of the agent’s primitive actions: clockwise and counterclockwise rotation, zooming in 

and out, vertical and horizontal translations, indicating “same” shape, and indicating “different 

shape). From these, all other schemes were learned. Action Selection’s internal vs. external 

behavior determination logic was simplified to a simple toggle: rotations, zooming, and 

translations were externally executed in “play mode” and internally executed otherwise. 

Same/different shape actions were always externally executed. 

Results 

As I previously stated, this design was only partially implemented. Sensory Memory and 

Perceptual Associated Memory were largely implemented, along with a classifier structure 

building codelet and a simulator structure building codelet; however, these were never fully 

integrated with the schema-mechanism-based Procedural Memory and Action Selection 

implementations developed in Chapter 6. Complicating factors included: 

(1) the lack of a generalization process combined with a missing comprehensive decay 

strategy made learning too prolific to be scalable, 

(2) an unclear strategy for integrating incoming sensory stimuli with imagined sensory 

stimuli, 
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(3) the limited scalability of Procedural Memory’s composite actions (i.e., behavior streams). 

Each of these items could be addressed in the future, but they require a prohibitive amount of 

additional conceptual and computational work to be included in this manuscript. 

 
Figure 33. Perceptual variance. Polyominos surrounded by blue bounding boxes depict the reference 

image that other images are compared. The numbers above polyominos depict the cosine similarities 

of their corresponding sensory representations (i.e., 𝛽-VAE generated modal probability distributions). 

 

One interesting finding was that the convolutional neural network (CNN) based 

implementation of Sensory Memory is relatively sensitive to changes in the scale, rotation, and 

position of objects (see Figure 33). For example, a rotation difference of 10 degrees was 

sufficient to drop that shape’s node’s current activation below the Perceptual Associative 

Memory (PAM) instantiation threshold. That is, it would no longer be recognized as the same 
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shape. Consequently, mental simulations (specifically, action-based mental transformations) 

appear to be crucial for enabling this agent to perform its perceptual task. 

In general, the 𝛽-VAE based simulator SBCs worked well for this environment. Mental 

simulations also exhibited the expected perceptibility (i.e., ability to be recognized by PAM) and 

variability (see Figure 34). The activation of PAM using sensory representations also generally 

worked well (see Figure 44 in the Appendix). Furthermore, modal nodes (see Chapter 5) for 

shapes that resembled one another received some degree of joint activation when those shapes 

occurred in the Perceptual Scene—for example, notice the joint activations for shapes 3, 9, and 

24 in Figure 44 in the Appendix.28 This suggests that more sophisticated recognition tasks may 

require a part-by-part inspection of similar objects to determine their identities. 

 
Figure 34. Simulation quality and variability. Mental simulations were generated for learned sensory 

representations corresponding to the “original” images on the left. 

 

 

28 Figure 41 of the Appendix contains all polyomino shapes and their identifying numbers, for reference. 
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 As a final note, the 𝛽-VAE’s latent space appears to have learned some degree of 

“disentanglement” (see Chapter 5), though it can only be used in a very limited way to 

extrapolate beyond seen shapes. Figure 45 shows the simulations corresponding to sensory 

representations that lie on the same hyperplane as two reference shapes. Stepping between those 

shapes on the hyperplane (i.e., interpolation) worked fairly well—i.e., the expected perturbations 

(zooming, rotation, and translation) were apparent. However, the integrity of the shapes was 

eventually compromised when moving further away from those points on a hyperplane (i.e., 

extrapolation). 

Related Work 

There have been several attempts at implementing mental imagery within cognitive architectures. 

I review two of these below. Shanahan’s architecture was chosen because it is likely the only 

other Global Workspace Theory (GWT) based cognitive architecture that implements mental 

simulations. Soar was chosen because it provides a nice counterpoint to the implementation 

developed here. 

Shanahan’s Architecture 

Shanahan (2006) proposed a brain-inspired cognitive architecture that implements internal 

simulations, analogical representations (via topographically organized maps of neurons), and 

portions of Global Workspace Theory (GWT; Baars, 1988). Shanahan’s architecture combines a 

low-level, reactive, behavioral system with a higher-level, predictive system that “simulates” 

action outcomes. These simulations can elicit affective responses (i.e., “emotions”) and guide 

action selection.  
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Shanahan’s action selection is based on the “salience” of is actions, where possible 

actions are recommended by its low-level, reactive system. If one of the recommended actions is 

sufficiently salient, then it will be directly executed by its low-level system; otherwise, the 

higher-level predictive system will intercept its execution simulate its outcome. If the predicted 

outcome produces a sufficiently high affective response (i.e., emotional response), the salience of 

its corresponding action may be sufficient for enough to be executed. If not, alternate actions will 

be simulated until one has sufficient salience for execution. 

Shanahan’s architecture has many similarities to the LIDA-based implementation 

proposed here. Some of these are listed below: 

1. It is based on the Global Workspace Theory (GWT) of consciousness.  

2. It features internal (mental) simulations.  

3. It uses analogical (iconic) representations.  

4. It implements affective appraisals that can be used to evaluate the desirability of 

simulated outcomes. 

5. It has a low-level reactive system that is roughly analogous to LIDA’s Sensory Motor 

System. 

6. It has a high-level predictive system that resembles the iterative execution of LIDA’s 

internal behaviors combined with perceptual cueing for affective appraisals of their 

expected results. 

However, there are also many differences (see Table 3). 
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Table 3. Comparison between Shanahan’s cognitive architecture and LIDA. 

Shanahan’s Architecture LIDA 

purely connectionist architecture, based on 

“weightless neural networks” (Aleksander et al., 

2009) 

hybrid, neuro-symbolic architecture 

learning is supervised—e.g., based on a 

predefined training script (Shanahan, 2006, p. 

445) 

learning is unsupervised 

utilizes analogical, non-symbolic representations utilizes analogical, non-symbolic representations 

and non-analogical, symbolic representations 

single sensory modality (i.e., vision) multi-modal 

potential actions are recommended by a reactive 

online system—based on current sensory inputs 

(i.e., “real” inputs) 

potential actions (i.e., behaviors) are 

recommended by an offline cognitive system (via 

Procedural Memory)—based on an internal model 

of the current situation that contains both “real” 

and “virtual” sensory content 

mental simulations are always directly related to 

current action possibilities (i.e., proximal 

intentions) 

mental simulations can be arbitrarily detached 

(spatially and temporally) from an agent’s 

immediate concerns 

does not distinguish between unconscious and 

conscious mental simulations 

models preconscious, never conscious, and 

conscious mental simulations 

learning is based on direct associations between 

neural areas, bypassing the global broadcast—i.e., 

learning is largely (exclusively?) unconscious 

all learning in based on the global broadcast—i.e., 

learning requires consciousness 

 

 

 Shanahan’s architecture is elegant, but it is relatively limited in the cognitive phenomena 

is can model. Mental simulation can be seen as a minimal, predictive (offline) extension to a 

reactive (online) behavioral core, and this capability is only employed when the consequences of 

its current actions lack sufficient salience (i.e., desirability). In particular, Shanahan’s 

implementation of mental simulation is confined to the prediction of action consequences, and 

those predictions are largely tethered to an agent’s immediate environmental conditions (i.e., its 
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current place and time). As such, Shanahan’s architecture has no ability to imagine 

counterfactuals or to anticipate distal events: mental simulations of distant places or points in 

time are impossible. Moreover, Shanahan does not attempt to utilize mental imagery for 

perceptual discrimination or creative tasks. Imagery is solely used to assess the salience 

(desirability) of action consequences.  

Shanahan’s architecture has a very basic internal environment with a single sensory 

modality, and it makes no attempt to integrate “real” sensory content with “virtual” sensory 

content. Its implementations of long-term memory (via a long-term visual buffer) and learning 

(based on a predefined script) are also very limited. While Shanahan’s information processing 

features a global broadcast that was inspired by Baar’s (1988) Global Workspace Theory, it does 

not appear to distinguish between unconscious, pre-conscious, and never conscious 

representations and mental simulations.  

The LIDA-based implementation developed throughout this manuscript does not suffer 

from these limitations. Therefore, it can be used to model a much larger cross-section of 

cognitive phenomena that Shanahan’s architecture. That said, LIDA is also exceedingly 

complicated, and its computational implementation is far from complete. 

Soar 

The Soar cognitive architecture (Laird, 2012) has its roots in the early work of Allen Newell and 

Herbert Simon, particularly the Logic Theorist (Newell & Simon, 1956) and the General 

Problem Solver (Ernst & Newell, 1969). Subsequent work by John Laird and Paul Rosenbloom 

expanded on these methods to create a general-purpose cognitive architecture that is less 

problem specific than its predecessors. 
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For much of its history, Soar was a purely symbolic cognitive architecture. However, 

more recently, non-symbolic processes have been added (Lathrop & Laird, 2007; Wintermute, 

2012). Laird describes Soar’s non-symbolic processes (e.g., mental imagery) as “co-symbolic” 

(Laird, 2012, p. 21); that is, they are processes that manipulate non-symbolic representations in 

service of Soar’s symbolic decision-making and reasoning algorithms (e.g., means-ends analysis, 

backward chaining, and operator subgoaling; see Laird, 2012). 

Wintermute (2012) detailed Soar’s most recent implementation of mental imagery. Like 

Shanahan’s architecture, this work focused exclusively on the internal simulation of action 

consequences, which Wintermute referred to as “simulative imagery” (Wintermute, 2012, p. 3). 

Wintermute was also primarily concerned with imagery for spatial tasks, though the same basic 

design could be extended to other problem domains.  

Soar supports several imagery operations that are functionally analogous to Kosslyn’s 

image generation and image transformation (described earlier in this chapter). Image generation 

is implemented using “memory retrieval” and “predicate projection” (see Wintermute, 2012, p. 

12). Image transformation is implemented using special-purpose, continuous action controllers 

(e.g., navigation planners). These controllers often support both the execution and simulation of 

actions (see Wintermute, 2012, p. 12). (Soar does not support functional equivalents to Kosslyn’s 

image introspection or image maintenance.) 

Once Soar’s imagery processes generate and manipulate their non-symbolic 

representations, high-level perception then maps them to symbolic representations (e.g., 

predicates). Prior to Wintermute’s (2012) implementation of mental imagery, there was no need 

to distinguish between “low-level” and “high-level” perception in Soar. Environmental stimuli 
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were transduced directly into symbolic representations, without intervening non-symbolic 

representations. After introducing mental imagery, there was a need to specify both low-level 

and high-level perceptual operations in Soar. Low-level perception transforms raw 

environmental states (sensory stimuli) into non-symbolic representations. High-level perception 

then transforms non-symbolic representations into symbolic representations (see Figure 35, Left 

Panel). Soar’s actions were similarly split into low-level and high-level actions. 

Figure 35 contains a side-by-side comparison of Soar (left panel) and LIDA (right panel) 

using the functional and representational terminology established by Wintermute (2012). As this 

diagram demonstrates, both architectures support roughly comparable functional components; 

however, the interactions between these components are often quite different. Soar and LIDA 

also use different representational formats. Where LIDA’s representations are generally hybrid 

(symbolic/non-symbolic) and fully integrated (depicted as 𝑅𝑎/𝑅𝑐), Soar’s representations are 

segregated into symbolic (𝑅𝑎) or non-symbolic (𝑅𝑐) representations.  

To delve deeper into these architectural differences, Wintermute’s functional 

designations were mapped to their closest corresponding LIDA modules and processes. These 

are depicted in Figure 36. Low-level perception corresponds to the activation of low-level feature 

detectors in LIDA’s Sensory Memory and the subsequent generation of sensory representations. 

High-level perception corresponds to the bottom-up activation and cueing of Perceptual 

Associative Memory (PAM), and the instantiation of any resulting percepts. Low-level action 

corresponds to the execution of motor plans by Action Execution—i.e., sending motor 

commands to an agent’s actuators. And high-level action corresponds to the instantiation and 
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selection of behaviors (instantiated schemes) by LIDA’s Procedural Memory and Action 

Selection modules, respectively. 

 

Figure 35. High-level comparison of Soar’s and LIDA’s mental imagery implementations. The left panel 

shows Soar’s implementation based on Fig. 7(a) from Wintermute (2012). The right panel shows LIDA’s 

implementation in a similar style. 𝑅𝑎 and 𝑅𝑐 denote “abstract” and “concrete” representations 

respectively. These terms are used by Wintermute (2012) instead of symbolic and non-symbolic 

representations, though their usages appear to be functionally equivalent. 

Decision is the most challenging functional component to map, as LIDA’s decision-

making processes are more diffuse and subtle than Soar’s. To a first approximation, Soar’s 

decision processes likely correspond to the following components in LIDA: (1) preconscious 

activity in LIDA’s Current Situational Model (e.g., the cueing of long-term memory modules and 

the creation of preconscious content by structure building codelets), (2) the attentional processes 
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that operate on those preconscious representations (i.e., attention codelets, the competition in the 

Global Workspace, and “orienting” behaviors), (3) Action Selection’s choice of a behavior for 

internal or external execution, and (4) the “epistemic” behaviors29 that support perception and 

simulation-based offline cognition. 

 

Figure 36. Functional mapping of LIDA's module and processes for comparison with Soar. Recall 

that 𝑅𝑎 and 𝑅𝑐 stand for “abstract” (symbolic) and “concrete” (non-symbolic) representations, 

respectively. 𝑅𝑎/𝑅𝑐 stands for a hybrid representation that integrates both. 

While some of the differences between LIDA and Soar are quite subtle, there are some 

fundamental differences between these architectures that manifest in their implementations of 

mental imagery. Table 4 summarizes many of these differences.  

 

29 Epistemic behaviors (cf. “epistemic actions”; see Kirsh & Maglio, 1994) might include internally executed 

epistemic behaviors (e.g., image transformations) or externally executed epistemic behaviors (e.g., moving a chess 

piece on the board to visualize that new position). 
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Table 4. Comparison between Soar and LIDA. 

Soar LIDA 

Decision processes are based on rule-based 

symbolic manipulation. 

Decision processes are based on imagistic and 

perceptual processes that operate on hybrid 

(symbolic/non-symbolic) representations. 

Imagery is a built-in capability based on the 

execution of special-purpose continuous action 

controllers in “imagery mode.” 

Imagery is a learned capability based on the 

internal (covert) execution of behaviors that were 

acquired through the internalization of external 

(overt) action consequences. 

Imagery is initiated by the execution of high-level 

(abstract) actions, but subsequent imagistic 

operations (e.g., transformations) are fulfilled by 

built-in continuous action controllers. 

Volitional mental imagery is based on the 

iterative, often multi-cyclic, execution of internal 

behaviors. 

Supports a single sensory modality (i.e., spatial) Supports multi-modal mental simulations 

Imagery is based on purely non-symbolic 

representations. 

Imagery is based on hybrid (symbolic/non-

symbolic) representations. 

Supports the simulation of action consequences 

(i.e., “simulative imagery”) 

Supports the simulation of action consequences 

and non-action-based mental simulations (e.g., the 

mental simulation of objects, events, situations, 

etc.) 

Imagery is optional. It is only needed when agents 

are faced with tasks that require highly detailed 

representations. 

Imagery is pervasive. Perception is continually 

supported by mental simulations. Conscious 

thought is largely imagistic. 

Imagery’s primary function is to augment abstract 

(symbolic) representations with additional details.  

Imagery is a core function of simulation-based 

cognition. It supports offline cognition via 

experience-based predictions, image 

transformations, and introspection (among other 

things). 

 

As with Shanahan’s architecture, Soar is more focused on solving fundamental 

engineering problems, whereas LIDA is more focused on cognitive modeling. As a result, LIDA 

can conceptually model more mental-imagery-related cognitive phenomena than Soar—e.g., 

spontaneous and intentional mental imagery, image inspection and image maintenance, 

conscious vs. unconscious mental simulations, multi-modal perception and simulation, etc. LIDA 
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also models and implements how procedural and perceptual learning support the capacity to 

mentally simulate one’s action and their consequences. By comparison, Soar largely delegates its 

imagistic operations to built-in continuous-action controllers. 

Perhaps the largest difference between these architectures relates to their views on the 

role and importance of mental imagery in supporting offline cognition. Wintermute (2012) 

contended that imagery is primarily needed to compensate for the informational differences 

between non-symbolic and symbolic representations. According to Wintermute, environments 

must be internally represented at variable levels of detail—balancing precision vs. abstraction—

and he viewed imagery as the mechanism by which the more detailed representations are 

manipulated. In contrast, the implementation of LIDA proposed here uses mental imagery as the 

primary mechanism for generated new knowledge, rather than rule-based symbolic 

manipulations. Thought and decision-making in the LIDA implementation developed here is 

inherently imagistic and perceptual, not symbolic. And, in this view, mental simulation is 

foundational to offline cognition. 

As a final note, supporting “simulative” mental imagery required considerable 

architectural changes in Soar. Perception and action had to be split into high-level and low-level 

components, and a completely new class of representations (i.e., non-symbolic representations) 

needed to be supported. By contrast, LIDA’s more full-featured implementation of mental 

imagery was largely enabled by expanding on existing architectural components. 

Discussion 

Embodied, simulation-based cognition depends on the coordinated application of imagistic and 

perceptual processes. These “epistemic devices” (Fisher, 2006) generate, and make available, 
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new knowledge by allowing individuals to “simulate reality at will” (Moulton & Kosslyn, 2009). 

Past events can be recreated, future events anticipated, and current events augmented (e.g., based 

on their most probable causes; Albright, 2012). These epistemic processes operate both 

consciously (mental imagery) and unconsciously (mental simulation) in support of offline and 

online cognition. 

Mental imagery is an exceedingly complex and multi-faceted cognitive ability, and many 

of its aspects remain poorly understood. However, a core theme has emerged throughout this 

thesis is that cognitive is not only in service of action (Franklin, 1995; M. Wilson, 2002), it is 

substantially action-based; that is, cognition is action. Simulation-based reasoning is, by and 

large, an active process, based on the internal (covert) execution of behaviors. This internal 

execution of behaviors controls multi-part image generation, image transformation, image 

inspection, and modulates the attentional components of image maintenance.  

The LIDA implementation presented here predicts that mental imagery, mental 

simulation, and active perception crucially depends on consciously mediated, volitional, and 

perhaps even automatized forms of action selection. Furthermore, mental imagery develops as a 

skill, based on the internalization of environmental interactions that manifest through the 

acquisition of procedural and perceptual knowledge. 
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Chapter 8 

Closing Remarks 

Theories of embodied, simulation-based cognition solve what Pezzulo and Castelfranchi (2007) 

called the symbol detachment problem. These theories explain 

(1) how representations and processes can be decoupled (temporally, spatially, or otherwise) 

from a cognitive system’s immediate inputs (sensory stimuli) and outputs (motor 

commands), and 

(2) how these “detached” representations and processes can retain their grounding, 

intentionality, and embodiment. 

ES-Hybrid—the cognitive theory developed throughout this manuscript—falls within this 

tradition. 

Contributions  

Like most cognitive theories, ES-Hybrid developed in response to specific shortcomings in its 

predecessors (e.g., perceptual symbol systems; Barsalou, 1999). In particular, ES-Hybrid 

attempts to provide a unified account of concrete and abstract concept representation, and to be 

more amenable to computational implementations and lower-level conceptual models (such as 

those that were developed within the LIDA cognitive architecture). 

While ES-Hybrid models both grounded and ungrounded cognition, it is, by and large, a 

theory of grounded cognition. However, rather than assuming that grounding is a compulsory 

property of mental representations (cf. perceptual symbol systems), it assumes that grounding is 

a desirable property that needs to be established through experience and speculation. In this 
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conception, grounding is not a singular event but, rather, the gradual acquisition of information-

bearing associations with one’s (internal or external) environment. Some representations—in 

particular, those created by predictive processes to represent hypothetical, unknown referents—

are initially ungrounded. And yet, those representations are almost always eventually grounded.30 

A fundamental assumption of ES-Hybrid is that cognitive systems make extensive use of 

amodal representations (i.e., symbolic representations). These amodal symbols have their closest 

biological analogs in Damasio’s (1989) convergence zones and the trans-modal “hubs” that are 

used in hub-and-spoke models. That is, they are coordinating representations that “point to” 

where information is located, without directly encoding that content.31 Crucially, the use of 

amodal representations does not necessitate the use of explicit, rule-based, symbolic 

manipulations.  

According to ES-Hybrid, all mental representations are best viewed as composite 

modal/amodal structures. In this view, I am in agreement with Michel (2021) who argued that 

the modal/amodal dichotomy is best viewed as a graded property—i.e., representational 

structures can be characterized as points on a spectrum between purely modal and purely 

amodal. 

 

 

30 While I did not discuss this possibility earlier in the manuscript, it is likely that representations could lose their 

grounding—for example, as a result of interference, decay, or damage to the nervous system. Therefore, grounding 

may be an impermanent property of representations that must be actively maintained. 

31 Compare this with “cross-modal conjunctive representations” (CCRs; Binder, 2016) and “compressed multimodal 

representations” (Barsalou, 2016a), which do encode modal information.  
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In addition to developing a new hybrid theory of embodied, simulation-based cognition, 

this work made numerous contributions to the LIDA cognitive architecture. Many of these are 

listed in Table 5. 

Table 5. Contributions to the LIDA cognitive architecture. 

 Contribution Chapter  

1 multimodal perception  5 

2 multimodal perceptual learning 5 

3 sensory representations 5 

4 grounded concept representations 5 

5 multimodal mental simulation 5 

6 simulation-based attention 5 

7 cognitive “object” maps 5 

8 “instructionist” procedural learning 6 

9 motor cognition 6 

10 behavior streams 6 

11 action selection → internal vs. external 6 

12 mental imagery → image generation 7 

13 mental imagery → image transformation  7 

14 mental imagery → image inspection 7 

15 mental imagery → image maintenance 7 
 

 

 

One strength of my implementation is that it did not require any major modifications to 

LIDA’s conceptual model. I added no new modules or submodules, and I only required a few 

modifications/expansions to LIDA’s existing modules, processes, and representational system. 

The most significant updates included 

(1) subtyping nodes into modal and amodal nodes (see Chapter 5), 

(2) subtyping activation links into referential and non-referential links (see Chapter 5), 

(3) adding new structure building codelets (e.g., simulator and multimodal-binding 

SBCs; see Chapter 5), 
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(4) adding new attention codelets (e.g., reconstruction-loss attention codelets; see 

Chapter 5), and 

(5) updating Action Selection to support the general, internal (covert) execution of 

behaviors (see Chapter 6). 

These minor alterations are especially striking when compared with Soar’s implementation of 

“simulative” mental imagery (Wintermute, 2012), which resulted in a major overhaul of its 

perception and action modules (into new high-level and low-level modules), new 

representational formats (i.e., “concrete” non-symbolic representations), new processes to 

manipulate them (i.e., continuous-action controllers), and new modes of action execution (i.e., 

“execution mode” vs. “imagery mode”). 

Another strength of my implementation is that it is largely based on well-developed and 

well-analyzed “off-the-shelf” techniques in machine learning (e.g., 𝛽-VAEs). Consequently, 

there is a large community of researchers, developers, and special-purpose tools that facilitate 

their use. In general, the computational techniques used here were chosen because they were 

relatively well-understood and met the minimum requirements demanded by ES-Hybrid and 

LIDA. As more efficient or appropriate computational implementations are identified, they can 

and should replace the implementations used here. 

Related Work 

Embodied, simulation-based cognition (ES) has rarely been attempted in a cognitive architecture. 

Shanahan’s (2006) architecture is arguably the closest to an ES cognitive architecture (see 

Chapter 7). Other cognitive architecture include aspects of mental simulation or mental imagery 
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(e.g., see Chella et al., 1997; Rosenbloom et al., 2016; Wintermute, 2012), but they also depend 

on symbolic offline reasoning systems; therefore, they are not ES-based cognitive systems. 

There have been numerous attempts at implementing portions of a perceptual symbol 

system (PSS; Barsalou, 1999) within software; however, few have tried to systematically build a 

PSS from the ground up, based on first principles (e.g., perceptual symbols and simulators). 

Many implementations attempt to address topics of high theoretical interest, such as abstract 

concepts and language, without a firm implementation of PSS’s basic components. 

Arguably the best example was Joyce et al.’s (2003) attempt to create a PSS starting from 

basic foundational components (e.g., perceptual symbols). They implemented a connectionist, 

computational model based on a recurrent neural network architecture (see Chapter 2) that they 

call the Connectionist Perceptual Symbol System Network (CPSSN), and they applied it to 

labelled video sequences. The authors claimed that CPSSN is a mechanism for implementing 

perceptual symbols, and that it contains “categorical information summarising the 

event/episode.” The network also has some rudimentary simulation like capabilities. 

Unfortunately, their analysis makes no mention of concept representations, simulators, frames, or 

simulation-based cognitive processes, so it is difficult to assess the future prospects of this 

approach. Moreover, the 𝛽-VAE based implementation of sensory representations and 

elementary grounded concepts presented in Chapter 5 is preferable in almost every way for 

implemented generative, modal representations. The primary advantage the CPSSN has over the 

𝛽-VAE used here is that it captures a temporal dimension; however, that could easily be 

addressed by using a different 𝛽-VAE architecture (e.g., a recurrent 𝛽-VAE architecture). 
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As another example, Perlovsky and Illin (2012) argued that computational accounts of 

PSS require new mathematical frameworks that are “different from traditional artificial 

intelligence, pattern recognition, or connectionist methods,” and they propose the use of 

Dynamic Logic (DL) for that purpose. They experimentally show that DL can implement 

object/situation representations and recognition and may be capable of supporting multiple 

modalities; however, the connections between DL’s operations and PSSs are highly speculative.  

Finally, Stramandinoli et al. (2011) attempted to develop a mechanism for learning 

abstract concepts through sensorimotor experiences using a humanoid (iCub) robot. This work 

built on prior work by Cangelosi and Riga (2006) by extending its “higher order grounding 

phases” to include more abstract concepts. In the basic grounding phase, the robot learned a set 

of action primitives (e.g., PUSH, PULL, GRASP, STOP, and RELEASE) by observing and 

imitating a teacher along with their corresponding linguistic labels. In the first higher-order 

grounding phase, linguistic descriptions that contained multiple action primitives were presented 

to the robot, such as “KEEP [is] GRASP [and] STOP” (Stramandinoli et al., 2011, p. 470). And 

in the last higher-order grounding phase, meaning was transferred to abstract concepts, for 

example, “ACCEPT [is] KEEP [and] SMILE [and] STOP” (Stramandinoli et al., 2011, p. 471). 

Unfortunately, this work suffers from several issues. First, what is learned seems to be a form of 

analogical reasoning rather than the generalization of sensorimotor experiences into abstract 

concepts. Second, the control structures implemented for the iCub do not seem to be based on 

any of the fundamental components of a perceptual symbol system (e.g., perceptual symbols and 

simulators). Finally, I am skeptical that these combinations of action primitives (e.g., keep, 

smile, and stop) adequately capture the meanings of more abstract words (e.g., accept). 
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Leaving implementations of perceptual symbol systems behind and looking to the 

broader embodied, simulation-based cognition (ES) literature, Barsalou et al. (2008) proposed 

the Language and Situated Simulation (LASS) cognitive theory. This theory suggests that 

multiple systems support conceptual representation and processing. They focus on linguistic and 

simulation-based systems, though they allow for other systems, such as those based on 

distributional semantics (see Chapter 2). They argued that “deep” conceptual processing requires 

simulation, while the processing of linguistic systems tends to only support superficial 

conceptualization. However, depending on the type of task an individual is performing, one 

system may dominate the other in conceptual processing. 

LASS is very similar to Paivio’s (1986/1990) dual coding theory (DCT), which proposes 

that cognitive systems are composed of two specialized subsystems for handling verbal and 

nonverbal information. Each subsystem is structurally and functionally distinct, allowing it to 

operate independently; however, they are also functionally interconnected, allowing activity in 

one system to initiate activity in the other.  

The verbal subsystem is responsible for the perceptual and motor activities associated 

with verbal and written language. The nonverbal subsystem is responsible for handling the 

“sensory properties of things, relations among them, and their behavioral ‘affordances’” (Paivio, 

1990), and is inherently “imagistic” (that is, its operations are based on mental imagery). These 

subsystems are further divided into modality-specific components, which can process 

information separately (unimodal representations), or integrated together (multimodal 

representations), depending on the needs of a task. There are no mediating (system-agnostic) 

representations that coordinate communication between the verbal and nonverbal systems. 
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The mental representations within each subsystem are referred to as logogens (verbal) 

and imagens (nonverbal). Logogens are “sequential structures of increasing length, from 

phonemes (or letters) to syllables, conventional words, fixed phrases, idioms, sentences, and 

longer discourse units—anything learned and remembered as an integrated language sequence.” 

Imagens are representations of “natural objects, holistic parts of objects, and natural groupings of 

objects” from which mental images are generated. Both logogens and imagens can be 

multimodal and hierarchical. Paivio notes that “logogens have no meaning in the semantic sense. 

They are directly ‘meaningful’ only in that they can be activated by stimuli similar to those 

involved in the original formation of the corresponding logogens” (Paivio, 2014, pp. 146–147). 

In contrast, imagens are intrinsically meaningful, and when they are activated their “imaginal 

memory traces resemble the perceived objects and scenes they represent” (Paivio, 2014, p. 147).  

Referential connections (cf. ES-Hybrid’s referential connections) between systems allow 

cross-system activation and provide a mechanism for “objects to be named and names to activate 

images that represent world knowledge” (Paivio, 2014). Inter-logogen and inter-imagen 

associative connections (cf. ES-Hybrid’s non-referential connections) within each subsystem 

provide additional relational/contextual information about representational units. 

DCT assumes that all mental representations are learned from “perceptual, motor, and 

affective” experience and that those representations “retain those experientially derived 

characteristics so that representational structures and processes are modality specific rather than 

amodal” (Paivio, 1986/1990, p. 55). Furthermore, DCT’s mental representations are never 

completely abstract: “the modality-specificity of logogens and images excludes abstract mental 

representations such as propositions. Thus the functional domains associated with stimulus 
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meaning and cognitive abilities are conceptualized entirely in terms of modality specific 

logogens and imagens” (Paivio, 2014, p. 146). 

Barsalou et al. (2008) contend that while LASS is similar to DCT, it places less emphasis 

on its linguistic system and more emphasis on its simulation system (Barsalou et al., 2008, p. 

253). ES-Hybrid diverges even further from DCT since ES-Hybrid uses coordinating amodal 

representations, and it allows for completely “abstract” (i.e., symbolic) representations. Another 

difference between ES-Hybrid and DCT (and LASS) is that its hybrid (modal/amodal) 

representations are processed by a single system rather than multiple, complementary, special-

purpose systems. Nevertheless, DCT’s referential and associative connections are very similar to 

ES-Hybrid’s referential and non-referential associations. 

Finally, Louwerse (2018) detailed a “unifying account” of symbolic and embodied 

cognition that combines the meaning derived from perceptual experiences with the meaning 

derived from linguistic contexts (e.g., distributional semantics; see Chapter 2). His theory is 

based, in part, on ideas from Deacon’s (1997) “hierarchy of signs”—which is based, in turn, on 

Peirce’s semiotics (see Chapter 2).  

Deacon proposed that language processing could be explained using a hierarchy of 

iconic, indexical, and symbolic processes, where indexical associations can be used to give 

symbolic relationships meaning. Words derive their meaning through indexical relationships that 

are grounded in iconic relationships. Furthermore, Deacon argued that not all symbols need to be 

grounded in perceptual experience, but can, instead, get their meanings exclusively through 

indexical relationships with other symbols (cf. distributional semantics; Chapter 2). 
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A critical aspect of Louwerse’s theory is that words for concrete and abstract concepts 

both rely on the same underlying mechanisms. Specifically, he stated that both rely on indexical 

relations, “but the extent to which abstract and concrete concept words rely on language statistics 

or perceptual simulations differs” (Louwerse, 2018, p. 584). 

While ES-Hybrid does not make any explicit claims about language processing or the use 

of distributional semantics, it is not in opposition to Louwerse’s (2018) ideas. ES-Hybrid also 

suggests that indexical associations are important for the derivation of meaning, but rather than 

using them as the basis for contextual statistics, it suggests that indices are used to drive 

grounding through active exploration and speculation. That is, indices provide clues to where to 

search for grounded meaning. Louwerse also acknowledges that symbols can be ungrounded, 

and that abstract concepts are ungroundable (Louwerse, 2018, p. 584), which is consistent with 

ES-Hybrid’s account (see Chapter 3). 

Directions for Future Work 

A conscious decision was made at the onset of this endeavor to favor breadth over depth. My 

objective was not only to add support for mental imagery and mental simulation in LIDA, but to 

show how embodied, simulation-based cognition could be used as a fundamental organizing 

principle within LIDA. As such, a coherent and relatively comprehensive “mid-level” theoretical 

picture seemed preferable to a detailed treatment of some specific cognitive process. 

Consequently, there are more open issues, and opportunities for future work, than I could hope to 

enumerate here. Nevertheless, I will highlight a few immediate directions for further research.  
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Referential and Non-Referential Associations 

The theory of grounding presented here depends on the establishment of “referential 

associations” (see Chapter 3). Referential associations establish correspondence-based 

relationships between representations and their referents, whereas non-referential associations 

broadly encompass all other types of associations (e.g., causal, indexical, analogical, and 

relational). Whether natural minds learn how to represent these associations through experience, 

or whether they are innate representational capabilities is a topic that needs to be explored.  

As a computational simplification, one could assume that innate, cognitive processes 

exist for implementing these associative relationships, and this has been a tacit simplification that 

I have employed throughout this manuscript (with LIDA’s structure building codelets serving 

this function). However, this is clearly an oversimplification. Many non-referential associations 

appear to be grounded concepts in their own right (e.g., spatial and temporal relationships). 

Therefore, they should have their own grounding sensorimotor representations, and they should 

be simulatable. Referential associations, on the other hand, may be more fundamental, and 

perhaps different-in-kind, from non-referential associations. Consequently, it is possible that the 

cognitive processes that support the creation of referential associations are necessarily innate. 

Abstract Thought  

A basic assumption of the theory developed here is that offline cognition is based on imagistic 

and perceptual processes—not explicit, rule-based, symbolic manipulations. This is not a denial 

of the existence of abstract thought, but rather a belief that the same cognitive processes involved 

in simulation-based offline cognition can be used to realize more abstract, and algorithmic, 
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modes of reasoning. Substantiating this belief computationally should be a priority of future 

research. 

 Analogical/metaphorical thought (Lakoff & Johnson, 1980/2008) is clearly part of the 

solution. It is undoubtedly true that individuals often think about abstract concepts using deep or 

shallow metaphors with concrete concepts (“time flies like an arrow”). However, this is not the 

whole picture. Purely abstract thought (e.g., pure mathematics and formal symbolic logic) exists. 

What form does simulation-based thought take when modal simulations are impossible? 

 One intriguing possibility is that abstract thought may rely, in part, on “degenerate” 

modal simulation, where the node structures for ungrounded representations can be deployed in 

service of offline cognition. The mechanisms for these degenerate simulations may be largely 

identical to those used for full-blown modal simulations, but the top-down activation of concept 

representations during simulation necessarily terminates before reaching modal content. Such 

amodal mental simulations are not only possible, but the LIDA-based implementation developed 

here essentially predicts their existence. For example, many of the imagistic (epistemic) 

operations described in Chapter 7 will continue to function in the absence of full-blown 

simulations. In particular, internal (covert) actions could be used to volitionally control the 

introduction of amodal representations into LIDA’s Current Situational Model. Once introduced, 

non-referential associations between that amodal representation and other representations in 

long-term memory could be used to cue long-term memory and activate other situationally 

relevant representational structures. 
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Context and Contextual Semantics  

Mental simulations are context-sensitive (Barsalou, 2003, 2016b) and context can be 

instrumental in determining the meaning of things (e.g., distributional semantics; Baroni & 

Lenci, 2010; Erk, 2012; Landauer & Dumais, 1997; Lenci, 2008; Lund & Burgess, 1996). 

Moreover, symbolic and non-symbolic representations are often ambiguous in the absence of 

context. For example, the English word “chair” can refer to an object or a person; the word “gift” 

means something quite different in German than in English; and specific objects (e.g., to-go 

mugs at a coffee shop), events (e.g., commutes to work), and locations (e.g., parking spaces in a 

parking lot) are often too similar to designate (as a specific instance) without accompanying 

context (see Chapter 3, Designation and Disambiguation). 

Of particular interest to the present work is determining how physical and situational 

contexts can be encoded using conceptual representations, and how this encoded context can 

guide and constrain active perception and conceptual learning. Recall that a central component of 

the theory presented here is that initially ungrounded representations are often generated by top-

down, predictive processes. These ungrounded (amodal) representations are non-referentially 

associated with grounded (modal) representations that serve as contextual clues (or contextual 

cues; Chun & Jiang, 1998) to the identity of those unknown referents. These contextual clues can 

guide the selection of grounding epistemic actions. And, in general, I view contextual semantics 

as a means of facilitating grounding and extracting the most information from each grounded 

representation. 

The mechanisms by which physical and situation context is represented, and its influence 

on various cognitive processes (e.g., perception, simulation, and action selection) need to be 



 

265 

 

explored. Furthermore, developing these theoretical elements is a prerequisite for modeling 

episodes and episodic memory systems, which are currently unspecified in ES-Hybrid and its 

LIDA implementations. 

Conceptual Generalization 

The current implementation lacks a mechanism for generalizing from elementary concept 

representations to more abstract representations (e.g., for objects and categories of objects). 

Elementary grounded concept representations function like Harnad’s (1990) iconic 

representations, and an additional generalization process is needed to learn the equivalent of 

Harnad’s (1990) categorical representations.  

Recall from Chapter 2 that iconic representations are non-symbolic representations that 

encode the distinctive features of concept instances, while categorical representations are non-

symbolic representations that capture their most important invariant features—i.e., the relative 

weighting of features based on their importance in determining category membership. For 

example, color may be irrelevant for determining that an object is a chair but highly relevant for 

determining that a banana is ripe. Iconic representations support the discrimination between 

sensory inputs, while categorical representations support the identification of categories (i.e., 

types) from category instances (i.e., tokens). Supporting categorical representations in LIDA 

may require the addition of weights to referential activation links and the development of a new 

learning rule for updating those weights. 

ES-Hybrid’s Predictions 

All theories—cognitive or otherwise—should make testable predictions. While I have no 

experience in experimental psychology, it seems reasonable to suppose that the phenomena of 
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eventual grounding may be testable (e.g., using neuroimaging). This may largely involve 

comparing the patterns of neural activation that occur when subjects first infer the existence of 

an unknown referent (e.g., when they are first presented a novel word form) to later patterns of 

activation that occur once grounding is established (e.g., when subjects are shown a depiction of 

that thing). The largest confounding factor would be the presence of non-referential (indexical) 

modal representations, which need to be separated from the referential (grounding) modal 

representations. Using separate sensory modalities for each may be one solution to this issue. 

Automatized internal behaviors (see Chapter 7) may be another testable prediction. 
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Appendix 

Representational Properties 

This section reviews and attempts to analyze representational properties that are referenced 

throughout this manuscript. Many of these were ascribed by Barsalou (and others) to describe the 

flavor of non-symbolic representations used in perceptual symbol systems (Barsalou, 1999) and 

other conceptualizations of grounded cognition.  

Modal 

Barsalou (1999) stated, “the divergence between cognition and perception reflects the 

widespread assumption that cognitive representations are inherently nonperceptual, or what I will 

call amodal” (Barsalou, 1999, p. 577). In contrast, Barsalou defined modal representations as 

being “represented in the same systems as the perceptual states that produced them” (Barsalou, 

1999, p. 578), and “perceptual states” as being composed from the patterns of activation 

occurring in sensory and motor systems during perception and action.  

Barsalou argued that partial and attenuated versions of these perceptual states 

(comprising only their most salient features) could be learned into long-term memory from 

conscious experiences. Once learned, they could be recalled from long-term memory and 

function as grounded referents to entities, objects, and situations, allowing one to think about 

them in their absence (i.e., during offline cognitive activities). He referred to these re-enacted 

perceptual states as modal (or perceptual) symbols1 (see Figure 37, Left Panel). This modal or 

 

1 Barsalou’s characterization of these modal representations as perceptual “symbols” is counter-intuitive, as they are 

not symbolic in the Peircian sense (see Peirce, 1867–1893/1992, pp. 225–228). I will try to avoid this terminology 

whenever possible, using the term modal (or perceptual) representations instead. 
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perceptual account of cognition contrasts with traditional amodal or non-perceptual accounts, 

which typically suggest that perceptual states are first transduced (i.e., mapped) into symbolic 

descriptions of those states, and it is those symbolic representations that support offline cognitive 

processes (see Figure 37, Right Panel). 

 

 

 

Modal Representations  Amodal Representations 

Figure 37. Conceptual depictions of modal and amodal representations. In both accounts, perceptual 

states arise from the activity in sensory and motor systems during perception and action. According to the 

modal account (Left Panel), the most salient aspects of these perceptual states are extracted to form modal 

representations. These can later serve as grounded referents to objects, entities, or situations during offline 

cognition. According to the traditional amodal account (Right Panel), perceptual states are transduced 

into amodal (non-perceptual) representations. These are manipulated using rule-based symbolic 

operations during offline cognition to generate new knowledge, and are mapped back to perceptual states 

(using conventional associations) to establish their referents. (Figures reproduced, without modification, 

from Barsalou, 1999.)  

The adjective “modal” that characterizes modal representations stems from the idea that 

these representations originate in modality-specific sensory and motor systems. Prinz (2004) 

argued that the modality-specific nature of modal representations suggests that they may employ 

many disparate representational schemes that are proprietary to each modality. For example, he 

argued that visual and auditory sensory representations are likely different in kind. He argued this 

on the grounds that (1) sensory modalities have distinct inputs that may require different kinds of 

information processing, (2) sensory modalities are relatively independent of one another, (3) the 

phenomenal character of cognitive content originating in different sensory modalities is different 

(e.g., auditory, visual, and tactile sensations correspond to qualitatively different subjective 
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experiences), and (4) it is more “predictive and explanatory” of some experimental findings (e.g., 

timing effects in mental imagery tasks) to assume that sensory modalities employ different 

representational formats. (See Prinz, 2004, Chapter 5 for a more detailed treatment of these 

arguments). 

This modal-specificity has led some to conclude that modal representations must respond 

to (be activated by) one, and only one, class of inputs. According to this view, representations 

capable of responding to inputs from multiple sensory or motor modalities are amodal by 

definition (e.g., see Dove, 2009; Machery, 2016; Reilly et al., 2016). Barsalou (2016a) disagreed. 

Instead, he contended that “multimodal abstractions” could exist that are responsive to inputs 

from multiple modalities while retaining the character of exemplars from individual modalities.  

He gives two possible implementations. The first is based on cross-modal conjunctive 

representations (CCRs; see Binder, 2016) that store the “statistically likely features” extracted 

from category exemplars2. The second is multimodal compressed representations3 resulting from 

the transformation of “exemplar information to a new set of dimensions (as in PCA, ICA, NMF, 

and so forth)” (Barsalou, 2016a, p. 1133). Barsalou included neural network models that use 

dimensional transformations to represent knowledge (e.g., autoencoders; see Chapter 5) in this 

latter group. Barsalou (2016a) characterized these multimodal compressions as modal because 

 

2 While Barsalou (2016a) does not mention it explicitly, these compressed multimodal abstractions would also be 

needed for single multimodal experiences (i.e., one exemplar) to bind together activity from multiple modalities. I 

will argue later that the use of mediating amodal representations as “associative hubs” leads to a simpler 

implementation that is still consistent with this “modality-specific” property. 

3 Barsalou (2016a) suggested that this could be accomplished using “multimodal compressions” that might exist in 

convergence zones (Damasio, 1989) in brains. 
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they contain information about modality-specific exemplars, allowing them to retain their 

modality-specific characteristics. 

In summary, while modal-specificity implies that modal representations are responsive to 

inputs from a given modality, it does not rule out their responsivity to multiple modalities. 

However, since amodal representations may also be responsive to multiple modalities, input 

responsivity cannot be used to differentiate modal from amodal representations. More useful, in 

my opinion, is the view that modal-specificity simply implies that the activity in sensory and 

motor areas is constitutive of modal representations. As Barsalou (1999) stated, modal 

representations are formed from a subset of the sensory and/or motor activity corresponding to 

conscious experiences.  

Therefore, I contend that modal representations are modality-specific because they are 

necessarily composed from the activity originating in sensory and/or motor systems. This 

criterion permits the inclusion of activity from one or more sensory and motor modalities. 

Representations that are not composed from sensory and/or motor patterns of activation are 

therefore amodal. Note that I am not claiming the sufficiency of this condition for declaring a 

representation modal. It is theoretically possible for an amodal representation to be partially 

composed of modality-specific content while violating other necessary conditions of modal 

representations (as outlined by Barsalou and others). 
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Analogical 

Barsalou (1999) stated that being modal implies that a representation is also analogical. He 

defined this as a partial structural correspondence4 between a modal representation and the 

perceptual states that produced it (see Barsalou, 1999, p. 578). I interpret this to loosely imply 

that a “resemblance” exists between modal representations and their originating sensory and 

motor states that allows them to retain some of the properties implicit in those perceptual states. 

In other words, modal representations are necessarily non-symbolic, and more specifically, they 

are iconic representations in Peirce’s terminology (see Chapter 2). 

Kugele and Franklin (2020b) further suggested that analogical representations must be 

capable of serving as “proxies” that reliably preserve the degree of similarity between any two 

perceptual states. More specifically, two analogical representations should be judged similar (by 

an agent’s perceptual processes) if and only if the saliency-modulated activation patterns of their 

corresponding perceptual states are similar. Critically, this property enables a modal cognitive 

system to discriminate (see Harnad, 1990, sec. 3.1) between patterns of sensory and motor 

activity based on their corresponding modal representations. Notice that analogical 

representations thus conceived bear a strong resemblance to Harnad’s iconic representations, 

which he defined as “analogs of the proximal sensory projections of distal objects and events” 

(Harnad, 1990, p. 335). Furthermore, contextualized abstractions over these analogical 

representations could generate more general and invariant analogical representations that 

 

4 One subtlety that bears mentioning is that Barsalou (1999) is not claiming with this property that a correspondence 

exists between modal representations and their worldly referents. He is only asserting that a structural 

correspondence must exist between modal representations and their originating perceptual states (i.e., sensory and 

motor activity). Specifically, he mentioned that the structure of perceptual symbols may correspond to the physical 

world in some cases, but not in others (see Barsalou, 1999, n. 1). 
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correspond roughly to Harnad’s categorical representations (cf. also cross-modal conjunctive 

representations discussed earlier). 

One remaining question is: “Are there amodal representations that satisfy the analogical 

property?” Machery (2006) claimed they can, stating 

[there is a] large body of behavioral and neuropsychological evidence that 

humans have in fact amodal, analogic representations of the approximate 

cardinality of classes of entities (objects, sounds, events)… Adults as well as, to 

some extent, babies are able to estimate the approximate cardinality of classes of 

objects and to compare classes according to their cardinality, suggesting that they 

represent the approximate cardinality of classes…. Although there are several 

models of these representations, these models concur in regarding the 

representations of cardinality as amodal and analogic. (Machery, 2006, p. 406) 

Furthermore, Prinz (2004) argued that if there were a “Language of Thought” (see Fodor, 1975, 

2008) it could (at least theoretically) exhibit an isomorphic relationship to the things it represents 

(see Prinz, 2004, p. 112). Perhaps these amodal representations could be described as having the 

analogical property? Rather than further engage in this controversy here, I will simply assume in 

this manuscript that analogical, amodal representations could exist. 

Grounded 

Barsalou stated that while “mechanisms outside sensory-motor systems enter into conceptual 

knowledge, perceptual symbols always [emphasis added] remain grounded in these systems” 

(Barsalou, 1999, p. 583). Therefore, according to Barsalou, modal representations are necessarily 
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grounded. But what does “grounding” mean in the context of a purely non-symbolic and 

perceptual account of cognition? And what is its relationship with the intentionality (i.e., the 

“aboutness”) of a representation, and its intrinsic meaning? 

 A brief tour of the literature shows a multitude of, often contradictory, opinions and 

assumptions about grounding. For example, Harnad argued, with respect to his hybrid 

(symbolic/non-symbolic) architecture, that 

[s]ymbolic representations must be grounded bottom-up in nonsymbolic representations 

[emphasis added] of two kinds: (1) iconic representations, which are analogs of the 

proximal sensory projections of distal objects and events, and (2) categorical 

representations, which are learned and innate feature detectors that pick out the invariant 

features of object and event categories from their sensory projections. (Harnad, 1990, p. 

335) 

For Harnad, establishing grounding is equivalent to establishing a symbolic representation’s 

“intrinsic meaning” or intentionality (see Harnad, 1990, sec. 2.1). Furthermore, Harnad argued 

that non-symbolic representations lack intrinsic meaning. He stated, 

[i]conic representations no more “mean” the objects of which they are the projections 

than the image in a camera does. Both icons and camera images can of course be 

interpreted as meaning or standing for something, but the interpretation would clearly be 

derivative rather than intrinsic…. Nor can categorical representations yet be interpreted 

as “meaning” anything…. [they] do not have all the systematic properties of symbols…. 

They are just an inert taxonomy. (Harnad, 1990, p. 343) 
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Since Harnad (1990) equated grounding with intentionality (i.e., intrinsic meaning), and 

he considered non-symbolic representations meaningless, does that imply that he considered 

non-symbolic representations to be “ungrounded”? This seems unlikely, though a strict grounded 

or ungrounded representational dichotomy would compel him to accept this designation. Instead, 

Harnad might argue that the term simply does not apply in a non-symbolic context, or that non-

symbolic representations are part of “the ground.” Support for this interpretation comes from 

Harnad’s statements regarding his iconic and categorical representations:   

[t]here is no problem about [iconic and categorical representations] connection to the 

objects they pick out: It is a purely causal connection, based on the relation between 

distal objects, proximal sensory projections and the acquired internal changes that result 

from a history of behavioral interactions with them. (Harnad, 1990, p. 343) 

Therefore, Harnad is not suggesting a disconnect between these non-symbolic representations 

and their world referents, only that these causal connections are insufficient for intrinsic 

meaning. 

Now that I have summarized Harnad’s positions on grounding and intentionality, let us 

look at a non-representational account. Recall Brooks’s “physical grounding hypothesis” (see 

Chapter 2), which entailed building systems that are grounded in the physical world. Brooks 

stated, 

[a]ccepting the physical grounding hypothesis as a basis for research entails building 

systems in a bottom up manner [emphasis added]. High level abstractions have to be 

made concrete. The constructed system eventually has to express all its goals and desires 
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as physical action, and must extract all its knowledge from physical sensors [emphasis 

added]…. The forms of the low-level interfaces have consequences which ripple through 

the entire system. (Brooks, 1990, p. 5) 

For Brooks, this principle manifested itself in the building of intelligent systems whose 

(re)actions were directly plugged into their sensory inputs without intervening representations. 

That said, he was not arguing that grounded systems are necessarily non-representational, only 

that “it is necessary to have [their] representations grounded in the physical world [emphasis 

added]” (Brooks, 1990, p. 5). Physical grounding, according to Brooks, requires connecting a 

system to the world via a set of sensors and actuators. He goes on to state that “typed input[s] 

and output[s] are no longer of interest,” as they are not physically grounded. 

Finally, let me circle back and complete my summary of Barsalou’s notion of grounding. 

Recall that Barsalou’s modal representations (i.e., the things to be grounded) are a types of non-

symbolic representations per Peirce’s semiotics, though Barsalou choose to call them (perceptual 

or modal) “symbols.” Furthermore, Barsalou stated that modal representations are grounded in 

sensory and motor systems, not non-symbolic representations (like Harnad’s symbol grounding), 

and not the physical world (like Brooks’s physical grounding). To illustrate this in the context of 

an implementation, Barsalou gave the example of a shared associative (neural) network: “If the 

same associative network represents information in both perception and cognition, it grounds 

knowledge in perception” (Barsalou, 1999, p. 579). In other words, Barsalou’s notion of 

grounding is focused on eliminating potential disconnects between perception and cognition 

through representational (e.g., neural) reuse. That said, Barsalou does not deny the existence of 
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other grounding mechanisms and grounding contexts, such as physical, social, and bodily 

grounding (Barsalou, 2020, sec. 1.1). 

Unlike Harnad, Barsalou distinguishes between grounding and intentionality. For 

example, he stated that (1) the content of a representation does not specify its intentionality, (2) 

the degree to which a representation resembles its referent is neither sufficient nor necessary for 

establishing reference, and (3) factors external to a representation’s content play an important 

role in establishing its intentionality (see Barsalou, 1999, p. 597). Given that modal 

representations are always grounded, initially characterized only by their content, and that 

content alone does not fully specify a representations intentionality, it follows that, according to 

Barsalou, modal representations can be grounded, yet lack intrinsic meaning. That is, 

intentionality must be distinct from grounding in Barsalou’s theory. That said, Barsalou argued 

that modal representations have an advantage over symbolic representations in establishing their 

intentionality, as their content can heuristically assist in establishing reference (see Barsalou, 

1999, sec. 3.2.8). 

It is remarkable that in the three accounts of grounding described above nearly everything 

about the specifics of these accounts differ. Let us review. 

What is being ground? 

• symbolic representations (Harnad) 

• non-symbolic representations (Barsalou) 

• intelligent systems (Brooks) 

What are they grounded in? 
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• two kinds of non-symbolic representations (Harnad) 

• sensory and motor systems (Barsalou) 

• the physical world (Brooks) 

Furthermore, they all embrace different notions of the relationship between grounding and 

intentionality. Harnad (1990) suggested an equivalence between grounding and intentionality. 

Barsalou (1999) argued that they were distinct. And Brooks seems to have dismissed the 

problem. The one commonality is that all of these researchers explicitly state or imply that 

grounding requires bottom-up construction of representations and systems, which I disagree 

with—e.g., “eventual grounding” (see Chapter 3) entails the creation of an amodal symbol for a 

concept or concept instance prior to its grounding. 

 How do we reconcile these differences? My contention is that the only way to unify these 

accounts is to start by separating intentionality from grounding as Barsalou does. According to 

the Stanford Encyclopedia of Philosophy, intentionality is defined as 

the power of minds and mental states to be about, to represent, or to stand for, things, 

properties and states of affairs. To say of an individual’s mental states that they have 

intentionality is to say that they are mental representations or that they have contents. 

(Jacob, 2020, para. 1) 

Consequentially, conflating grounding and intentionality immediately threatens to alienate non-

representational accounts of cognition (e.g., Brooks’s subsumption architecture). Second, if 

establishing intrinsic meaning (i.e., intentionality) is synonymous with establishing grounding, 

then any representation or thing that is not the thing being grounded (i.e., being imbued with 
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intrinsic meaning) seems to deserve the characterization of “ungrounded.” For example, 

Harnad’s declaration that non-symbolic representations are “meaningless” seems to force one to 

label them as ungrounded in his theory. Barsalou would similarly have to label modal 

representations that lack intentionality as “ungrounded,” which is a contradiction to his assertion 

that they are always grounded. 

Rather than appealing to vague or intuitive notions of grounding, it will be beneficial for 

the purpose of this thesis to provide a working definition of what I mean by grounding. This 

definition is intended to serve as a means of qualifying the presence of representational or 

systemic grounding in an engineered system, and to be inclusive of the pertinent aspects of all 

three notions of grounding previously described. Ironically, Harnad’s characterization of non-

symbolic representations (which he regarded as “meaningless”) served as the basis for my 

working definition. Namely, I propose the following working definition: 

grounding is the establishment of information-bearing associations between sensory and 

motor stimuli, and the representations and/or processes that use them.  

These informational conduits allow the states of the former to induce, and covary with, the states 

(e.g., patterns of activation) of the latter. For example, the proximal sensory projections (e.g., 

retinal projections) resulting from worldly objects can induce, and covary with, internal mental 

states5. 

 

5 This working definition is inclusive of internally derived sensory and motor stimuli (e.g., mental simulations), as 

well as both innate and acquired informational connections. 
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While distinct from intentionality, these informational conduits support an agent’s often-

gradual, life-long acquisition of intrinsic meaning. In other words, grounding is the means by 

which intentionality can be experientially discovered. Ziemke’s (1999) interpretation of the 

grounding problem provides an nice example of how my conception of grounding and the one 

typically assumed in the literature relate. He stated, 

[t]he grounding problem is, generally speaking, the problem of how to causally connect 

an artificial agent with its environment such that the agent’s behaviour, as well as the 

mechanisms, representations, etc. underlying it, can be intrinsic and meaningful to itself, 

rather than dependent on an external designer or observer. (Ziemke, 1999, p. 177) 

The version of the grounding problem I adopt here only corresponds to “how to causally connect 

an artificial agent with its environment.” I would characterize the remainder of Ziemke’s 

definition as concerning the problem of intentionality or intrinsic meaning. 

 In summary, modal representation are necessarily grounded, where grounding involves 

the establishment of causal connections between an agent and its (external or internal) 

environment. The existence of these causal connections does not imply the intentionality of 

internal states. Intentionality and grounding are distinct. However, grounding is instrumental of 

the acquisition of intrinsic meaning through experience. With respect to Brooks’s subsumption 

architecture, physical grounding involves the hardwiring of (innate/built-in) causal connections 

between an agent’s proximal sensory projections (via its sensors) and the internal states of its 

behavior modules. Note that this assumes that the proximal sensory projections occurring in the 

agent’s sensors are grounded in the world; otherwise, the agent’s sensors would be useless, and 

the system would not be physically grounded. Barsalou’s sensorimotor grounding involves the 



 

319 

 

establishment of causal connections between an agent’s sensory and motor systems, and its 

(typically learned) modal representations. These connections allow modal representations to 

covary with the patterns of activation in sensory and motor systems. Note that this assumes some 

degree of grounding between the agent’s sensory and motor systems, and its environment 

(potentially mediated by proximal sensory projections). Finally, with respect to Harnad’s hybrid 

architecture, symbol grounding involves the establishment of causal connections between two 

kinds of non-symbolic representations and the symbolic representations to which they are 

connected. These connections take the form of associations that allow symbolic representations 

to acquire the covariance properties of their associated non-symbolic representations (e.g., being 

activated when their associated non-symbolic representations are activated). However, this 

assumes that the system’s non-symbolic representations are already grounded in proximal 

sensory projections, which are, in turn, grounded in the world.  

In the above descriptions, I have taken for granted the transitivity of grounding operations 

(i.e., if 𝑋 is grounded in 𝑌, and 𝑌 is grounded in 𝑍, then 𝑋 is grounded in 𝑍). For example, this 

transitivity of grounding is what allows Harnad’s symbolic representations to be grounded in the 

world via associations with non-symbolic representations that are grounded in sensory 

projections that are grounded in the world. 

Shared 

Perhaps the most distinctive characteristic of modal theories of cognition is the reuse of 

modality-specific sensory and motor resources for conceptual processing. Haimovici stated, 

“whichever properties modal representations exhibit, what crucially distinguishes modal from 

amodal approaches is a commitment to the constitutive involvement of sensorimotor systems in 
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conceptual tasks” (Haimovici, 2018, p. 7). Barsalou (2016a) supported this characterization, 

stating that the representational format used by sensory and motor systems is largely irrelevant. 

What matters is that conceptual processes depend on modality-specific representations and the 

perceptual processes that operate on them. Furthermore, the conceptual representations resulting 

from these processes always have “a modality-specific character, not an amodal one” (Barsalou, 

2016a, p. 1131). Recall that Barsalou considered a shared neural network that supports both 

perceptual and conceptual processes to be a natural implementation of these ideas (Barsalou, 

1999, p. 579). 

By contrast, amodal theories of cognition often limit the involvement of perceptual 

systems to the transduction of sensory stimuli into symbolic representations. Moreover, 

conceptual knowledge is conceived of as being largely independent of sensory and motor 

systems. Consequently, perceptual processes and representations are not considered to be 

directly constitutive of conceptual processing. Furthermore, any conceptual representations 

resulting from amodal “thought” processes are considered amodal in character. 

  In summary, modal representations are necessarily shareable between, usable by, and 

constitutive of both perceptual and conceptual systems in modal approaches. As Barsalou stated 

over 20 years ago, a unifying idea of modal approaches to cognition is that “cognition is 

inherently perceptual” (Barsalou, 1999, p. 577). Therefore, representations incompatible with, or 

segregated from, a system’s perceptual system must be characterized as amodal. 

Embodied 

The idea that modal representations are “embodied” and amodal representations are 

“disembodied” has been widely embraced in the simulation-based cognition literature (e.g., see 
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Barsalou, 1999, sec. 3.3; De Vega et al., 2012; Dove, 2011, 2016; Gallese, 2018; Goldman, 

2012, 2013; Mahon & Caramazza, 2008; Mahon & Hickok, 2016; Prinz & Barsalou, 2000; 

Pulvermüller, 2018). Unfortunately, the broader embodied cognition (EC) community has been 

less receptive. The first complication arises from a strong anti-representational sentiment that 

exists within the EC community. Consequently, claims of “embodied representations” will 

naturally seem foreign and unpalatable to many. The second complication results from an 

ongoing identity crisis within the EC literature: the basic terminology and core tenets are still in 

flux. The 4Es (embodied, embedded, enacted, and extended; see Newen et al., 2018), the “Six 

Views” (see M. Wilson, 2002), ecological cognition, situated cognition, and grounded cognition 

are all broadly aligned with EC, and yet they are distinct from it. 

One might presume that declaring a species of mental representations “embodied” would 

entail providing an account of how bodies and bodily experiences shape the format, content, and 

systemic function of those representations. However, I think this accounting has been broadly 

achieved by the proponents of simulation-based theories of cognition. Simulation-based 

cognition offers a representational account of cognition based on the re-enactment of patterns of 

activation in sensory and motor systems. These patterns of activation directly reflect the 

idiosyncrasies of the body, and the content of those systems necessarily reflect bodily 

experiences. Any generalizations and abstractions over those perceptual states are constrained by 

these theories to maintain a modal character. And in its pure form, simulation-based cognitive 

theories eschew all things amodal. It is hard to imagine how a representational account of 

cognition could be more body-based.  
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Barsalou and other proponents of simulation-based theories of cognition have devoted a 

great deal of energy to differentiating simulation-based cognition from traditional cognitivist 

theories (e.g., the computational theory of mind; see Chapter 2). However, those attempts have 

not convinced everyone. For example, Gallagher (2015) characterized simulation-based theories 

(e.g., Barsalou, 1999, 2008; Goldman, 2013), as well as theories based on metaphorical thought 

(e.g., Lakoff & Johnson, 1980/2008), as “body snatchers.” Gallagher stated,  

It’s clear that the body of this version of embodied cognition is entirely in the head; it’s 

the “body in the brain”. In this respect it is a “minimal” or “weak” form of embodied 

cognition, at best. A form of embodied cognition without the body as such… (Gallagher, 

2015, p. 99) 

Being “about the body” and having representations that are “based on the body” are inadequate 

justifications for “embodied” status according to Gallagher. 

 In defense of the embodiment of simulation-based theories of cognition, Barsalou 

proposed the idea of variable embodiment, which asserts that a representation’s meaning reflects 

the idiosyncrasies of the physical system that represents it. Several examples of variable 

embodiment were given by Zwaan et al. (1999) in the context of language comprehension. They 

stated, 

it might be that a [large] basketball player represents the situation described by “He 

picked up the basketball” differently (one-handed) from a smaller person (two-handed). 

One would also assume that women who have given birth construct different mental 
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representations of a story about childbirth than other women or than men. (Zwaan et al., 

1999, p. 636) 

Barsalou later expanded on these ideas, contending that modal cognitive systems utilize the 

environment and the body as “external informational structures that complement internal 

representations.” He also stated that these internal representations take on a “situated character” 

when simulated in sensory and motor systems (see Barsalou, 2010, p. 717). As such, modal 

mental simulations have been variously referred to as embodied simulations (Gallese, 2005, 

2007, 2018), situated simulations (Barsalou, 2009), and situated conceptualizations (Barsalou, 

2009, 2016b).  

In other words, Barsalou argued that modal cognitive systems are “embodied” in the 

sense that the idiosyncrasies of an agent’s body become constitutive of an agent’s conceptual 

representations, and, as a result, if two agents experience the world differently, these experiential 

differences manifest as representational differences in their respective conceptual systems (i.e., 

variable embodiment). However, modal representations are not embodied in the stricter sense 

used by Gallagher that an agent’s non-brain body parts must be directly engaged during 

cognitive activities. 

Assuming one agrees that modal accounts of cognition feature embodied (and potentially 

situated) representations, does that preclude embodied amodal representations? Both Barsalou 

(1999) and Zwaan et al. (1999) argued that variable embodiment is impossible in amodal 

cognitive systems. Barsalou's argument appeals to the non-analogical nature of “word-like” 

symbolic representations. For example, he argued that the semantic interpretation of the word 

“CUP” is identical regardless of any variability in its representational content:  
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Making “CUP” larger does not mean that its referent now appears larger. Rotating “CUP” 

45° counterclockwise does not imply that its referent tipped… Because words bear no 

structural relations to their referents, structural changes in a word have no implications 

for analogous changes in reference. As long as the conventional link between a word and 

its referent remains intact, the word refers to the referent discretely in exactly the same 

way across transformations. (Barsalou, 1999, p. 598) 

Barsalou argued that modal representations are fundamentally different. For example, increasing 

the “size” of a modal representation corresponding to a cup might imply that its environmental 

referent appears larger in an individual’s visual field. This might happen, for example, when an 

agent moves closer to the cup. This transformed modal representation of that cup is not 

functionally equivalent to its untransformed counterpart. 

 However, Barsalou’s and Zwann’s arguments against amodal representations exhibiting 

variable embodiment are not entirely convincing. For example, consider an amodal cognitive 

system based on distributional semantics (see Chapter 2). Such cognitive systems interpret their 

internal “word-like” symbols based on the contexts in which their referents occurred. These 

contexts are based on an agent’s experiences, and those experiences are influenced by its body. 

Therefore, the meanings associated with those internal representations with inevitably differ 

between agents with different bodies and life experiences. Second, this argument neglects to 

consider composite symbolic representations that are capable of further qualifying sensory 

experiences—for example, “the tiny cup,” “the large cup,” and “the massive cup.” Even if one 

assumes that an agent’s conceptual system is amodal and fixed, it does not follow that the 
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semantic knowledge of such agents must, in principle, be agnostic of the agent’s body. 

Therefore, I contend that amodal representations could exhibit variable embodiment. 
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Learning Intelligent Decision Agent (LIDA) 

Table 6. LIDA's short-term and long-term memory (STM/LTM) modules and codelets. 

Module / Process Description 

ACTION SELECTION (AS) STM module supporting the selection of behaviors 

(i.e., instantiated schemes) for execution by the 

SMS. Action Selection, in conjunction with other 

LIDA modules and processes, supports four modes 

of action selection: consciously mediated, 

volitional, automatized, and alarms. 

ATTENTION CODELETS (ACS) Specialized processors that monitor the CSM for 

content of interest based on their own specific 

concerns, such as importance, urgency, novelty, 

etc. If such content is found, the codelet takes it to 

a coalition forming process, which may create a 

coalition that includes that codelet and the content 

it promotes.  

 

Attention codelets vary in the kinds of content they 

consider salient. Specific attention codelets 

advocate for a narrow range of content, for 

example, specific types of objects or events. By 

contrast, the default attention codelet advocates for 

a wide range of content: its selection criteria are 

based solely on the content’s total activation and 

total incentive salience. Expectation codelets are 

attention codelets created in response to selected 

behaviors that advocate for content in the CSM 

corresponding to the expected results (or non-

results) of that selected behavior. 

CONSCIOUS CONTENTS QUEUE (CCQ) STM submodule of the Workspace that contains 

recent conscious broadcasts.  

CURRENT SITUATIONAL MODEL (CSM) STM submodule of the Workspace that represents 

an agent’s (preconscious) interpretation of its 

current situation. 

GLOBAL WORKSPACE (GW) STM module that directs a winner-take-all 

competition among coalitions, and broadcasts the 

content of the winning coalition in the global 

(conscious) broadcast. 
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MOTOR PLAN EXECUTION (MPE) See SMS. 

PERCEPTUAL ASSOCIATIVE MEMORY (PAM) LTM module that supports LIDA’s ability to 

recognize objects, events, entities, concepts, etc., 

and the relationships between them. The most 

activated representations in PAM are instantiated 

into the CSM as percepts after being activated by 

incoming sensory content (or cueing). 

PROCEDURAL MEMORY (PM) LTM module containing representations called 

schemes that each encode a context, action, and 

expected result. When schemes are instantiated 

(that is, when their free variables are bound to 

specific values based on the contents of a 

conscious broadcast) they are referred to as 

(candidate) behaviors.  

SENSORY MEMORY (SM) STM module that encodes modality-specific 

sensory content (from the environment) as the 

activation of low-level features detectors. These, in 

turn, activate perceptual representations in PAM. 

SM also sends sensory representations, based on 

the activation of its low-level feature detectors, to 

the CSM. 

SENSORY MOTOR MEMORY (SMM) See SMS. 

SENSORY MOTOR SYSTEM (SMS)  Composed of two modules: Sensory Motor 

Memory and Motor Plan Execution. The SMS 

selects and instantiates motor plan templates from 

SMM into concrete motor plans, and sends them to 

the Motor Plan Execution module for execution. 

STRUCTURE BUILDING CODELETS (SBCS) Specialized processors that create or modify 

content in the CSM in support of “preconscious 

thought” and situational understanding. 

WORKSPACE STM module supporting preconscious, situational 

understanding. At any given moment it may 

contain cued long-term memories, percepts, 

sensory content (both real and simulated), transient 

representations created by structure building 

codelets. It contains two submodules—the CSM 

and CCQ. 
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𝑲-Armed Bandit Agent Implementation: Parameters and their Values 

Table 7. Implementation parameters and their values (𝑘-armed bandit agent). 

Parameter Value Description 

learning rate 0.001 Controls the rate of base-level incentive salience and 

reliability updates (among other things). 

composite actions chain maximum length 3 Specifies the maximum length of any chain of schemes 

in a composite action’s controller. 

composite actions minimum baseline 

advantage 

0.4 Specifies the minimum combined affective valence and 

incentive salience (over a learned baseline value) 

necessary to consider a node as a goal state for a new 

composite action.6   

composite action update frequency 0.01 The probability (per broadcast) that a composite 

action’s controller will be updated. 

epsilon decay rate 0.9999 The (geometric) decay rate used for the random 

exploratory temperature. 

epsilon initial 0.9999 The initial random exploratory temperature. 

epsilon minimum 0.025 The minimum random exploratory temperature. 

base-level incentive salience eligibility 

trace discount factor 

0.5 The (geometric) value reduction applied for each time 

step between the occurrence of a node in a conscious 

broadcast and a later broadcast containing affective 

valence. (This was used to modulate base-level 

incentive salience updates.)  

base-level incentive salience eligibility 

trace decay rate 

0.5 The (geometric) decay rate applied to the eligibility 

trace value of each non-occurring node in a conscious 

broadcast. (This was used to modulate base-level 

incentive salience updates.) 

positive correlation threshold 0.9 The positive correlation value used to determine when a 

spin-off occurred. 

pending focus decay rate 0.4 The (geometric) decay rate used for the pending 

schemes focus bonus in Action Selection. 

pending focus max. value 0.9 The maximum additional selection importance given to 

components of pending schemes. 

reliability max. penalty 0.6 The maximum reduction in the selection importance of 

unreliable schemes. 

reliability threshold 0.8 The minimum base-level activation for inclusion in a 

composite action. 

 

 

 

 

6 Drescher (1991, p. 90) suggested defining a composite action for every novel result; that is, every combination of 

known items would correspond to a goal state. However, for most environments this will be computationally 

intractable. In practice, goal states must be limited to avoid a proliferation of composite actions. 
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Table 8. Learned and built-in schemes for 𝑘-armed bandit agent (𝑘 = 8). Schemes are 

listed in the order in which they were added to Procedural Memory. Base-level 

activations are provided for each non-bare scheme. Composite actions are shown in bold 

font. 

n Schemes Base-Level Act.  n Schemes Base-Level Act. 

1 /stand/ nan  41 /deposit/M6,P 0.26 

2 /sit(M0)/ nan  42 M1,P/play/L 0.91 

3 /sit(M3)/ nan  43 M7,P/play/W 1.00 

4 /sit(M1)/ nan  44 /deposit/M7,P 0.46 

5 /sit(M2)/ nan  45 /deposit/M0,P 0.08 

6 /sit(M6)/ nan  46 M5,P/play/W 0.73 

7 /sit(M4)/ nan  47 /deposit/M5,P 0.03 

8 /play/ nan  48 M6/deposit/M6,P 1.00 

9 /sit(M5)/ nan  49 /deposit/M1,P 0.03 

10 /sit(M7)/ nan  50 M0/deposit/M0,P 1.00 

11 /deposit/ nan  51 S/sit(M2)/M2 1.00 

12 /sit(M0)/M0 0.20  52 M2,P/play/L 0.76 

13 /stand/S 1.00  53 /deposit/M2,P 0.04 

14 /sit(M3)/M3 0.25  54 M2,P/play/W 0.24 

15 /sit(M5)/M5 0.33  55 M5/deposit/M5,P 1.00 

16 /deposit/P 0.99  56 M7/deposit/M7,P 1.00 

17 /sit(M1)/M1 0.25  57 M5,P/play/L 0.27 

18 S/sit(M5)/M5 1.00  58 M2/sit(M2)/M2 1.00 

19 /sit(M2)/M2 0.15  59 /W/W 0.75 

20 M5/sit(M5)/M5 1.00  60 M2/deposit/M2,P 1.00 

21 /sit(M7)/M7 0.62  61 M1/deposit/M1,P 1.00 

22 S/sit(M1)/M1 1.00  62 M3,P/play/W 0.43 

23 /sit(M6)/M6 0.55  63 /deposit/M3,P 0.03 

24 /play/W 0.64  64 /sit(M4)/M4 0.27 

25 /W/ nan  65 M3/deposit/M3,P 1.00 

26 M1/sit(M1)/M1 1.00  66 M3,P/play/L 0.57 

27 S/sit(M0)/M0 1.00  67 S/sit(M4)/M4 1.00 

28 /play/L 0.17  68 M6,P/play/L 0.10 

29 S/sit(M3)/M3 1.00  69 M4/sit(M4)/M4 1.00 

30 P/play/L 0.21  70 M4,P/play/L 0.42 

31 M3/play/W 0.20  71 /deposit/M4,P 0.06 

32 M0/sit(M0)/M0 1.00  72 M4/deposit/M4,P 1.00 

33 M3/sit(M3)/M3 1.00  73 /W/L 0.00 

34 S/sit(M6)/M6 1.00  74 M3/W/W 0.75 

35 P/play/W 0.79  75 P/W/W 0.93 

36 S/sit(M7)/M7 1.00  76 M4,P/play/W 0.59 

37 M0,P/play/L 1.00  77 M1,P/play/W 0.08 

38 M7/sit(M7)/M7 1.00  78 M3,P/W/W 0.92 

39 M6/sit(M6)/M6 1.00  79 /W/M7 0.47 

40 M6,P/play/W 0.91  80 M7/W/M7 1.00 
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Table 9. Learned base-level incentives saliences for 𝑘-armed bandit agent (𝑘 = 8). 

Base-Level Incentive Salience Node 

0.253 M7,P 

0.187 M6,P 

0.111 M7 

0.107 P 

0.077 M6 

0.024 M5,P 

0.009 M4,P 

-0.001 S 

-0.005 M5 

-0.007 W 

-0.030 M3,P 

-0.044 M4 

-0.056 M3 

-0.101 M2,P 

-0.107 M1,P 

-0.114 M2 

-0.124 M1 

-0.174 L 

-0.240 M0,P 

-0.247 M0 
 

 

  



 

331 

 

Simulation-Based Agent Implementation: 𝜷-VAE Network Architecture 

 

Figure 38. Overview of 𝛽-VAE neural network architecture. 

 

__________________________________________________________________________________________________ 

Layer (type)                    Output Shape         Param #     Connected to                      

================================================================================================== 

input_1 (InputLayer)            [(None, 128, 128, 1) 0                                             

__________________________________________________________________________________________________ 

encoder (Encoder)               ((None, 16), (None,  912160      input_1[0][0]                     

__________________________________________________________________________________________________ 

sampler (Sampler)               (None, 16)           0           encoder[0][0]                     

                                                                 encoder[0][2]                     

__________________________________________________________________________________________________ 

decoder (Decoder)               (None, 128, 128, 1)  1256193     sampler[0][0]                     

__________________________________________________________________________________________________ 

recon_loss (ReconstructionLoss) ()                   0           encoder[0][3]                     

                                                                 decoder[0][0]                     

__________________________________________________________________________________________________ 

kl_loss (KLLoss)                ()                   1           encoder[0][0]                     

                                                                 encoder[0][1]                     

================================================================================================== 

Total params: 2,168,354 

Trainable params: 2,168,353 

Non-trainable params: 1 
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Figure 39. Overview of 𝛽-VAE encoder. 

 

 

Figure 40. Overview of 𝛽-VAE decoder. 

 

Layer (type)                    Output Shape         Param #     Connected to                      

================================================================================================= 

input_2 (InputLayer)            (None, 128, 128, 1)  0                                             

_________________________________________________________________________________________________ 

preprocessor (Preprocessor)     (None, 128, 128, 1)  0           input_2[0][0]                     

_________________________________________________________________________________________________ 

encoder/conv1 (Conv2D)          (None, 128, 128, 32) 320         preprocessor[0][0]                

_________________________________________________________________________________________________ 

encoder/maxpool1 (MaxPooling2D) (None, 64, 64, 32)   0           encoder/conv1[0][0]               

_________________________________________________________________________________________________ 

encoder/conv2 (Conv2D)          (None, 64, 64, 64)   18496       encoder/maxpool1[0][0]            

_________________________________________________________________________________________________ 

encoder/maxpool2 (MaxPooling2D) (None, 32, 32, 64)   0           encoder/conv2[0][0]               

_________________________________________________________________________________________________ 

encoder/conv3 (Conv2D)          (None, 32, 32, 128)  73856       encoder/maxpool2[0][0]            

_________________________________________________________________________________________________ 

encoder/maxpool3 (MaxPooling2D) (None, 16, 16, 128)  0           encoder/conv3[0][0]               

_________________________________________________________________________________________________ 

encoder/conv4 (Conv2D)          (None, 16, 16, 256)  295168      encoder/maxpool3[0][0]            

_________________________________________________________________________________________________ 

encoder/maxpool4 (MaxPooling2D) (None, 8, 8, 256)    0           encoder/conv4[0][0]               

_________________________________________________________________________________________________ 

encoder/flatten (Flatten)       (None, 16384)        0           encoder/maxpool4[0][0]            

_________________________________________________________________________________________________ 

encoder/logvar (Dense)          (None, 16)           262160      encoder/flatten[0][0]             

                                                                 encoder/flatten[0][0]             

_________________________________________________________________________________________________ 

encoder/mu (Dense)              (None, 16)           262160      encoder/flatten[0][0]             

_________________________________________________________________________________________________ 

encoder/sigma (Lambda)          (None, 16)           0           encoder/logvar[1][0]              

================================================================================================= 

Total params: 912,160 

Trainable params: 912,160 

Non-trainable params: 0 

Layer (type)                 Output Shape              Param #    

================================================================= 

input_18 (InputLayer)        [(None, None, 16)]        0          

_________________________________________________________________ 

decoder/dense1 (Dense)       multiple                  278528     

_________________________________________________________________ 

decoder/reshape1 (Reshape)   (None, 8, 8, 256)         0          

_________________________________________________________________ 

decoder/deconv1 (Conv2DTrans (None, 16, 16, 256)       590080     

_________________________________________________________________ 

decoder/deconv2 (Conv2DTrans (None, 32, 32, 128)       295040     

_________________________________________________________________ 

decoder/deconv3 (Conv2DTrans (None, 64, 64, 64)        73792      

_________________________________________________________________ 

decoder/deconv4 (Conv2DTrans (None, 128, 128, 32)      18464      

_________________________________________________________________ 

decoder/deconv5 (Conv2DTrans (None, 128, 128, 1)       289        

================================================================= 

Total params: 1,256,193 

Trainable params: 1,256,193 

Non-trainable params: 0 
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Figure 41. Polyominoes used in mental imagery environment. (Shown in standardized orientations). 
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Figure 42. All rotations and scales for a single pentomino shape. (Shape 13). 
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Figure 43. A sigmoidal current-activation function. The magnitude of a primitive feature detector’s 

current activation is based on the scaled (cosine) similarity between the modal probability 

distributions for incoming sensory stimuli and the previously learned modal probability distributions 

associated with primitive feature detector. PAM’s instantiation threshold is also depicted, which 

corresponds to the amount of total activation (current + base-level activation) that is needed for a 

percept to be instantiated into the LIDA agent’s Current Situational Model (CSM). 
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Figure 44. A heatmap showing current activations. 
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Figure 45. Interpolation and extrapolation from latent representations. Numbers above the shapes 

indicate a step size. The step direction was determined by subtracting the latent representations for 

the shapes in the blue bounding boxes (for each row). 

 

  



 

338 

 

Permission Letters 

Permissions for Figure 28 

JOHN WILEY AND SONS LICENSE TERMS AND CONDITIONS 

Sep 17, 2022 

This Agreement between Sean Kugele ("You") and John Wiley and Sons ("John Wiley and Sons") consists of your 

license details and the terms and conditions provided by John Wiley and Sons and Copyright Clearance Center. 

License Number                       5391251032460 

License date                       Sep 17, 2022 

Licensed Content Publisher      John Wiley and Sons 

Licensed Content Publication   Child Development 

Licensed Content Title              Age Differences in Imagery Abilities 

Licensed Content Author          Philip F. Daly, Emily J. Goldknopf, Anna M. Barrett, et al 

Licensed Content Date              Jun 28, 2008 

Licensed Content Volume         61 

Licensed Content Issue              4 

Licensed Content Pages             16 

Type of use                        Dissertation/Thesis 

Requestor type                        University/Academic 

Format                                       Print and electronic 

Portion                                       Figure/table 

Number of figures/tables          1 

Will you be translating?          No 

Title                                             Embodied, Simulation-Based Cognition: A Hybrid Approach 

Institution name                         University of Memphis 

Expected presentation date           Dec 2022 

Portions                                        Figure 4 on p. 1007 



 

339 

 

Permissions for Figure 37 

 


