Integer SDM and Modular Composite Representation
        Challenging AI applications, such as cognitive architectures, natural language understanding, and visual object recognition share some basic operations including pattern recognition, sequence learning, clustering, and association of related data. Both the representations used and the structure of a system significantly influence which tasks and problems are most readily supported. A memory model and a representation that facilitate these basic tasks would greatly improve the performance of these challenging AI applications.
        Sparse Distributed Memory (SDM), based on large binary vectors, has several desirable properties: auto-associativity, content addressability, distributed storage, robustness over noisy inputs that would facilitate the implementation of challenging AI applications. Here I introduce two variations on the original SDM, the Extended SDM and the Integer SDM, that significantly improve these desirable properties, as well as a new form of reduced description representation named MCR.
        Extended SDM, which uses word vectors of larger size than address vectors, enhances its hetero-associativity, improving the storage of sequences of vectors, as well as of other data structures. A novel sequence learning mechanism is introduced, and several experiments demonstrate the capacity and sequence learning capability of this memory.
        Integer SDM uses modular integer vectors rather than binary vectors, improving the representation capabilities of the memory and its noise robustness. Several experiments show its capacity and noise robustness. Theoretical analyses of its capacity and fidelity are also presented.
        A reduced description represents a whole hierarchy using a single high-dimensional vector, which can recover individual items and directly be used for complex calculations and procedures, such as making analogies. Furthermore, the hierarchy can be reconstructed from the single vector. Modular Composite Representation (MCR), a new reduced description model for the representation used in challenging AI applications, provides an attractive tradeoff between expressiveness and simplicity of operations. A theoretical analysis of its noise robustness, several experiments, and comparisons with similar models are presented.
        My implementations of these memories include an object oriented version using a RAM cache, a version for distributed and multi-threading execution, and a GPU version for fast vector processing.